首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The present study examined in vitro vasomotor function and expression of enzymes controlling nitric oxide (NO) bioavailability in thoracic aorta of adult male normotensive Wistar-Kyoto (WKY) and spontaneously hypertensive rats (SHR) that either remained sedentary (Sed) or performed 6 wk of moderate aerobic exercise training (Ex). Training efficacy was confirmed by elevated maximal activities of both citrate synthase (P = 0.0024) and beta-hydroxyacyl-CoA dehydrogenase (P = 0.0073) in the white gastrocnemius skeletal muscle of Ex vs. Sed rats. Systolic blood pressure was elevated in SHR vs. WKY (P < 0.0001) but was not affected by Ex. Despite enhanced endothelium-dependent relaxation to 10(-8) M ACh in SHR vs. WKY (P = 0.0061), maximal endothelium-dependent relaxation to 10(-4) M ACh was blunted in Sed SHR (48 +/- 12%) vs. Sed WKY (84 +/- 6%, P = 0.0067). Maximal endothelium-dependent relaxation to 10(-4) M ACh was completely restored in Ex SHR (93 +/- 9%) vs. Sed SHR (P = 0.0011). N(omega)-nitro-l-arginine abolished endothelium-dependent relaxation in all groups (P 相似文献   

2.
The effect of neonatal sympathectomy on vasodilator responses to acetylcholine (ACh) and cAMP has been studied in aortic rings of spontaneously hypertensive rats (SHR) and normotensive animals. The relaxation of intact SHR aorta in response to ACh and cAMP was 20-35% lower than that of normotensive rats. Sympathectomy in normotensive rats did not affect the level of blood pressure and aorta reactivity to Ach. In SHR, sympathectomy caused a decrease in blood pressure, while relaxation in response to ACh and cAMP increased, as compared to intact SHR, but remained lower than in normotensive rats. The data obtained suggest that the decrease in arterial pressure of sympathectomized SHR is a result not only of the reduction in sympathetic effects but also of the increase in smooth muscle relaxation.  相似文献   

3.
Activation of AMP-activated protein kinase (AMPK) induces vasorelaxation in arteries from healthy animals, but the mechanisms coordinating this effect are unclear and the integrity of this response has not been investigated in dysfunctional arteries of hypertensive animals. Here we investigate the mechanisms of relaxation to the AMPK activator 5-aminoimidazole-4-carboxamide 1-β-D-ribofuranoside (AICAR) in isolated thoracic aorta rings from spontaneously hypertensive rats (SHR) and normotensive Wistar-Kyoto rats (WKY). Although AICAR generated dose-dependent (10(-6)-10(-2) M) relaxation in precontracted WKY and SHR aortic rings with (E(+)) or without (E(-)) endothelium, relaxation was enhanced in E(+) rings. Relaxation in SHR E(+) rings was also enhanced at low [AICAR] (10(-6) M) compared with that of WKY (57 ± 8% vs. 3 ± 2% relaxation in SHR vs. WKY E(+)), but was similar and near 100% in both groups at high [AICAR]. Pharmacological dissection showed that the mechanisms responsible for the endothelium-dependent component of relaxation across the dose range of AICAR are exclusively nitric oxide (NO) mediated in WKY rings, but partly NO dependent and partly cyclooxygenase (COX) dependent in SHR vessels. Further investigation revealed that ACh-stimulated COX-endothelium-derived contracting factors (EDCF)-mediated contractions were suppressed by AICAR, and this effect was reversed in the presence of the AMPK inhibitor Compound C in quiescent E(+) SHR aortic rings. Western blots demonstrated that P(Thr(172))-AMPK and P(Ser(79))-acetyl-CoA carboxylase (indexes of AMPK activation) were elevated in SHR versus WKY E(+) rings at low AICAR (~2-fold). Together these findings suggest that AMPK-mediated inhibition of EDCF-dependent contraction and elevated AMPK activation may contribute to the enhanced sensitivity of SHR E(+) rings to AICAR. These results demonstrate AMPK-mediated vasorelaxation is present and enhanced in arteries of SHR and suggest that activation of AMPK may be a potential strategy to improve vasomotor dysfunction by suppressing enhanced endoperoxide-mediated contraction and enhancing NO-mediated relaxation.  相似文献   

