首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The yeast protein Sac1p is involved in a range of cellular functions, including inositol metabolism, actin cytoskeletal organization, endoplasmic reticulum ATP transport, phosphatidylinositol-phosphatidylcholine transfer protein function, and multiple-drug sensitivity. The activity of Sac1p and its relationship to these phenotypes are unresolved. We show here that the regulation of lipid phosphoinositides in sac1 mutants is defective, resulting in altered levels of all lipid phos- phoinositides, particularly phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate. We have identified two proteins with homology to Sac1p that can suppress drug sensitivity and also restore the levels of the phosphoinositides in sac1 mutants. Overexpression of truncated forms of these suppressor genes confirmed that suppression was due to phosphoinositide phosphatase activity within these proteins. We have now demonstrated this activity for Sac1p and have characterized its specificity. The in vitro phosphatase activity and specificity of Sac1p were not altered by some mutations. Indeed, in vivo mutant Sac1p phosphatase activity also appeared unchanged under conditions in which cells were drug-resistant. However, under different growth conditions, both drug sensitivity and the phosphatase defect were manifest. It is concluded that SAC1 encodes a novel lipid phosphoinositide phosphatase in which specific mutations can cause the sac1 phenotypes by altering the in vivo regulation of the protein rather than by destroying phosphatase activity.  相似文献   

2.
Regulation of phosphatidylinositol kinase (EC 2.7.1.67) and phosphatidylinositol 4-phosphate (PtdIns4P) kinase (EC 2.7.1.68) was investigated in highly enriched plasma-membrane and cytosolic fractions derived from cloned rat pituitary (GH3) cells. In plasma membranes, phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P2] added exogenously enhanced incorporation of [32P]phosphate from [gamma-32P]MgATP2- into PtdIns(4,5)P2 and PtdIns4P to 150% of control; half-maximal effect occurred with 0.03 mM exogenous PtdIns(4,5)P2. Exogenous PtdIns4P and phosphatidylinositol (PtdIns) had no effect. When plasma membranes prepared from cells prelabelled to isotopic steady state with [3H]inositol were used, there was a MgATP2- dependent increase in the content of [3H]PtdIns(4,5)P2 and [3H]PtdIns4P that was enhanced specifically by exogenous PtdIns(4,5)P2 also. Degradation of 32P- and 3H-labelled PtdIns(4,5)P2 and PtdIns4P within the plasma-membrane fraction was not affected by exogenous PtdIns(4,5)P2. Phosphoinositide kinase activities in the cytosolic fraction were assayed by using exogenous substrates. Phosphoinositide kinase activities in cytosol were inhibited by exogenously added PtdIns(4,5)P2. These findings demonstrate that exogenously added PtdIns(4,5)P2 enhances phosphoinositide kinase activities (and formation of polyphosphoinositides) in plasma membranes, but decreases these kinase activities in cytosol derived from GH3 cells. These data suggest that flux of PtdIns to PtdIns4P to PtdIns(4,5)P2 in the plasma membrane cannot be increased simply by release of membrane-associated phosphoinositide kinases from product inhibition as PtdIns(4,5)P2 is hydrolysed.  相似文献   

3.
Copper metabolism Murr1 domain 1 (COMMD1) is a 21-kDa protein involved in copper export from the liver, NF-kappaB signaling, HIV infection, and sodium transport. The precise function of COMMD and the mechanism through which COMMD1 performs its multiple roles are not understood. Recombinant COMMD1 is a soluble protein, yet in cells COMMD1 is largely seen as targeted to cellular membranes. Using co-localization with organelle markers and cell fractionation, we determined that COMMD1 is located in the vesicles of the endocytic pathway, whereas little COMMD1 is detected in either the trans-Golgi network or lysosomes. The mechanism of COMMD1 recruitment to cell membranes was investigated using lipid-spotted arrays and liposomes. COMMD1 specifically binds phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2) in the absence of other proteins and does not bind structural lipids; the phosphorylation of PtdIns at position 4 is essential for COMMD1 binding. Proteolytic sensitivity and molecular modeling experiments identified two distinct domains in the structure of COMMD1. The C-terminal domain appears sufficient for lipid binding, because both the full-length and C-terminal domain proteins bind to PtdIns(4,5)P2. In native conditions, endogenous COMMD1 forms large oligomeric complexes both in the cytosol and at the membrane; interaction with PtdIns(4,5)P2 increases the stability of oligomers. Altogether, our results suggest that COMMD1 is a scaffold protein in a distinct sub-compartment of endocytic pathway and offer first clues to its role as a regulator of structurally unrelated membrane transporters.  相似文献   

