首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Much less is known about the contributions of the Na+/Ca2+ exchanger (NCX) and sarcoplasmic reticulum (SR) Ca2+ pump to cell relaxation in neonatal compared with adult mammalian ventricular myocytes. Based on both biochemical and molecular studies, there is evidence of a much higher density of NCX at birth that subsequently decreases during the next 2 wk of development. It has been hypothesized, therefore, that NCX plays a relatively more important role for cytosolic Ca2+ decline in neonates as well as, perhaps, a role in excitation-contraction coupling in reverse mode. We isolated neonatal ventricular myocytes from rabbits in four different age groups: 3, 6, 10, and 20 days of age. Using an amphotericin-perforated patch-clamp technique in fluo-3-loaded myocytes, we measured the caffeine-induced inward NCX current (INCX) and the Ca2+ transient. We found that the integral of INCX, an indicator of SR Ca2+ content, was greatest in myocytes from younger age groups when normalized by cell surface area and that it decreased with age. The velocity of Ca2+ extrusion by NCX (VNCX) was linear with [Ca2+] and did not indicate saturation kinetics until [Ca2+] reached 1–3 µM for each age group. There was a significantly greater time delay between the peaks of INCX and the Ca2+ transient in myocytes from the youngest age groups. This observation could be related to structural differences in the subsarcolemmal microdomains as a function of age. ontogeny of cardiac excitation-contraction coupling; sodium/calcium exchanger; cytosolic calcium concentration; subsarcolemmal calcium concentration; sarcoplasmic reticulum calcium content  相似文献   

2.
The cardiacNa+/Ca2+ exchanger (NCX), an importantregulator of cytosolic Ca2+ concentration in contractionand relaxation, has been shown in trout heart sarcolemmal vesicles tohave high activity at 7°C relative to its mammalian isoform. Thisunique property is likely due to differences in protein structure. Inthis study, outward NCX currents (INCX) of thewild-type trout (NCX-TR1.0) and canine (NCX 1.1) exchangers expressedin oocytes were measured to explore the potential contributions ofregulatory vs. transport mechanisms to this observation. cRNA wastranscribed in vitro from both wild-type cDNA and was injected intoXenopus oocytes. INCX of NCX-TR1.0 and NCX1.1 were measured after 3-4 days over a temperature range of 7-30°C using the giant excised patch technique. TheINCX for both isoforms exhibitedNa+-dependent inactivation and Ca2+-dependentpositive regulation. The INCX of NCX1.1exhibited typical mammalian temperature sensitivities withQ10 values of 2.4 and 2.6 for peak and steady-statecurrents, respectively. However, the INCX ofNCX-TR1.0 was relatively temperature insensitive with Q10values of 1.2 and 1.1 for peak and steady-state currents, respectively.INCX current decay was fit with a singleexponential, and the resultant rate constant of inactivation () wasdetermined as a function of temperature. As expected,  decreasedmonotonically with temperature for both isoforms. Although  wassignificantly greater in NCX1.1 compared with NCX-TR1.0 at alltemperatures, the effect of temperature on  was not differentbetween the two isoforms. These data suggest that thedisparities in INCX temperature dependencebetween these two exchanger isoforms are unlikely due to differences intheir inactivation kinetics. In addition, similar differences intemperature dependence were observed in both isoforms after-chymotrypsin treatment that renders the exchanger in a deregulatedstate. These data suggest that the differences in INCX temperature dependence between the twoisoforms are not due to potential disparities in either theINCX regulatory mechanisms or structuraldifferences in the cytoplasmic loop but are likely predicated ondifferences within the transmembrane segments.

