首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Autophagy is regulated by phosphoinositides. We have previously shown that phosphatidylinositol 4-phosphate (PtdIns(4)P) is localized in the autophagosomal membrane. Additionally, in yeast cells, phosphatidylinositol 4-kinases Pik1p and Stt4p play important roles in the formation of the autophagosome and its fusion with the vacuole, respectively. In this study, we analyzed the primary role of PtdIns(4)P phosphatases in yeast autophagy. The PtdIns(4)P labeling densities in the membranes of the vacuoles, mitochondria, nucleus, endoplasmic reticulum, and plasma membrane dramatically increased in the phosphatase deletion mutants sac1? and sjl3?, and the temperature-sensitive mutant sac1ts/sjl3? at the restrictive temperature. GFP-Atg8 processing assay indicated defective autophagy in the sac1? and sac1ts/sjl3? mutants. In contrast to the localization of PtdIns(4)P in the luminal leaflet of autophagosomal membranes in the wild-type yeast, PtdIns(4)P was localized in both the luminal and cytoplasmic leaflets of the autophagosomal membranes in the sac1? strain. In addition, the number of autophagic bodies in the vacuole significantly decreased in the sac1? strain, although autophagosomes were present in the cytoplasm. In the sac1ts/sjl3? strain, the number of autophagosomes in the cytoplasm dramatically decreased at the restrictive temperature. Considering that the numbers of autophagosomes and autophagic bodies in the sjl3? strain were comparable to those in the wild-type yeast, we found that the autophagosome could not be formed when PtdIns(4)P phosphatase activities of both Sac1p and Sjl3p were diminished. Together, these results indicate that the turnover of PtdIns(4)P by phosphatases is essential for autophagosome biogenesis.  相似文献   

2.
Synthesis and turnover of phosphoinositides are tightly regulated processes mediated by a set of recently identified kinases and phosphatases. We analyzed the primary role of the phosphoinositide phosphatase Sac1p in Saccharomyces cerevisiae with the use of a temperature-sensitive allele of this gene. Our analysis demonstrates that inactivation of Sac1p leads to a specific increase in the cellular levels of phosphatidylinositol 4-phosphate (PtdIns(4)P), accompanied by changes in vacuole morphology and an accumulation of lipid droplets. We have found that the majority of Sac1p localizes to the endoplasmic reticulum, and this localization is crucial for the efficient turnover of PtdIns(4)P. By generating double mutant strains harboring the sac1(ts) allele and one of two temperature-sensitive PtdIns 4-kinase genes, stt4(ts) or pik1(ts), we have demonstrated that the bulk of PtdIns(4)P that accumulates in sac1 mutant cells is generated by the Stt4 PtdIns 4-kinase, and not Pik1p. Consistent with these findings, inactivation of Sac1p partially rescued defects associated with stt4(ts) but not pik1(ts) mutant cells. To analyze potential overlapping functions between Sac1p and other homologous phosphoinositide phosphatases, sac1(ts) mutant cells lacking various other synaptojanin-like phosphatases were generated. These double and triple mutants exacerbated the accumulation of intracellular phosphoinositides and caused defects in Golgi function. Together, our results demonstrate that Sac1p primarily turns over Stt4p-generated PtdIns(4)P and that the membrane localization of Sac1p is important for its function in vivo. Regulation of this PtdIns(4)P pool appears to be crucial for the maintenance of vacuole morphology, regulation of lipid storage, Golgi function, and actin cytoskeleton organization.  相似文献   