4.
Neo-fermented buckwheat sprouts (neo-FBS) contain angiotensin-converting enzyme (ACE) inhibitors and vasodilators with blood pressure-lowering (BPL) properties in spontaneously hypertensive rats (SHRs). In this study, we investigated antihypertensive mechanisms of six BPL peptides isolated from neo-FBS (FBPs) by a vasorelaxation assay and conventional in vitro, in vivo, and a new ex vivo ACE inhibitory assays. Some FBPs demonstrated moderate endothelium-dependent vasorelaxation in SHR thoracic aorta and all FBPs mildly inhibited ACE in vitro. Orally administered FBPs strongly inhibited ACE in SHR tissues. To investigate detailed ACE-inhibitory mechanism of FBPs in living body tissues, we performed the ex vivo assay by using endothelium-denuded thoracic aorta rings isolated from SHRs, which demonstrated that FBPs at low concentration effectively inhibited ACE in thoracic aorta tissue and suppressed angiotensin II-mediated vasoconstriction directly associated with BPL. These results indicate that the main BPL mechanism of FBP was ACE inhibition in living body tissues, suggesting that high FBP''s bioavailability including absorption, tissue affinity, and tissue accumulation was responsible for the superior ACE inhibition in vivo. We propose that our ex vivo assay is an efficient and reliable method for evaluating ACE-inhibitory mechanism responsible for BPL activity in vivo.  相似文献   

5.
It has been shown that endothelium-derived nitric oxide (NO) plays an important role in regulation of vascular tone in the prenatal and early postnatal period. The aim of this paper was to determine the reactivity and accompanying structural changes in thoracic aorta from 4-week-old spontaneously hypertensive rats (SHR) and rats with hereditary hypertriglyceridemia (hHTG) in comparison with age-matched normotensive controls. For functional studies thoracic aorta was excised, cut into rings and mounted in organ baths for measurement of isometric contractile force. For morphological studies cardiovascular system of rats was perfused with glutaraldehyde fixative (at 100 mm Hg) via cannula placed in the left ventricle. Morphological changes of thoracic aorta were measured using light microscopy. Systolic blood pressure (SBP) in SHR (98+/-1 mm Hg) did not significantly differ from that of age-matched control rats (95+/-4 mm Hg), but was slightly increased in hHTG rats (110+/-2 mm Hg, P<0.05). Heart weight/body weight ratio was higher in SHR and hHTG rats than in control group indicating the hypertrophy of the heart in both models of hypertension. Endothelium-dependent relaxation of aorta induced by acetylcholine was preserved in all groups and did not differ from that in control normotensive rats. The maximal isometric contraction of thoracic aorta to noradrenaline (NA) was reduced in hypertensive groups and the concentration-response curves to NA were shifted to the right indicating increased sensitivity of smooth muscle to NA. The values of wall thickness and cross sectional area as well as inner diameter of thoracic aorta in SHR and hHTG rats were significantly decreased in comparison to control groups. Endothelial dysfunction seems to be absent in all young rats before development of hypertension. In conclusion, our observations indicate that in early stage of experimental hypertension NO-dependent relaxation is preserved so that putative impairment of this function provides no significant pathogenic contribution to the onset of hypertension in these two experimental models.  相似文献   

6.
The aim of this study was to investigate nitric oxide (NO) production and L-NAME-sensitive component of endothelium-dependent vasorelaxation in adult normotensive Wistar-Kyoto rats (WKY), borderline hypertensive rats (BHR) and spontaneously hypertensive rats (SHR). Blood pressure (BP) of WKY, BHR and SHR (determined by tail-cuff) was 111+/-3, 140+/-4 and 184+/-6 mm Hg, respectively. NO synthase activity (determined by conversion of [(3)H]-L-arginine) was significantly higher in the aorta of BHR and SHR vs. WKY and in the left ventricle of SHR vs. both BHR and WKY. L-NAME-sensitive component of endothelium-dependent relaxation was investigated in the preconstricted femoral arteries using the wire myograph during isometric conditions as a difference between acetylcholine-induced relaxation before and after acute N(G)-nitro-L-arginine methyl ester pre-treatment (L-NAME, 10(-5) mol/l). Acetylcholine-induced vasorelaxation of SHR was significantly greater than that in WKY. L-NAME-sensitive component of vasorelaxation in WKY, BHR and SHR was 20+/-3 %, 29+/-4 % (p<0.05 vs. WKY) and 37+/-3 % (p<0.05 vs. BHR), respectively. There was a significant positive correlation between BP and L-NAME-sensitive component of relaxation of the femoral artery. In conclusion, results suggest the absence of endothelial dysfunction in the femoral artery of adult borderline and spontaneously hypertensive rats and gradual elevation of L-NAME-sensitive component of vasorelaxation with increasing blood pressure.  相似文献   