  相似文献   

3.
In cardiac-specific Na+-Ca2+ exchanger (NCX) knockout (KO) mice, the ventricular action potential (AP) is shortened. The shortening of the AP, as well as a decrease of the L-type Ca2+ current (ICa), provides a critical mechanism for the maintenance of Ca2+ homeostasis and contractility in the absence of NCX (Pott C, Philipson KD, Goldhaber JI. Excitation-contraction coupling in Na+-Ca2+ exchanger knockout mice: reduced transsarcolemmal Ca2+ flux. Circ Res 97: 1288–1295, 2005). To investigate the mechanism that underlies the accelerated AP repolarization, we recorded the transient outward current (Ito) in patch-clamped myocytes isolated from wild-type (WT) and NCX KO mice. Peak Ito was increased by 78% and decay kinetics were slowed in KO vs. WT. Consistent with increased Ito, ECGs from KO mice exhibited shortened QT intervals. Expression of the Ito-generating K+ channel subunit Kv4.2 and the K+ channel interacting protein was increased in KO. We used a computer model of the murine AP (Bondarenko VE, Szigeti GP, Bett GC, Kim SJ, and Rasmusson RL. Computer model of action potential of mouse ventricular myocytes. Am J Physiol Heart Circ Physiol 287: 1378–1403, 2004) to determine the relative contributions of increased Ito, reduced ICa, and reduced NCX current (INCX) on the shape and kinetics of the AP. Reduction of ICa and elimination of INCX had relatively small effects on the duration of the AP in the computer model. In contrast, AP repolarization was substantially accelerated when Ito was increased in the computer model. Thus, the increase in Ito, and not the reduction of ICa or INCX, is likely to be the major mechanism of AP shortening in KO myocytes. The upregulation of Ito may comprise an important regulatory mechanism to limit Ca2+ influx via a reduction of AP duration, thus preventing Ca2+ overload in situations of reduced myocyte Ca2+ extrusion capacity. genetically altered mice; cardiac myocytes; short QT interval; transient outward current  相似文献   

4.
Bovine adrenalzona fasciculata cells (AZF) express a noninactivatingK+ current(IAC) whoseinhibition by adrenocorticotropic hormone and ANG II may be coupled tomembrane depolarization andCa2+-dependentcortisol secretion. We studiedIACinhibition byCa2+ and theCa2+ionophore ionomycin in whole cell and single-channel patch-clamp recordings of AZF. In whole cell recordings with intracellular (pipette)Ca2+concentration([Ca2+]i)buffered to 0.02 µM,IAC reachedmaximum current density of 25.0 ± 5.1 pA/pF(n = 16); raising[Ca2+]ito 2.0 µM reduced it 76%. In inside-out patches, elevated[Ca2+]idramatically reducedIAC channelactivity. Ionomycin inhibited IAC by 88 ± 4% (n = 14) without altering rapidlyinactivating A-type K+ current.Inhibition of IACby ionomycin was unaltered by adding calmodulin inhibitory peptide tothe pipette or replacing ATP with its nonhydrolyzable analog5'-adenylylimidodiphosphate.IAC inhibition byionomycin was associated with membrane depolarization. When[Ca2+]iwas buffered to 0.02 µM with 2 and 11 mM1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid (BAPTA), ionomycin inhibitedIAC by 89.6 ± 3.5 and 25.6 ± 14.6% and depolarized the same AZF by 47 ± 8 and 8 ± 3 mV, respectively (n = 4). ANG II inhibitedIAC significantlymore effectively when pipette BAPTA was reduced from 11 to 2 mM. Raising[Ca2+]iinhibits IACthrough a mechanism not requiring calmodulin or protein kinases,suggesting direct interaction withIAC channels. ANGII may inhibitIAC anddepolarize AZF by activating parallel signaling pathways, one of whichuses Ca2+ asa mediator.

  相似文献   

5.
The ability to image calciumsignals at subcellular levels within the intact depolarizing heartcould provide valuable information toward a more integratedunderstanding of cardiac function. Accordingly, a system combiningtwo-photon excitation with laser-scanning microscopy was developed tomonitor electrically evoked [Ca2+]itransients in individual cardiomyocytes within noncontracting Langendorff-perfused mouse hearts. [Ca2+]itransients were recorded at depths 100 µm from the epicardial surface with the fluorescent indicators rhod-2 or fura-2 in the presence of the excitation-contraction uncoupler cytochalasin D. Evoked[Ca2+]i transients were highly synchronizedamong neighboring cardiomyocytes. At 1 Hz, the times from 90 to 50%(t90-50%) and from 50 to 10%(t50-10%) of the peak[Ca2+]i were (means ± SE) 73 ± 4 and 126 ± 10 ms, respectively, and at 2 Hz, 62 ± 3 and94 ± 6 ms (n = 19, P < 0.05 vs.1 Hz) in rhod-2-loaded cardiomyocytes.[Ca2+]i decay was markedly slower infura-2-loaded hearts (t90-50% at 1 Hz,128 ± 9 ms and at 2 Hz, 88 ± 5 ms;t50-10% at 1 Hz, 214 ± 18 ms and at2 Hz, 163 ± 7 ms; n = 19, P < 0.05 vs. rhod-2). Fura-2-induced deceleration of[Ca2+]i decline resulted from increasedcytosolic Ca2+ buffering, because the kinetics of rhod-2decay resembled those obtained with fura-2 after incorporation of theCa2+ chelator BAPTA. Propagating calcium waves and[Ca2+]i amplitude alternans were readilydetected in paced hearts. This approach should be of general utility tomonitor the consequences of genetic and/or functional heterogeneity incellular calcium signaling within whole mouse hearts at tissue depthsthat have been inaccessible to single-photon imaging.