3.
Phosphatidylinositol 4-phosphate (PtdIns(4)P) regulates diverse cellular processes, such as actin cytoskeletal organization, Golgi trafficking and vacuolar biogenesis. Synthesis and turnover of PtdIns(4)P is mediated by a set of specific lipid kinases and phosphatases. Here we show that the polyphosphoinositide phosphatase Sac1p has a central role in compartment-specific regulation of PtdIns(4)P. We have found that sac1Delta mutants show pleiotropic, synthetically lethal interactions with mutations in genes required for vacuolar protein sorting (Vps). Disruption of the SAC1 gene also caused a defect in the late endocytic pathway. These trafficking phenotypes correlated with a dramatic accumulation of PtdIns(4)P at vacuolar membranes. In addition, sac1 mutants displayed elevated endoplasmic reticulum PtdIns(4)P. The accumulation of PtdIns(4)P at the endoplasmic reticulum and vacuole and the endocytic defect could be compensated by mutations in the PtdIns 4-kinase Stt4p. Our results indicate that elimination of Sac1p causes accumulation of a Stt4p-specific PtdIns(4)P pool at internal membranes which impairs late endocytic and vacuolar trafficking. We conclude that Sac1p functions in confining PtdIns(4)P-dependent processes to specific intracellular membranes.  相似文献   

4.
During yeast sporulation, internal membrane synthesis ensures that each haploid nucleus is packaged into a spore. Prospore membrane formation requires Spo14p, a phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P2]-stimulated phospholipase D (PLD), which hydrolyzes phosphatidylcholine (PtdCho) to phosphatidic acid (PtdOH) and choline. We found that both meiosis and spore formation also require the phosphatidylinositol (PtdIns)/PtdCho transport protein Sec14p. Specific ablation of the PtdIns transport activity of Sec14p was sufficient to impair spore formation but not meiosis. Overexpression of Pik1p, a PtdIns 4-kinase, suppressed the sec14-1 meiosis and spore formation defects; conversely, pik1-ts diploids failed to undergo meiosis and spore formation. The PtdIns(4)P 5-kinase, Mss4p, also is essential for spore formation. Use of phosphoinositide-specific GFP-PH domain reporters confirmed that PtdIns(4,5)P2 is enriched in prospore membranes. sec14, pik1, and mss4 mutants displayed decreased Spo14p PLD activity, whereas absence of Spo14p did not affect phosphoinositide levels in vivo, suggesting that formation of PtdIns(4,5)P2 is important for Spo14p activity. Spo14p-generated PtdOH appears to have an essential role in sporulation, because treatment of cells with 1-butanol, which supports Spo14p-catalyzed PtdCho breakdown but leads to production of Cho and Ptd-butanol, blocks spore formation at concentrations where the inert isomer, 2-butanol, has little effect. Thus, rather than a role for PtdOH in stimulating PtdIns(4,5)P2 formation, our findings indicate that during sporulation, Spo14p-mediated PtdOH production functions downstream of Sec14p-, Pik1p-, and Mss4p-dependent PtdIns(4,5)P2 synthesis.  相似文献   

5.
Phosphatidylinositol-(4,5)-bisphosphate [PtdIns(4,5)P2] is a key regulator of endocytosis. PtdIns(4,5)P2 generation at the plasma membrane in yeast is mediated by the kinase Mss4p, but the mechanism underlying the temporal and spatial activation of Mss4p to increase formation of PtdIns(4,5)P2 at appropriate sites is not known. Here, we show that ADP ribosylation factor (Arf)3p, the yeast homologue of mammalian Arf6, is necessary for wild-type levels of PtdIns(4,5)P2 at the plasma membrane. Arf3p localizes to dynamic spots at the membrane, and the behaviour of these is consistent with it functioning in concert with endocytic machinery. Localization of Arf3p is disrupted by deletion of genes encoding an ArfGAP homology protein Gts1p and a guanine nucleotide exchange factor Yel1p. Significantly, deletion of arf3 causes a reduction in PtdIns(4,5)P2 at the plasma membrane, while increased levels of active Arf3p, caused by deletion of the GTPase-activating protein Gts1, increase PtdIns(4,5)P2 levels. Furthermore, elevated Arf3p correlates with an increase in the number of endocytic sites. Our data provide evidence for a mechanism in yeast to positively regulate plasma membrane production of PtdIns(4,5)P2 levels and that these changes impact on endocytosis.  相似文献   