7.
Li ZL  Liu JC  Liu SB  Li XQ  Yi DH  Zhao MG 《PloS one》2012,7(6):e38787
The G-protein coupled estrogen receptor 30 (GPR30) is a seven-transmembrane domain receptor that mediates rapid estrogen responses in a wide variety of cell types. This receptor is highly expressed in the cardiovascular system, and exerts vasodilatory effects. The objective of the present study was to investigate the effects of GPR30 on vascular responsiveness in diabetic ovariectomized (OVX) rats and elucidate the possible mechanism involved. The roles of GPR30 were evaluated in the thoracic aorta and cultured endothelial cells. The GPR30 agonist G1 induced a dose-dependent vasodilation in the thoracic aorta of the diabetic OVX rats, which was partially attenuated by the nitric oxide synthase (NOS) inhibitor, nitro-L-arginine methylester (L-NAME) and the GPR30-selective antagonist G15. Dose-dependent vasoconstrictive responses to phenylephrine were attenuated significantly in the rings of the thoracic aorta following the acute G1 administration in the diabetic OVX rats. This effect of G1 was abolished partially by L-NAME and G15. The acute administration of G1 increased significantly the eNOS activity and the concentration of NO in the endothelial cells exposed to high glucose. G1 treatment induced an enhanced endothelium-dependent relaxation to acetylcholine (Ach) in the diabetic OVX rats. Further examination revealed that G1 induced vasodilation in the diabetic OVX rats by increasing the phosphorylation of eNOS. These findings provide preliminary evidence that GPR30 activation leads to eNOS activation, as well as vasodilation, to a certain degree and has beneficial effects on vascular function in diabetic OVX rats.  相似文献   

8.
We have previously reported on the positive effects of wild blueberries on arterial contractile response to α1 adrenergic stimuli and on endothelium-mediated vasorelaxation. Our present study was designed to evaluate the effects of the dietary enrichment with wild blueberries on aortic function and reactivity in the developmental phase of essential hypertension in spontaneously hypertensive rats (SHR). We investigated the possible influence blueberries may have on the acetylcholine (Ach)-induced endothelium-dependent vasorelaxation and phenylephrine-induced vasoconstriction in young SHRs, as well as the contribution of the nitric oxide (NO) synthase and cyclooxygenase (COX) pathways in each of the above responses in an animal model with dysfunctional endothelium. Vascular ring studies were conducted in 3-mm isolated rat aortic ring preparations to investigate vasoconstriction induced by l-Phenylephrine (Phe, 10?8 to 3×10?6M) and vasorelaxation induced by acetylcholine (Ach, 10?9 to 3×10?6M). The major findings of our study were that in Phe-induced vasoconstriction, SHR-BB aortas relaxed to a greater degree in comparison to controls when mefenamic acid (MFA) was present and that the incubation with this COX inhibitor failed to restore — and in fact decreased — the maximum vasodilator response to Ach, in comparison to controls. Our vessel reactivity index (pD2) observations indicate that blueberries appear to modulate cell membrane–agonist (Ach) interactions primarily in response to Ach in the young SHR model, but not to the α1 adrenoreceptor agonist. Incorporating wild blueberries in the diet seems to affect the endothelium-dependent vasorelaxation by modulating alternative metabolic pathway(s) (such as affecting the production/activity of COX-derived products) in the young SHR aorta.  相似文献   