  相似文献   

6.
The effect of -adrenergic stimulation on cardiac Na+/Ca2+ exchange has been controversial. To clarify the effect, we measured Na+/Ca2+ exchange current (INCX) in voltage-clamped guinea pig, mouse, and rat ventricular cells. When INCX was defined as a 5 mM Ni2+-sensitive current in guinea pig ventricular myocytes, 1 µM isoproterenol apparently augmented INCX by 32%. However, this increase was probably due to contamination of the cAMP-dependent Cl current (CFTR-Cl current, ICFTR-Cl), because Ni2+ inhibited the activation of ICFTR-Cl by 1 µM isoproterenol with a half-maximum concentration of 0.5 mM under conditions where INCX was suppressed. Five or ten millimolar Ni2+ did not inhibit ICFTR-Cl activated by 10 µM forskolin, an activator of adenylate cyclase, suggesting that Ni2+ acted upstream of adenylate cyclase in the -adrenergic signaling pathway. Furthermore, in a low-extracellular Cl bath solution, 1 µM isoproterenol did not significantly alter the amplitude of Ni2+-sensitive INCX at +50 mV, which is close to the reversal potential of ICFTR-Cl. No change in INCX amplitude was induced by 10 µM forskolin. When INCX was activated by extracellular Ca2+, it was not significantly affected by 1 µM isoproterenol in guinea pig, mouse, or rat ventricular cells. We concluded that -adrenergic stimulation does not have significant effects on INCX in guinea pig, mouse, or rat ventricular myocytes. cystic fibrosis transmembrane conductance regulator; nickel ion  相似文献   

7.
Tonic contraction of corpus cavernosum smooth muscle cells (SMCs) maintains the flaccid state of the penis, and relaxation is initiated by nitric oxide (NO), leading to erection. Our aim was to investigate the effect of NO on the smooth muscle cellular response to adrenergic stimulation in corpus cavernosum. Fura-2 fluorescence was used to record intracellular Ca2+ concentration ([Ca2+]i) from freshly isolated SMCs from rat and human. Phenylephrine (PE) transiently elevated [Ca2+]i in the presence and absence of extracellular Ca2+, indicating release from intracellular stores. Whereas the NO donor S-nitroso-N-acetylpenicillamine (SNAP) with sildenafil citrate (SIL) caused no change in basal [Ca2+]i, the PE-induced rise of [Ca2+]i was reversibly inhibited by 27 ± 7% (n = 21, P < 0.005) in rat and by 55 ± 15% (n = 9, P < 0.01) in human SMCs. SNAP and SIL also reduced the contractile response to PE. To investigate the mechanism, we applied mediators alone or in combination. The soluble guanylyl cyclase inhibitor ODQ reduced the effect of SNAP and SIL. SIL, cGMP analogs, and NO donors without SIL did not reduce the PE-induced rise of [Ca2+]i. However, the combination of 8-bromo-cGMP with SNAP reduced the Ca2+ peak by 42 ± 9% (n = 22, P < 0.01). Our results demonstrate that NO and cGMP act synergistically to reduce Ca2+ release from intracellular stores. Reduction of intracellular Ca2+ release may contribute to relaxation of the corpus cavernosum, leading to erection. calcium stores; nitric oxide; sildenafil citrate; inositol 1,4,5-trisphosphate receptor  相似文献   