6.
The Saccharomyces cerevisiae FAB1 gene encodes a 257-kD protein that contains a cysteine-rich RING-FYVE domain at its NH2-terminus and a kinase domain at its COOH terminus. Based on its sequence, Fab1p was initially proposed to function as a phosphatidylinositol 4-phosphate (PtdIns(4)P) 5-kinase (Yamamoto et al., 1995). Additional sequence analysis of the Fab1p kinase domain, reveals that Fab1p defines a subfamily of putative PtdInsP kinases that is distinct from the kinases that synthesize PtdIns(4,5)P2. Consistent with this, we find that unlike wild-type cells, fab1Δ, fab1tsf, and fab1 kinase domain point mutants lack detectable levels of PtdIns(3,5)P2, a phosphoinositide recently identified both in yeast and mammalian cells. PtdIns(4,5)P2 synthesis, on the other hand, is only moderately affected even in fab1Δ mutants. The presence of PtdIns(3)P in fab1 mutants, combined with previous data, indicate that PtdIns(3,5)P2 synthesis is a two step process, requiring the production of PtdIns(3)P by the Vps34p PtdIns 3-kinase and the subsequent Fab1p- dependent phosphorylation of PtdIns(3)P yielding PtdIns(3,5)P2. Although Vps34p-mediated synthesis of PtdIns(3)P is required for the proper sorting of hydrolases from the Golgi to the vacuole, the production of PtdIns(3,5)P2 by Fab1p does not directly affect Golgi to vacuole trafficking, suggesting that PtdIns(3,5)P2 has a distinct function. The major phenotypes resulting from Fab1p kinase inactivation include temperature-sensitive growth, vacuolar acidification defects, and dramatic increases in vacuolar size. Based on our studies, we hypothesize that whereas Vps34p is essential for anterograde trafficking of membrane and protein cargoes to the vacuole, Fab1p may play an important compensatory role in the recycling/turnover of membranes deposited at the vacuole. Interestingly, deletion of VAC7 also results in an enlarged vacuole morphology and has no detectable PtdIns(3,5)P2, suggesting that Vac7p functions as an upstream regulator, perhaps in a complex with Fab1p. We propose that Fab1p and Vac7p are components of a signal transduction pathway which functions to regulate the efflux or turnover of vacuolar membranes through the regulated production of PtdIns(3,5)P2.  相似文献   

7.
The yeast Saccharomyces cerevisiae possesses two genes that encode phosphatidylinositol (PtdIns) 4-kinases, STT4 and PIK1. Both gene products phosphorylate PtdIns at the D-4 position of the inositol ring to generate PtdIns(4)P, which plays an essential role in yeast viability because deletion of either STT4 or PIK1 is lethal. Furthermore, although both enzymes have the same biochemical activity, increased expression of either kinase cannot compensate for the loss of the other, suggesting that these kinases regulate distinct intracellular functions, each of which is required for yeast cell growth. By the construction of temperature-conditional single and double mutants, we have found that Stt4p activity is required for the maintenance of vacuole morphology, cell wall integrity, and actin cytoskeleton organization. In contrast, Pik1p is essential for normal secretion, Golgi and vacuole membrane dynamics, and endocytosis. Strikingly, pik1(ts) cells exhibit a rapid defect in secretion of Golgi-modified secretory pathway cargos, Hsp150p and invertase, whereas stt4(ts) cells exhibit no detectable secretory defects. Both single mutants reduce PtdIns(4)P by approximately 50%; however, stt4(ts)/pik1(ts) double mutant cells produce more than 10-fold less PtdIns(4)P as well as PtdIns(4,5)P(2). The aberrant Golgi morphology found in pik1(ts) mutants is strikingly similar to that found in cells lacking the function of Arf1p, a small GTPase that is known to regulate multiple membrane trafficking events throughout the cell. Consistent with this observation, arf1 mutants exhibit reduced PtdIns(4)P levels. In contrast, diminished levels of PtdIns(4)P observed in stt4(ts) cells at restrictive temperature result in a dramatic change in vacuole size compared with pik1(ts) cells and persistent actin delocalization. Based on these results, we propose that Stt4p and Pik1p act as the major, if not the only, PtdIns 4-kinases in yeast and produce distinct pools of PtdIns(4)P and PtdIns(4,5)P(2) that act on different intracellular membranes to recruit or activate as yet uncharacterized effector proteins.  相似文献   