9.
In the present study the mechanic activity of SHR and Wistar rat's aorta was evaluated, in vitro, after stimulation by chloride of potassium, phenylephrine, norepinephrine, histamine, serotonin and acetylcholine, before and after the removal of the endothelium. The aorta rings of the rats were taken before the development of the hypertensive state (7th week) and at 18th week (when the SHR rats already showed established hypertension starting since IXth week of life), and successively suspended in a bath for isolated organ. The mechanic activity was measured by isometric transductor. The obtained findings show an increased sensitivity, in SHRs, to (K+), NA and FeE, if these are compared with the control group, since the prehypertensive stage (7th week). The removal of the endothelium didn't modify the response amplitude to K in both the breeds, while the maximum response amplitude, provoked by NA and FeE, significantly increased in SHRs compared to controls. The relaxation induced by the vasodilator agents (Ach-H-5HT) was completely absent in the SHR rats' aorta with established hypertension. In conclusion, these results suggest a functional deterioration of the endothelial cells, in the hypertensive animals, that could contribute to increase the peripheric vascular resistances observed during hypertension.  相似文献   

10.

Background

Obesity is associated with increased risks for development of cardiovascular diseases. Epidemiological studies report an inverse association between dietary flavonoid consumption and mortality from cardiovascular diseases. We studied the potential beneficial effects of dietary supplementation of red wine polyphenol extract, Provinols™, on obesity-associated alterations with respect to metabolic disturbances and cardiovascular functions in Zucker fatty (ZF) rats.

Methodology/Principal Findings

ZF rats or their lean littermates received normal diet or supplemented with Provinols™ for 8 weeks. Provinols™ improved glucose metabolism by reducing plasma glucose and fructosamine in ZF rats. Moreover, it reduced circulating triglycerides and total cholesterol as well as LDL-cholesterol in ZF rats. Echocardiography measurements demonstrated that Provinols™ improved cardiac performance as evidenced by an increase in left ventricular fractional shortening and cardiac output associated with decreased peripheral arterial resistances in ZF rats. Regarding vascular function, Provinols™ corrected endothelial dysfunction in aortas from ZF rats by improving endothelium-dependent relaxation in response to acetylcholine (Ach). Provinols™ enhanced NO bioavailability resulting from increased nitric oxide (NO) production through enhanced endothelial NO-synthase (eNOS) activity and reduced superoxide anion release via decreased expression of NADPH oxidase membrane sub-unit, Nox-1. In small mesenteric arteries, although Provinols™ did not affect the endothelium-dependent response to Ach; it enhanced the endothelial-derived hyperpolarizing factor component of the response.

Conclusions/Significance

Use of red wine polyphenols may be a potential mechanism for prevention of cardiovascular and metabolic alterations associated with obesity.  相似文献   

11.
Hereditary hypertriglyceridemic (hHTG) rats are characterized by increased blood pressure and impaired endothelium-dependent relaxation of conduit arteries. The aim of this study was to investigate the effect of long-term (4 weeks) treatment of hHTG rats with three drugs which, according to their mechanism of action, may be able to modify the endothelial function: simvastatin (an inhibitor of 3-hydroxy-3-methylglutaryl-CoA reductase), spironolactone (an antagonist of aldosterone receptors) and L-arginine (a precursor of nitric oxide formation). At the end of fourth week the systolic blood pressure in the control hHTG group was 148+/-2 mm Hg and in control normotensive Wistar group 117+/-3 mm Hg. L-arginine failed to reduce blood pressure, but simvastatin (118+/-1 mm Hg) and spironolactone (124+/-4 mm Hg) treatment significantly decreased the systolic blood pressure. In isolated phenylephrine-precontracted aortic rings from hHTG rats endothelium-dependent relaxation was diminished as compared to control Wistar rats. Of the three drugs used, only simvastatin improved acetylcholine-induced relaxation of the aorta. We conclude that both simvastatin and spironolactone reduced blood pressure but only simvastatin significantly improved endothelial dysfunction of aorta. Prominent increase in the expression of eNOS in large conduit arteries may be the pathophysiological mechanism underlying the protective effect of simvastatin in hHTG rats.  相似文献   