8.
The role of nitric oxide (NO) in the occurrence of intracellular Ca2+ concentration ([Ca2+]i) oscillations in pituitary GH3 cells was evaluated by studying the effect of increasing or decreasing endogenous NO synthesis with L-arginine and nitro-L-arginine methyl ester (L-NAME), respectively. When NO synthesis was blocked with L-NAME (1 mM) [Ca2+]i, oscillations disappeared in 68% of spontaneously active cells, whereas 41% of the quiescent cells showed [Ca2+]i oscillations in response to the NO synthase (NOS) substrate L-arginine (10 mM). This effect was reproduced by the NO donors NOC-18 and S-nitroso-N-acetylpenicillamine (SNAP). NOC-18 was ineffective in the presence of the L-type voltage-dependent Ca2+ channels (VDCC) blocker nimodipine (1 µM) or in Ca2+-free medium. Conversely, its effect was preserved when Ca2+ release from intracellular Ca2+ stores was inhibited either with the ryanodine-receptor blocker ryanodine (500 µM) or with the inositol 1,4,5-trisphosphate receptor blocker xestospongin C (3 µM). These results suggest that NO induces the appearance of [Ca2+]i oscillations by determining Ca2+ influx. Patch-clamp experiments excluded that NO acted directly on VDCC but suggested that NO determined membrane depolarization because of the inhibition of voltage-gated K+ channels. NOC-18 and SNAP caused a decrease in the amplitude of slow-inactivating (IDR) and ether-à-go-go-related gene (ERG) hyperpolarization-evoked, deactivating K+ currents. Similar results were obtained when GH3 cells were treated with L-arginine. The present study suggests that in GH3 cells, endogenous NO plays a permissive role for the occurrence of spontaneous [Ca2+]i oscillations through an inhibitory effect on IDR and on IERG. voltage-gated potassium channels; ether-à-go-go-related gene potassium channels; slow-inactivating outward currents; fast-inactivating outward currents  相似文献   

9.
Hyperpolarization in human leukemia THP-1 monocytes adherent tovascular cell adhesion molecule (VCAM)-1 is due to an induction ofinwardly rectifying K+ currents(Iir) (Colden-Stanfield M and Gallin EK,Am J Physiol Cell Physiol 275: C267-C277, 1998).We determined whether the VCAM-1-induced hyperpolarization issufficient to augment the increase in intracellular free calcium([Ca2+]i) produced by Ca2+ storedepletion with thapsigargin (TG) and readdition of external CaCl2 in fura 2-loaded THP-1 monocytes. Whereas there was a2.1-fold increase in [Ca2+]i in monocytesbound to glass for 5 h in response to TG and CaCl2 addition, adherence to VCAM-1 produced a 5-fold increase in[Ca2+]i. Depolarization of monocytes adherentto VCAM-1 by Iir blockade or exposure to high[K+] abolished the enhancement of the peak[Ca2+]i response. In monocytes bound toglass, hyperpolarization of the membrane potential with valinomycin, aK+ ionophore, to the level of hyperpolarization seen incells adherent to VCAM-1 produced similar changes in peak[Ca2+]i. Adherence of monocytes to E-selectinproduced a similar peak [Ca2+]i to cellsbound to glass. Thus monocyte adherence to the physiological substrateVCAM-1 produces a hyperpolarization that is sufficient to enhanceCa2+ entry and may impact Ca2+-dependentmonocyte function.

  相似文献   

10.
The role of Na+/Ca2+ exchange inregulating intracellular Ca2+ concentration([Ca2+]i) in isolated smooth muscle cellsfrom the guinea pig urinary bladder was investigated. Incrementalreduction of extracellular Na+ concentration resulted in agraded rise of [Ca2+]i; 50-100 µMstrophanthidin also increased [Ca2+]i. Asmall outward current accompanied the rise of[Ca2+]i in low-Na+ solutions(17.1 ± 1.8 pA in 29.4 mM Na+). The quantity ofCa2+ influx through the exchanger was estimated from thecharge carried by the outward current and was ~30 times that which isnecessary to account for the rise of [Ca2+]i,after correction was made for intracellular Ca2+ buffering.Ca2+ influx through the exchanger was able to loadintracellular Ca2+ stores. It is concluded that the levelof resting [Ca2+]i is not determined by theexchanger, and under resting conditions (membrane potential 50 to60 mV), there is little net flux through the exchanger. However, asmall rise of intracellular Na+ concentration would besufficient to generate significant net Ca2+ influx.