8.
Phosphoinositides (PI) are synthesized and turned over by specific kinases, phosphatases, and lipases that ensure the proper localization of discrete PI isoforms at distinct membranes. We analyzed the role of the yeast synaptojanin-like proteins using a strain that expressed only a temperature-conditional allele of SJL2. Our analysis demonstrated that inactivation of the yeast synaptojanins leads to increased cellular levels of phosphatidylinositol (3,5)-bisphosphate and phosphatidylinositol (4,5)-bisphosphate (PtdIns(4,5)P(2)), accompanied by defects in actin organization, endocytosis, and clathrin-mediated sorting between the Golgi and endosomes. The phenotypes observed in synaptojanin-deficient cells correlated with accumulation of PtdIns(4,5)P(2), because these effects were rescued by mutations in MSS4 or a mutant form of Sjl2p that harbors only PI 5-phosphatase activity. We utilized green fluorescent protein-pleckstrin homology domain chimeras (termed FLAREs for fluorescent lipid-associated reporters) with distinct PI-binding specificities to visualize pools of PtdIns(4,5)P(2) and phosphatidylinositol 4-phosphate in yeast. PtdIns(4,5)P(2) localized to the plasma membrane in a manner dependent on Mss4p activity. On inactivation of the yeast synaptojanins, PtdIns(4,5)P(2) accumulated in intracellular compartments, as well as the cell surface. In contrast, phosphatidylinositol 4-phosphate generated by Pik1p localized in intracellular compartments. Taken together, our results demonstrate that the yeast synaptojanins control the localization of PtdIns(4,5)P(2) in vivo and provide further evidence for the compartmentalization of different PI species.  相似文献   

9.
Phosphoinositides (PIs) are signaling molecules that regulate cellular events including vesicle targeting and interactions between membrane and cytoskeleton. Phosphatidylinositol (PtdIns)(4,5)P(2) is one of the best characterized PIs; studies in which PtdIns(4,5)P(2) localization or concentration is altered lead to defects in the actin cytoskeleton and exocytosis. PtdIns(4,5)P(2) and its derivative Ins(1,4,5)P(3) accumulate in salt, cold, and osmotically stressed plants. PtdIns(4,5)P(2) signaling is terminated through the action of inositol polyphosphate phosphatases and PI phosphatases including supressor of actin mutation (SAC) domain phosphatases. In some cases, these phosphatases also act on Ins(1,4,5)P(3). We have characterized the Arabidopsis (Arabidopsis thaliana) sac9 mutants. The SAC9 protein is different from other SAC domain proteins in several ways including the presence of a WW protein interaction domain within the SAC domain. The rice (Oryza sativa) and Arabidopsis SAC9 protein sequences are similar, but no apparent homologs are found in nonplant genomes. High-performance liquid chromatography studies show that unstressed sac9 mutants accumulate elevated levels of PtdIns(4,5)P(2) and Ins(1,4,5)P(3) as compared to wild-type plants. The sac9 mutants have characteristics of a constitutive stress response, including dwarfism, closed stomata, and anthocyanin accumulation, and they overexpress stress-induced genes and overaccumulate reactive-oxygen species. These results suggest that the SAC9 phosphatase is involved in modulating phosphoinsitide signals during the stress response.  相似文献   

10.
Autophagy is a degradative cellular pathway that protects eukaryotic cells from starvation/stress. Phosphatidylinositol 4-kinases, Pik1p and Stt4p, are indispensable for autophagy in budding yeast, but participation of PtdIns-4 kinases and their product, phosphatidylinositol 4-phosphate [PtdIns(4)P], is not understood. Nanoscale membrane lipid distribution analysis showed PtdIns(4)P is more abundant in yeast autophagosomes in the luminal leaflet than the cytoplasmic leaflet. PtdIns(4)P is confined to the cytoplasmic leaflet of autophagosomal inner and outer membranes in mammalian cells. Using temperature-conditional single PIK1 or STT4 PtdIns 4-kinase mutants, autophagic bodies in the vacuole of PIK1 and STT4 mutant cells dramatically decreased at restrictive temperatures, and the number of autophagosomes in the cytosol of PIK1 mutants cells was also decreased, whereas autophagosome levels of STT4 mutant cells were comparable to that of wild-type and STT4 mutant cells at permissive temperatures. Localization of PtdIns(4)P in the luminal leaflet in the biological membrane is a novel finding, and differences in PtdIns(4)P distribution suggest substantial differences between yeast and mammals. We also demonstrate in this study that Pik1p and Stt4p play essential roles in autophagosome formation and autophagosome–vacuole fusion in yeast cells, respectively.  相似文献   