12.
Little is known about the effects of human free apolipoprotein A-I (Free-Apo A-I) and pre-beta-high density lipoprotein (pre-beta-HDL) on the endothelium function. In this study, we have investigated the effects of Free-Apo A-I and artificial pre-beta-HDL on endothelial NO synthase (eNOS) activity and on NO production by endothelial cells. Free-Apo A-I drastically inhibited NO production in human umbilical cord vein endothelial cells (HUVECs) and eNOS activity in bovine aortic endothelial cells (BAECs). Pre-beta-HDL and serum from human apolipoprotein A-I transgenic rabbits inhibited eNOS activity in BAECs but HDL3 did not. Free-Apo A-I displaced eNOS from BAEC plasma membrane towards intracellular pools without affecting eNOS activity and eNOS mass in BAEC crude homogenates. Free-Apo A-I and HDL3 did not decrease either caveolin bound to BAEC plasma membrane or caveola cholesterol content. As previously described, we showed that HDL3 directly induced endothelium-dependent relaxation of rings from rat aorta. We observed that pre-beta-HDL significantly decreased endothelium-dependent relaxation of rat aortic rings ex vivo.  相似文献   

13.
I Sakuma  S S Gross  R Levi 《Prostaglandins》1987,34(5):685-696
The purpose of our investigation was to assess the role of the endothelium in the vasomotor effects of leukotrienes. Norepinephrine-preconstricted rings isolated from guinea pig main pulmonary artery and thoracic aorta responded to LTC4 and LTD4 with a concentration-dependent relaxation. In endothelium-denuded rings, both LTC4 and LTD4 caused a concentration-dependent contraction. The LTD4 receptor antagonist ICI 198,615 inhibited both LTC4- and LTD4-induced relaxation and contraction. Inhibition of gamma-glutamyl transpeptidase with AT-125 prevented the effects of LTC4, but not those of LTD4. The relaxant effect of LTD4 was not modified by indomethacin, but was abolished by methylene blue. We conclude that: 1) LTD4 induces a receptor-mediated endothelium-dependent relaxation of cavian pulmonary artery and aorta; 2) the vasorelaxant effect of LTC4 requires its conversion to LTD4; 3) the vasorelaxant effect of LTD4 is unrelated to PGI2 release, and is probably due to the release of an "EDRF"; 4) the removal of the endothelium reveals a direct receptor-mediated vasoconstricting effect of leukotrienes.  相似文献   

14.
Treatment with pertussis toxin (PTX) which eliminates the activity of G(i) proteins effectively reduces blood pressure (BP) and vascular resistance in spontaneously hypertensive rats (SHR). In this study we have compared the functional characteristics of isolated arteries from SHR with and without PTX-treatment (10 microg/kg i.v., 48 h before the experiment). Rings of thoracic aorta, superior mesenteric artery and main pulmonary artery were studied under isometric conditions to measure the reactivity of these vessels to receptor agonists and to transmural electrical stimuli. We have found that the treatment of SHR with PTX had no effect on endothelium-dependent relaxation of thoracic aorta induced by acetylcholine. In PTX-treated SHR, the maximum contraction of mesenteric artery to exogenous noradrenaline was reduced and the dose-response curve to cumulative concentration of noradrenaline was shifted to the right. Similarly, a reduction in the magnitude of neurogenic contractions elicited by electrical stimulation of perivascular nerves was observed in the mesenteric artery from PTX-treated SHR. PTX treatment of SHR also abolished the potentiating effect of angiotensin II on neurogenic contractions of the main pulmonary artery. These results indicate that PTX treatment markedly diminishes the effectiveness of adrenergic stimuli in vasculature of SHR. This could importantly affect BP regulation in genetic hypertension.  相似文献   

15.
目的:探讨双环醇(bicyclol)对超氧阴离子(O2)诱导的血管舒张功能损伤的影响。方法:采用离体器官灌流技术,观察bicyclol对离体大鼠胸主动脉环张力的影响。采用焦酚(O2的供体)建立O2损伤模型,观察bicyclol预孵育对氧化应激损伤后血管内皮依赖性舒张功能的改善作用。结果:bicyclol(10-8~10-5mol/L)对由苯肾上腺素预收缩的内皮完整主动脉环产生舒张作用,该作用可被NO合酶抑制剂L-NAME和环氧化酶抑制剂吲哚美辛阻断。500μmol/L焦酚可引起乙酰胆碱诱导的主动脉环内皮依赖性舒张反应减弱,bicyclol(10-5mol/L)预孵育45 min可减轻焦酚的损伤作用。对于吲哚美辛处理的主动脉环,bicyclol(10-5mol/L)可抑制焦酚所致的血管舒张反应降低,但这一效应未见于L-NAME处理的主动脉环。结论:bicyclol具有内皮依赖性舒血管作用,并能对抗O2引起的血管舒张功能损伤,该作用通过NO途径介导。  相似文献   