  相似文献   

11.
In this study, we test the hypothesisthat in newborn hearts (as in adults) hypoxia and acidificationstimulate increased Na+ uptake, in part via pH-regulatoryNa+/H+ exchange. Resulting increases inintracellular Na+ (Nai) alter the force drivingthe Na+/Ca2+ exchanger and lead to increasedintracellular Ca2+. NMR spectroscopy measuredNai and cytosolic Ca2+ concentration([Ca2+]i) and pH (pHi) inisolated, Langendorff-perfused 4- to 7-day-old rabbit hearts. AfterNa+/K+ ATPase inhibition, hypoxic hearts gainedNa+, whereas normoxic controls did not [19 ± 3.4 to139 ± 14.6 vs. 22 ± 1.9 to 22 ± 2.5 (SE) meq/kg drywt, respectively]. In normoxic hearts acidified using theNH4Cl prepulse, pHi fell rapidly and recovered,whereas Nai rose from 31 ± 18.2 to 117.7 ± 20.5 meq/kg dry wt. Both protocols caused increases in [Ca]i;however, [Ca]i increased less in newborn hearts than inadults (P < 0.05). Increases in Nai and[Ca]i were inhibited by theNa+/H+ exchange inhibitormethylisobutylamiloride (MIA, 40 µM; P < 0.05), aswell as by increasing perfusate osmolarity (+30 mosM) immediately before and during hypoxia (P < 0.05). The data supportthe hypothesis that in newborn hearts, like adults, increases inNai and [Ca]i during hypoxia and afternormoxic acidification are in large part the result of increased uptakevia Na+/H+ and Na+/Ca2+exchange, respectively. However, for similar hypoxia and acidification protocols, this increase in [Ca]i is less in newborn thanadult hearts.

  相似文献   

12.
Malignant hyperthermia (MH) is a pharmacogenetic disorder of skeletal muscle triggered in susceptible individuals by inhalation anesthetics and depolarizing skeletal muscle relaxants. This syndrome has been linked to a missense mutation in the type 1 ryanodine receptor (RyR1) in more than 50% of cases studied to date. Using double-barreled Ca2+ microelectrodes in myotubes expressing wild-type RyR1 (WTRyR1) or RyR1 with one of four common MH mutations (MHRyR1), we measured resting intracellular Ca2+ concentration ([Ca2+]i). Changes in resting [Ca2+]i produced by several drugs known to modulate the RyR1 channel complex were investigated. We found that myotubes expressing any of the MHRyR1s had a 2.0- to 3.7-fold higher resting [Ca2+]i than those expressing WTRyR1. Exposure of myotubes expressing MHRyR1s to ryanodine (500 µM) or (2,6-dichloro-4-aminophenyl)isopropylamine (FLA 365; 20 µM) had no effects on their resting [Ca2+]i. However, when myotubes were exposed to bastadin 5 alone or to a combination of ryanodine and bastadin 5, the resting [Ca2+]i was significantly reduced (P < 0.01). Interestingly, the percent decrease in resting [Ca2+]i in myotubes expressing MHRyR1s was significantly greater than that for WTRyR1. From these data, we propose that the high resting myoplasmic [Ca2+]i in MHRyR1 expressing myotubes is due in part to a related structural conformation of MHRyR1s that favors "passive" calcium leak from the sarcoplasmic reticulum. ryanodine; FLA 365; bastadin 5; resting intracellular calcium concentration; sarcoplasmic reticulum  相似文献   