11.
Phosphatidylinositol 3,5-bisphosphate (PtdIns[3,5]P(2)) was first identified as a non-abundant phospholipid whose levels increase in response to osmotic stress. In yeast, Fab1p catalyzes formation of PtdIns(3,5)P(2) via phosphorylation of PtdIns(3)P. We have identified Vac14p, a novel vacuolar protein that regulates PtdIns(3,5)P(2) synthesis by modulating Fab1p activity in both the absence and presence of osmotic stress. We find that PtdIns(3)P levels are also elevated in response to osmotic stress, yet, only the elevation of PtdIns(3,5)P(2) levels are regulated by Vac14p. Under basal conditions the levels of PtdIns(3,5)P(2) are 18-28-fold lower than the levels of PtdIns(3)P, PtdIns(4)P, and PtdIns(4,5)P(2). After a 10 min exposure to hyperosmotic stress the levels of PtdIns(3,5)P(2) rise 20-fold, bringing it to a cellular concentration that is similar to the other phosphoinositides. This suggests that PtdIns(3,5)P(2) plays a major role in osmotic stress, perhaps via regulation of vacuolar volume. In fact, during hyperosmotic stress the vacuole morphology of wild-type cells changes dramatically, to smaller, more highly fragmented vacuoles, whereas mutants unable to synthesize PtdIns(3,5)P(2) continue to maintain a single large vacuole. These findings demonstrate that Vac14p regulates the levels of PtdIns(3,5)P(2) and provide insight into why PtdIns(3,5)P(2) levels rise in response to osmotic stress.  相似文献   

12.
Phosphatidylinositol-4,5-bisphosphate, PtdIns(4,5)P(2), is an essential signalling lipid that regulates key processes such as endocytosis, exocytosis, actin cytoskeletal organization and calcium signalling. Maintaining proper levels of PtdIns(4,5)P(2) at the plasma membrane (PM) is crucial for cell survival and growth. We show that the conserved PtdIns(4)P 5-kinase, Mss4, forms dynamic, oligomeric structures at the PM that we term PIK patches. The dynamic assembly and disassembly of Mss4 PIK patches may provide a mechanism to precisely modulate Mss4 kinase activity, as needed, for localized regulation of PtdIns(4,5)P(2) synthesis. Furthermore, we identify a tandem PH domain-containing protein, Opy1, as a novel Mss4-interacting protein that partially colocalizes with PIK patches. Based upon genetic, cell biological, and biochemical data, we propose that Opy1 functions as a coincidence detector of the Mss4 PtdIns(4)P 5-kinase and PtdIns(4,5)P(2) and serves as a negative regulator of PtdIns(4,5)P(2) synthesis at the PM. Our results also suggest that additional conserved tandem PH domain-containing proteins may play important roles in regulating phosphoinositide signalling.  相似文献   