16.
M-R Rhyu  E-Y Kim  B Kim 《Phytomedicine》2004,11(1):51-55
The vasorelaxant effect of Rhizoma Ligustici wallichii and its possible mechanism of action on the vasomotor tone of the rat thoracic aortic rings were examined in an organ bath. Chloroform extracts of Rhizoma Ligustici wallichii (Ch1LW) elicited a dose-dependent, transient, relaxing response in endothelium-intact rat aorta contracted with norepinephrine (NE). This relaxant effect was abolished by removal of the endothelium and also by pretreatment with nitric oxide synthase inhibitors. Neither a muscarinic receptor antagonist nor a cyclooxygenase inhibitor altered the Ch1LW-induced relaxation. Tetramethylpyrazine, derived from Rhizoma Ligustici wallichii as a potent vasodilating component, induced a complete relaxation in both endothelium-intact and denuded rat aortas contracted by NE, but nitric oxide synthase inhibitors did not affect the relaxation. Ch1LW-induced endothelium-dependent relaxation was mediated by nitric oxide released from the endothelium, and could be caused by component(s) other than tetramethylpyrazine.  相似文献   

17.
Objective: To investigate the effect of Iptakalim(Ipt) preventing injury of endothelial microvesicles(EMVs) derived from hypoxia/reoxygenation(H/R)-treated HUVECs on the relaxation of rat thoracic aortic rings and explore the underlying mechanism. Methods: H/R injury model was established to release H/R-EMVs from HUVECs. H/R-EMVs from HUVECs were isolated by ultracentrifugation from the conditioned culture medium. H/R-EMVs were characterized by using Transmission Electron Microscope(TEM). Thoracic aortic rings of rats were incubated with 10~(-7)-10~(-3 )mol/L Ipt and co-cultured with 10 μg/ml H/R-EMVs for 4 hours, and their endothelium- dependent relaxation in response to acetylcholine(ACh) was recorded in vitro. The nitric oxide(NO) production of ACh-treated rat thoracic aortic rings was measured by using Griess reagent. The expression of endothelial NO synthase(e NOS), phosphorylated e NOS(p-e NOS, Ser-1177), serine/threonine kinas(Akt) and phosphorylated Akt(p-Akt, Ser-473) in the thoracic aortic rings of rats was detected by Western blotting. Results: H/R-EMVs were induced by H/R-treated HUVECs and isolated by ultracentrifugation. The isolated H/R-EMVs subjected to TEM revealed small, rounded vesicles(100–1 000 nm) surrounded by a membrane. H/R-EMVs impaired relaxation induced by ACh of rat thoracic aortic rings significantly. Compared with H/R-EMVs treatment individually, relaxation and NO production of rat thoracic aortic rings were increased by Ipt treatment in a concentration-dependent manner(P0.05, P0.01). The expression of total e NOS(t-e NOS) and total Akt(t-Akt) was not affected by Ipt or H/R-EMVs. However, the expression of p-e NOS and p-Akt increased after treated with Ipt(P0.01). Conclusion: Based on H/R-EMVs treatment, ACh induced endothelium-dependent relaxation of rat thoracic aortic rings was ameliorated by Ipt in a concentration-dependent manner. The mechanisms involved the increase in NO production, p-e NOS and p-Akt expression.  相似文献   

18.
To clarify the mechanism underlying the antioxidant properties of l-carnitine (LC) and propionyl-l-carnitine (PLC) on spontaneously hypertensive (SHR) and normotensive WKY, animals were treated with either PLC or LC (200 mg kg(- 1)). Aorta was dissected and contraction to (R)-( - )-phenylephrine (Phe) and relaxation to carbachol (CCh) were assessed in the presence or not of the NO synthase (NOS) inhibitor, l-NAME. [image omitted] production was evaluated by lucigenin-enhanced chemiluminescence and its participation on relaxation was observed after incubation with superoxide dismutase (SOD) plus catalase. Protein expressions of eNOS, Cu/Zn-SOD and Mn-SOD were studied by western blot. Both LC and PLC treatments improved endothelial function of SHR through increasing NO participation and decreasing [image omitted] probably involving higher Cu/Zn-SOD expression. PLC treatment augmented eNOS expression in SHR. Surprisingly, LC increased [image omitted] produced by aorta from WKY and thus diminished NO and damaged endothelial function. Conversely, PLC did not affect CCh-induced relaxation in WKY. These results demonstrate that LC and PLC prevent endothelial dysfunction in SHR through an antioxidant effect.  相似文献   