13.
We investigatedthe relationship between voltage-operatedCa2+ channel current and thecorresponding intracellular Ca2+concentration([Ca2+]i)change (Ca2+ transient) in guineapig gastric myocytes. Fluorescence microspectroscopy was combined withconventional whole cell patch-clamp technique, and fura 2 (80 µM) wasadded to CsCl-rich pipette solution. Step depolarization to 0 mVinduced inward Ca2+ current(ICa) andconcomitantly raised[Ca2+]i.Both responses were suppressed by nicardipine, an L-typeCa2+ channel blocker, and thevoltage dependence of Ca2+transient was similar to the current-voltage relation ofICa. When pulseduration was increased by up to 900 ms, peakCa2+ transient increased andreached a steady state when stimulation was for longer. The calculatedfast Ca2+ buffering capacity(B value), determined as the ratio ofthe time integral ofICa divided bythe amplitude of Ca2+ transient,was not significantly increased after depletion of Ca2+ stores by the cyclicapplication of caffeine (10 mM) in the presence of ryanodine (4 µM).The addition of cyclopiazonic acid (CPA, 10 µM), a sarco(endo)plasmicreticulum Ca2+-ATPase inhibitor,decreased B value by ~20% in areversible manner. When KCl pipette solution was used,Ca2+-activatedK+ current[IK(Ca)]was also recorded during step depolarization. CPA sensitivelysuppressed the initial peak and oscillations of IK(Ca) withirregular effects on Ca2+transients. The above results suggest that, in guinea pig gastric myocyte, Ca2+ transient is tightlycoupled to ICaduring depolarization, and global[Ca2+]iis not significantly affected byCa2+-inducedCa2+ release from sarcoplasmicreticulum during depolarization.

  相似文献   

14.
We report here the expression in C2C12 myoblasts of the intermediate-conductance Ca2+-activated K+ (IKCa) channel. The IKCa current, recorded under perforated-patch configuration, had a transient time course when activated by ionomycin (0.5 µM; peak current density 26.2 ± 3.7 pA/pF; n = 10), but ionomycin (0.5 µM) + 5,6-dichloro-1-ethyl-1,3-dihydro-2H-benzimidazol-2-one (100 µM) evoked a stable outward current (28.4 ± 8.2 pA/pF; n = 11). The current was fully inhibited by charybdotoxin (200 nM), clotrimazole (2 µM), and 5-nitro-2-(3-phenylpropylamino)benzoic acid (300 µM), but not by tetraethylammonium (1 mM) or D-tubocurarine (300 µM). Congruent with the IKCa channel, elevation of intracellular Ca2+ in inside-out patches resulted in the activation of a voltage-insensitive K+ channel with weak inward rectification, a unitary conductance of 38 ± 6 pS (at negative voltages), and an IC50 for Ca2+ of 530 nM. The IKCa channel was activated metabotropically by external application of ATP (100 µM), an intracellular Ca2+ mobilizer. Under current-clamp conditions, ATP application resulted in a membrane hyperpolarization of 35 mV. The IKCa current downregulated during myogenesis, ceasing to be detectable 4 days after the myoblasts were placed in differentiating medium. Downregulation was prevented by the myogenic suppressor agent basic FGF (bFGF). We also found that block of the IKCa channel by charybdotoxin did not inhibit bFGF-sustained myoblast proliferation. These observations show that in C2C12 myoblasts the IKCa channel expression correlates inversely with differentiation, yet it does not appear to have a role in myoblast proliferation. ATP; cell proliferation  相似文献   

15.
Allosteric regulation by cytosolic Ca2+ of Na+/Ca2+ exchange activity in the Ca2+ efflux mode has received little attention because it has been technically difficult to distinguish between the roles of Ca2+ as allosteric activator and transport substrate. In this study, we used transfected Chinese hamster ovary cells to compare the Ca2+ efflux activities in nontransfected cells and in cells expressing either the wild-type exchanger or a mutant, (241–680), that operates constitutively; i.e., its activity does not require allosteric Ca2+ activation. Expression of the wild-type exchanger did not significantly lower the cytosolic Ca2+ concentration ([Ca2+]i) compared with nontransfected cells. During Ca2+ entry through store-operated Ca2+ channels, Ca2+ efflux by the wild-type exchanger became evident only after [Ca2+]i approached 100–200 nM. A subsequent decline in [Ca2+]i was observed, suggesting that the activation process was time dependent. In contrast, Ca2+ efflux activity was evident under all experimental conditions in cells expressing the constitutive exchanger mutant. After transient exposure to elevated [Ca2+]i, the wild-type exchanger behaved similarly to the constitutive mutant for tens of seconds after [Ca2+]i had returned to resting levels. We conclude that Ca2+ efflux activity by the wild-type exchanger is allosterically activated by Ca2+, perhaps in a time-dependent manner, and that the activated state is briefly retained after the return of [Ca2+]i to resting levels. persistent calcium activation; store-operated channels; calcium transient  相似文献   