13.
Phosphatidylinositol 3,5-bisphosphate (PtdIns(3,5)P(2)) is widespread in eukaryotic cells. In Saccharomyces cerevisiae, PtdIns(3,5)P(2) synthesis is catalyzed by the PtdIns3P 5-kinase Fab1p, and loss of this activity results in vacuolar morphological defects, indicating that PtdIns(3,5)P(2) is essential for vacuole homeostasis. We have therefore suggested that all Fab1p homologues may be PtdIns3P 5-kinases involved in membrane trafficking. It is unclear which phosphatidylinositol phosphate kinases (PIPkins) are responsible for PtdIns(3,5)P(2) synthesis in higher eukaryotes. To clarify how PtdIns(3,5)P(2) is synthesized in mammalian and other cells, we determined whether yeast and mammalian Fab1p homologues or mammalian Type I PIPkins (PtdIns4P 5-kinases) make PtdIns(3,5)P(2) in vivo. The recently cloned murine (p235) and Schizosaccharomyces pombe FAB1 homologues both restored basal PtdIns(3,5)P(2) synthesis in Deltafab1 cells and made PtdIns(3,5)P(2) in vitro. Only p235 corrected the growth and vacuolar defects of fab1 S. cerevisiae. A mammalian Type I PIPkin supported no PtdIns(3,5)P(2) synthesis. Thus, FAB1 and its homologues constitute a distinct class of Type III PIPkins dedicated to PtdIns(3,5)P(2) synthesis. The differential abilities of p235 and of SpFab1p to complement the phenotypic defects of Deltafab1 cells suggests that interaction(s) with other protein factors may be important for spatial and/or temporal regulation of PtdIns(3,5)P(2) synthesis. These results also suggest that p235 may regulate a step in membrane trafficking in mammalian cells that is analogous to its function in yeast.  相似文献   

14.
The lipid kinase Fab1 governs yeast vacuole homeostasis by generating PtdIns(3,5)P(2) on the vacuolar membrane. Recruitment of effector proteins by the phospholipid ensures precise regulation of vacuole morphology and function. Cells lacking the effector Atg18p have enlarged vacuoles and high PtdIns(3,5)P(2) levels. Although Atg18 colocalizes with Fab1p, it likely does not directly interact with Fab1p, as deletion of either kinase activator-VAC7 or VAC14-is epistatic to atg18Delta: atg18Deltavac7Delta cells have no detectable PtdIns(3,5)P(2). Moreover, a 2xAtg18 (tandem fusion) construct localizes to the vacuole membrane in the absence of PtdIns(3,5)P(2), but requires Vac7p for recruitment. Like the endosomal PtdIns(3)P effector EEA1, Atg18 membrane binding may require a protein component. When the lipid requirement is bypassed by fusing Atg18 to ALP, a vacuolar transmembrane protein, vac14Delta vacuoles regain normal morphology. Rescue is independent of PtdIns(3,5)P(2), as mutation of the phospholipid-binding site in Atg18 does not prevent vacuole fission and properly regulates Fab1p activity. Finally, the vacuole-specific type-V myosin adapter Vac17p interacts with Atg18p, perhaps mediating cytoskeletal attachment during retrograde transport. Atg18p is likely a PtdIns(3,5)P(2)"sensor," acting as an effector to remodel membranes as well as regulating its synthesis via feedback that might involve Vac7p.  相似文献   

15.
A E Wurmser  S D Emr 《The EMBO journal》1998,17(17):4930-4942
The Golgi/endosome-associated Vps34 phosphatidylinositol 3-kinase is essential for the sorting of hydrolases from the Golgi to the vacuole/lysosome. Upon inactivation of a temperature-conditional Vps34 kinase, cellular levels of PtdIns(3)P rapidly decrease and it has been proposed that this decrease is due to the continued turnover of PtdIns(3)P by cytoplasmic phosphatases. Here we show that mutations in VAM3 (vacuolar t-SNARE) and YPT7 (rab GTPase), which are required to direct protein and membrane delivery from prevacuolar endosomal compartments to the vacuole, dramatically increase/stabilize PtdIns(3)P levels in vivo by disrupting its turnover. We find that the majority of the total pool of PtdIns(3)P which has been synthesized, but not PtdIns(4)P, requires transport to the vacuole in order to be turned over. Unexpectedly, strains with impaired vacuolar hydrolase activity accumulate 4- to 5-fold higher PtdIns(3)P levels than wild-type cells, suggesting that lumenal vacuolar lipase and/or phosphatase activities degrade PtdIns(3)P. Because vacuolar hydrolases act in the lumen, PtdIns(3)P is likely to be transferred from the cytoplasmic membrane leaflet where it is synthesized, to the lumen of the vacuole. Interestingly, mutants that stabilize PtdIns(3)P accumulate small uniformly-sized vesicles (40-50 nm) within prevacuolar endosomes (multivesicular bodies) or the vacuole lumen. Based on these and other observations, we propose that PtdIns(3)P is degraded by an unexpected mechanism which involves the sorting of PtdIns(3)P into vesicles generated by invagination of the limiting membrane of the endosome or vacuole, ultimately delivering the phosphoinositide into the lumen of the compartment where it can be degraded by the resident hydrolases.  相似文献   