19.
Resveratrol (RESV) is a polyphenol with pleiotropic effects that include reduction of oxidative stress and increased vascular nitric oxide (NO) production. However, whether or not RESV can prevent rises in blood pressure (BP) is controversial and remains to be firmly established. The purpose of this study was to determine whether RESV attenuates elevated BP and subsequent adaptive cardiac hypertrophy and to better understand the mechanisms involved. The spontaneously hypertensive rat (SHR) and the angiotensin (Ang)-II infused mouse were used as hypertensive models. Compared to a standard control diet, consumption of diets containing RESV by SHRs and Ang-II hypertensive mice, markedly prevented rises in systolic BP. In addition, flow-mediated vasodilation was significantly improved by RESV in SHRs. RESV also reduced serum and cardiac levels of the lipid peroxidation by-product, 4-hydroxy-2-nonenal in the hypertensive rodents and inhibited the production of superoxide in human-derived endothelial cells. Analysis of mesenteric arteries from SHRs and Ang-II infused mice demonstrated that RESV increased endothelial NO synthase (eNOS) phosphorylation by enhancing the LKB1/adenosine monophosphate (AMP)-activated protein kinase (AMPK) signal transduction pathway. Moreover, RESV reduced hypertrophic growth of the myocardium through reduced hemodynamic load and inhibition of the p70 S6 kinase pro-hypertrophic signaling cascade. Overall, we show that high dose RESV reduces oxidative stress, improves vascular function, attenuates high BP and prevents cardiac hypertrophy through the preservation of the LKB1–AMPK–eNOS signaling axis.  相似文献   

20.
Endothelium-dependent vasorelaxation in large vessels is mainly attributed to Nomega-nitro-L-arginine methyl ester (L-NAME)-sensitive endothelial nitric oxide (NO) synthase (eNOS)-derived NO production. Endothelium-derived hyperpolarizing factor (EDHF) is the component of endothelium-dependent relaxations that resists full blockade of NO synthases (NOS) and cyclooxygenases. H2O2 has been proposed as an EDHF in resistance vessels. In this work we propose that in mice aorta neuronal (n)NOS-derived H2O2 accounts for a large proportion of endothelium-dependent ACh-induced relaxation. In mice aorta rings, ACh-induced relaxation was inhibited by L-NAME and Nomega-nitro-L-arginine (L-NNA), two nonselective inhibitors of NOS, and attenuated by selective inhibition of nNOS with L-ArgNO2-L-Dbu-NH2 2TFA (L-ArgNO2-L-Dbu) and 1-(2-trifluoromethylphehyl)imidazole (TRIM). The relaxation induced by ACh was associated with enhanced H2O2 production in endothelial cells that was prevented by the addition of L-NAME, L-NNA, L-ArgNO2-L-Dbu, TRIM, and removal of the endothelium. The addition of catalase, an enzyme that degrades H2O2, reduced ACh-dependent relaxation and abolished ACh-induced H2O2 production. RT-PCR experiments showed the presence of mRNA for eNOS and nNOS but not inducible NOS in mice aorta. The constitutive expression of nNOS was confirmed by Western blot analysis in endothelium-containing vessels but not in endothelium-denuded vessels. Immunohistochemistry data confirmed the localization of nNOS in the vascular endothelium. Antisense knockdown of nNOS decreased both ACh-dependent relaxation and ACh-induced H2O2 production. Antisense knockdown of eNOS decreased ACh-induced relaxation but not H2O2 production. Residual relaxation in eNOS knockdown mouse aorta was further inhibited by the selective inhibition of nNOS with L-ArgNO2-L-Dbu. In conclusion, these results show that nNOS is constitutively expressed in the endothelium of mouse aorta and that nNOS-derived H2O2 is a major endothelium-dependent relaxing factor. Hence, in the mouse aorta, the effects of nonselective NOS inhibitors cannot be solely ascribed to NO release and action without considering the coparticipation of H2O2 in mediating vasodilatation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号