16.
To study the effects of flow on in situendothelial intracellular calcium concentration([Ca2+]i) signaling, rat aortic rings wereloaded with fura 2, mounted on a tissue flow chamber, and divided intocontrol and flow-pretreated groups. The latter was perfused with bufferat a shear stress of 50 dyns/cm2 for 1 h. Endothelial[Ca2+]i responses to ACh or shear stresseswere determined by ratio image analysis. Moreover, ACh-induced[Ca2+]i elevation responses were measured ina calcium-free buffer, or in the presence of SKF-96365, to elucidatethe role of calcium influx in the flow effects. Our results showed that1) ACh increased endothelial[Ca2+]i in a dose-dependent manner, and theseresponses were incremented by flow-pretreatment; 2) thedifferences in ACh-induced [Ca2+]i elevationbetween control and flow-pretreated groups were abolished by SKF-96365or by Ca2+-free buffer; and 3) in the presenceof 105 M ATP, shear stress induced dose-dependent[Ca2+]i elevation responses that were notaltered by flow-pretreatment. In conclusion, flow-pretreatment augmentsthe ACh-induced endothelial calcium influx in rat aortas ex vivo.

  相似文献   

17.
In fura 2-loaded N1E-115 cells, regulationof intracellular Ca2+ concentration([Ca2+]i) following a Ca2+ loadinduced by 1 µM thapsigargin and 10 µM carbonylcyanidep-trifluoromethyoxyphenylhydrazone (FCCP) wasNa+ dependent and inhibited by 5 mM Ni2+. Incells with normal intracellular Na+ concentration([Na+]i), removal of bath Na+,which should result in reversal of Na+/Ca2+exchange, did not increase [Ca2+]i unlesscell Ca2+ buffer capacity was reduced. When N1E-115 cellswere Na+ loaded using 100 µM veratridine and 4 µg/mlscorpion venom, the rate of the reverse mode of theNa+/Ca2+ exchanger was apparently enhanced,since an ~4- to 6-fold increase in [Ca2+]ioccurred despite normal cell Ca2+ buffering. In SBFI-loadedcells, we were able to demonstrate forward operation of theNa+/Ca2+ exchanger (net efflux ofCa2+) by observing increases (~ 6 mM) in[Na+]i. These Ni2+ (5 mM)-inhibited increases in [Na+]i could onlybe observed when a continuous ionomycin-induced influx ofCa2+ occurred. The voltage-sensitive dyebis-(1,3-diethylthiobarbituric acid) trimethine oxonol was used tomeasure changes in membrane potential. Ionomycin (1 µM) depolarizedN1E-115 cells (~25 mV). This depolarization was Na+dependent and blocked by 5 mM Ni2+ and 250-500 µMbenzamil. These data provide evidence for the presence of anelectrogenic Na+/Ca2+ exchanger that is capableof regulating [Ca2+]i after release ofCa2+ from cell stores.

  相似文献   

18.
Ethanol strongly augments secretin-stimulated, but not acetylcholine (ACh)-stimulated, fluid secretion from pancreatic duct cells. To understand its mechanism of action, we examined the effect of short-chain n-alcohols on fluid secretion and intracellular Ca2+ concentration ([Ca2+]i) in guinea pig pancreatic ducts. Fluid secretion was measured by monitoring the luminal volume of isolated interlobular ducts. [Ca2+]i was estimated using fura-2 microfluorometry. Methanol and ethanol at 0.3–10 mM concentrations significantly augmented fluid secretion and induced a transient elevation of [Ca2+]i in secretin- or dibutyryl adenosine 3',5'-cyclic monophosphate (DBcAMP)-stimulated ducts. However, they failed to affect fluid secretion and [Ca2+]i in unstimulated and ACh-stimulated ducts. In contrast, propanol and butanol at 0.3–10 mM concentrations significantly reduced fluid secretion and decreased [Ca2+]i in unstimulated ducts and in ducts stimulated with secretin, DBcAMP, or ACh. Both stimulatory and inhibitory effects of n-alcohols completely disappeared after their removal from the perfusate. Propanol and butanol inhibited the plateau phase, but not the initial peak, of [Ca2+]i response to ACh as well as the [Ca2+]i elevation induced by thapsigargin, suggesting that they inhibit Ca2+ influx. Removal of extracellular Ca2+ reduced [Ca2+]i in duct cells and completely abolished secretin-stimulated fluid secretion. In conclusion, there is a distinct cutoff point between ethanol (C2) and propanol (C3) in their effects on fluid secretion and [Ca2+]i in duct cells. Short-chain n-alcohols appear to affect pancreatic ductal fluid secretion by activating or inhibiting the plasma membrane Ca2+ channel. intracellular calcium; acetylcholine  相似文献   