16.
The Saccharomyces cerevisiae inositol polyphosphate 5-phosphatases (Inp51p, Inp52p, and Inp53p) each contain an N-terminal Sac1 domain, followed by a 5-phosphatase domain and a C-terminal proline-rich domain. Disruption of any two of these 5-phosphatases results in abnormal vacuolar and plasma membrane morphology. We have cloned and characterized the Sac1-containing 5-phosphatases Inp52p and Inp53p. Purified recombinant Inp52p lacking the Sac1 domain hydrolyzed phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P(2)] and PtdIns(3, 5)P(2). Inp52p and Inp53p were expressed in yeast as N-terminal fusion proteins with green fluorescent protein (GFP). In resting cells recombinant GFP-tagged 5-phosphatases were expressed diffusely throughout the cell but were excluded from the nucleus. Following hyperosmotic stress the GFP-tagged 5-phosphatases rapidly and transiently associated with actin patches, independent of actin, in both the mother and daughter cells of budding yeast as demonstrated by colocalization with rhodamine phalloidin. Both the Sac1 domain and proline-rich domains were able to independently mediate translocation of Inp52p to actin patches, following hyperosmotic stress, while the Inp53p proline-rich domain alone was sufficient for stress-mediated localization. Overexpression of Inp52p or Inp53p, but not catalytically inactive Inp52p, which lacked PtdIns(4,5)P(2) 5-phosphatase activity, resulted in a dramatic reduction in the repolarization time of actin patches following hyperosmotic stress. We propose that the osmotic-stress-induced translocation of Inp52p and Inp53p results in the localized regulation of PtdIns(3,5)P(2) and PtdIns(4,5)P(2) at actin patches and associated plasma membrane invaginations. This may provide a mechanism for regulating actin polymerization and cell growth as an acute adaptive response to hyperosmotic stress.  相似文献   

17.
Audhya A  Emr SD 《The EMBO journal》2003,22(16):4223-4236
The essential phospholipid PI4,5P(2) is generated by a well conserved PI4P 5-kinase, Mss4, in yeast. Balanced production and turnover of PI4,5P(2) is important for normal organization of the actin cytoskeleton and cell viability. Previous studies have shown that multiple PI phosphatases can regulate PI4,5P(2) levels. We report a new, unexpected regulatory mechanism for PI4,5P(2) homeostasis, directed by nuclear-cytoplasmic shuttling of the lipid kinase. We show that Mss4 is a phosphoprotein, which contains a functional nuclear localization signal (NLS) and can shuttle between the cytoplasm and the nucleus. Temperature-conditional mss4 cells that accumulate Mss4 protein in the nucleus exhibit reduced levels of PI4,5P(2), depolarization of the actin cytoskeleton and a block in Mss4 phosphorylation, suggesting an essential role for phosphorylated Mss4 at the plasma membrane. Through the isolation of gene dosage-dependent suppressors of mss4 mutants, we identified Bcp1, a protein enriched in the nucleus, which is required for Mss4 nuclear export and is related to the mammalian BRCA2-interacting protein BCCIP. Together, these studies suggest a new mechanism for lipid kinase regulation through regulated nuclear-cytoplasmic shuttling.  相似文献   

18.
The endocytic pathway transports cargo from the plasma membrane to early endosomes, where certain cargoes are sorted to the late endosome/multivesicular body. Biosynthetic cargo destined for the lysosome is also trafficked through the multivesicular body. Once delivered to the multivesicular body, cargo destined for the interior of the lysosome is selectively sorted into vesicles that bud into the lumen of the multivesicular body. These vesicles are released into the lumen of the lysosome upon the fusion of the multivesicular body and lysosomal limiting membranes. The yeast protein Fab1, which catalyzes the production of phosphatidylinositol (3,5) bisphosphate [PtdIns(3,5)P2], is necessary for proper sorting of biosynthetic cargo in the multivesicular body. Utilizing an endocytosis screen, we isolated a novel allele of FAB1 that contains a point mutation in the lipid kinase domain. Characterization of this allele revealed reduced PtdIns(3,5)P2 production, altered vacuole morphology, and biosynthetic protein sorting defects. We also found that endocytosis of the plasma membrane protein Ste3 is partially blocked downstream of the internalization step, and that delivery of the dye FM4-64 to the vacuole is delayed in fab1 mutants. Additionally, Ste3 is not efficiently sorted into multivesicular body vesicles in fab1 mutants and instead localizes to the vacuolar limiting membrane. These data show that PtdIns(3,5)P2 is necessary for proper trafficking and sorting of endocytic cargo through the late endosome/multivesicular body.  相似文献   

19.
The FAB1 gene of budding yeast is predicted to encode a protein of 257 kDa that exhibits significant sequence homology to a human type II PI(4)P 5-kinase (PIP5K-II). The recently cloned human PIP5K-II specifically converts PI(4)P to PI(4,5)P2 (Boronenkov and Anderson, 1995). The region of highest similarity between Fab1p and PIP5K-II includes a predicted nucleotide binding motif, which is likely to correspond to the catalytic domain of the protein. Interestingly, neither PIP5K-II nor Fab1p exhibit significant homology with cloned PI 3-kinases or PI 4-kinases. fab1 mutations result in the formation of aploid and binucleate cells (hence the name FAB). In addition, loss of Fab1p function causes defects in vacuole function and morphology, cell surface integrity, and cell growth. Experiments with a temperature conditional fab1 mutant revealed that their vacuoles rapidly (within 30 min) enlarge to more than double the size upon shifting cells to the nonpermissive temperature. Additional experiments with the fab1 ts mutant together with results obtained with fab1 vps (vacuolar protein sorting defective) double mutants indicate that the nuclear division and cell surface integrity defects observed in fab1 mutants are secondary to the vacuole morphology defects. Based on these data, we propose that Fab1p is a PI(4)P 5-kinase and that the product of the Fab1p reaction, PIP2, functions as an important regulator of vacuole homeostasis perhaps by controlling membrane flux to and/or from the vacuole. Furthermore, a comparison of the phenotypes of fab1 mutants and other yeast mutants affecting PI metabolism suggests that phosphoinositides may serve as general regulators of several different membrane trafficking pathways.  相似文献   

20.
Phosphatidylinositol 3,5-bisphosphate (PtdIns(3,5)P2), made by Fab1p, is essential for vesicle recycling from vacuole/lysosomal compartments and for protein sorting into multivesicular bodies. To isolate PtdIns(3,5)P2 effectors, we identified Saccharomyces cerevisiae mutants that display fab1delta-like vacuole enlargement, one of which lacked the SVP1/YFR021w/ATG18 gene. Expressed Svp1p displays PtdIns(3,5)P2 binding of exquisite specificity, GFP-Svp1p localises to the vacuole membrane in a Fab1p-dependent manner, and svp1delta cells fail to recycle a marker protein from the vacuole to the Golgi. Cells lacking Svp1p accumulate abnormally large amounts of PtdIns(3,5)P2. These observations identify Svp1p as a PtdIns(3,5)P2 effector required for PtdIns(3,5)P2-dependent membrane recycling from the vacuole. Other Svp1p-related proteins, including human and Drosophila homologues, bind PtdIns(3,5)P2 similarly. Svp1p and related proteins almost certainly fold as beta-propellers, and the PtdIns(3,5)P2-binding site is on the beta-propeller. It is likely that many of the Svp1p-related proteins that are ubiquitous throughout the eukaryotes are PtdIns(3,5)P2 effectors. Svp1p is not involved in the contributions of FAB1/PtdIns(3,5)P2 to MVB sorting or to vacuole acidification and so additional PtdIns(3,5)P2 effectors must exist.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号