19.
We investigatedthe role of intracellular calcium concentration([Ca2+]i) in endothelin-1 (ET-1) production,the effects of potential vasospastic agents on[Ca2+]i, and the presence of L-typevoltage-dependent Ca2+ channels in cerebral microvascularendothelial cells. Primary cultures of endothelial cells isolated frompiglet cerebral microvessels were used. Confluent cells were exposed toeither the thromboxane receptor agonist U-46619 (1 µM),5-hydroxytryptamine (5-HT; 0.1 mM), or lysophosphatidic acid (LPA; 1 µM) alone or after pretreatment with the Ca2+-chelatingagent EDTA (100 mM), the L-type Ca2+ channel blockerverapamil (10 µM), or the antagonist of receptor-operated Ca2+ channel SKF-96365 HCl (10 µM) for 15 min. ET-1production increased from 1.2 (control) to 8.2 (U-46619), 4.9 (5-HT),or 3.9 (LPA) fmol/µg protein, respectively. Such elevated ET-1biosynthesis was attenuated by verapamil, EDTA, or SKF-96365 HCl. Toinvestigate the presence of L-type voltage-dependent Ca2+channels in endothelial cells, the [Ca2+]isignal was determined fluorometrically by using fura 2-AM. Superfusionof confluent endothelial cells with U-46619, 5-HT, or LPA significantlyincreased [Ca2+]i. Pretreatment ofendothelial cells with high K+ (60 mM) or nifedipine (4 µM) diminished increases in [Ca2+]i inducedby the vasoactive agents. These results indicate that 1)elevated [Ca2+]i signals are involved in ET-1biosynthesis induced by specific spasmogenic agents, 2) theincreases in [Ca2+]i induced by thevasoactive agents tested involve receptor as well as L-typevoltage-dependent Ca2+ channels, and 3) primarycultures of cerebral microvascular endothelial cells express L-typevoltage-dependent Ca2+ channels.

  相似文献   

20.
These experiments were performed to determine the effects ofreducing Ca2+ influx(Cain) onK+ currents(IK) inmyocytes from rat small mesenteric arteries by1) adding externalCd2+ or2) lowering externalCa2+ to 0.2 mM. When measured froma holding potential (HP) of 20 mV(IK20),decreasing Cain decreasedIK at voltageswhere it was active (>0 mV). When measured from a HP of 60 mV(IK60),decreasing Cain increasedIK at voltagesbetween 30 and +20 mV but decreased IK at voltagesabove +40 mV. Difference currents(IK) weredetermined by digital subtraction of currents recorded under controlconditions from those obtained whenCain was decreased. At testvoltages up to 0 mV,IK60 exhibitedkinetics similar to controlIK60, with rapidactivation to a peak followed by slow inactivation. At 0 mV, peakIK60 averaged75 ± 13 pA (n = 8) withCd2+ and 120 ± 20 pA(n = 9) with lowCa2+ concentration. At testvoltages from 0 to +60 mV,IK60 always had an early positive peak phase, but its apparent "inactivation" increased with voltage and its steady value became negative above +20mV. At +60 mV, the initial peakIK60 averaged115 ± 18 pA with Cd2+ and 187 ± 34 pA with low Ca2+. With 10 mM pipette BAPTA, Cd2+ produced asmall inhibition ofIK20 but stillincreased IK60 between 30 and +10 mV. InCa2+-free external solution,Cd2+ only decreased bothIK20 andIK60. In thepresence of iberiotoxin (100 nM) to inhibitCa2+-activatedK+ channels(KCa),Cd2+ increasedIK60 at allvoltages positive to 30 mV while BAY K 8644 (1 µM) decreasedIK60. Theseresults suggest that Cain, through L-type Ca2+ channels and perhapsother pathways, increases KCa(i.e., IK20) and decreases voltage-dependent K+currents in this tissue. This effect could contribute to membrane depolarization and force maintenance.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号