4.
We have previously characterized two distinct pools of phosphatidylinositol (PI) in the WRK-1 rat mammary tumor cell, one whose metabolism is enhanced in response to vasopressin and another which is insensitive to hormonal manipulation. The purpose of the present study was to examine the relationship between cellular phosphatidylinositol 4,5-bisphosphate (PIP2) and each of the two PI pools. We have found that in WRK-1 cells, vasopressin induces the rapid loss of PIP2 and the accumulation of inositol phosphates. By making use of kinetic differences in 32Pi uptake into the two pools of PI and assessing radioactivity levels in the 1-phosphate of PIP2, we have determined that hormone-sensitive PI is the precursor of approximately 60% of the cellular PIP2; the remainder is synthesized from the hormone-insensitive pool. Additional data indicate that PIP2 derived from hormone-sensitive PI is likewise hormone-sensitive, while that synthesized from hormone-insensitive PI remains stable over a long period of time and is not affected by the presence of vasopressin.  相似文献   

5.
At the trans-Golgi network, clathrin coats containing AP-1 adaptor complexes are formed in an ARF1-dependent manner, generating vesicles transporting cargo proteins to endosomes. The mechanism of site-specific targeting of AP-1 and the role of cargo are poorly understood. We have developed an in vitro assay to study the recruitment of purified AP-1 adaptors to chemically defined liposomes presenting peptides corresponding to tyrosine-based sorting motifs. AP-1 recruitment was found to be dependent on myristoylated ARF1, GTP or nonhydrolyzable GTP-analogs, tyrosine signals, and small amounts of phosphoinositides, most prominently phosphatidylinositol 4,5-bisphosphate, in the absence of any additional cytosolic or membrane bound proteins. AP-1 from cytosol could be recruited to a tyrosine signal independently of the lipid composition, but the rate of recruitment was increased by phosphatidylinositol 4,5-bisphosphate. The results thus indicate that cargo proteins are involved in coat recruitment and that the local lipid composition contributes to specifying the site of vesicle formation.  相似文献   

6.
In order to acquire an understanding of phospholipase C-delta3 (PLC-delta3) action on substrate localized in lipid membrane we have studied the binding of human recombinant PLC-delta3 to large, unilamellar phospholipid vesicles (LUVs). PLC-delta3 bound weakly to vesicles composed of phosphatidylcholine (PtdCho) or PtdCho plus phosphatidylethanolamine (PtdEtn) or phosphatidylinositol (PtdIns). The enzyme bound strongly to LUVs composed of PtdEtn + PtdCho and phosphatidylinositol 4,5-bisphosphate (PtdInsP2). The binding affinity (molar partition coefficient) of PLC-delta3 to PtdEtn + PtdCho + PtdInsP2 vesicles was 7.7 x 105 m-1. High binding of PLC-delta3 was also observed for LUVs composed of phosphatidic acid (PA). Binding of PLC-delta3 to phosphatidylserine (PtdSer) vesicles was less efficient. Calculated molar partition coefficient for binding of PLC-delta3 to PA and PtdSer vesicles was 1.6 x 104 m-1 and 9.4 x 102 m-1, respectively. Presence of PA in the LUVs containing PtdInsP2 considerably enhanced the binding of PLC-delta3 to the phospholipid membrane. Binding of PLC-delta3 to phospholipid vesicles was not dependent on Ca2+ presence. In the liposome assay PA caused a concentration-dependent increase in activity of PLC-delta3. The stimulatory effect of PA on PLC-delta3 was calcium-dependent. At Ca2+ concentrations lower than 1 microm, no effect of PA on the activity of PLC-delta3 was observed. PA enhanced PLC-delta3 activity by increasing the Vmax and lowering Km for PtdInsP2. As the mol fraction of PA increased from 0-40 mol% the enzyme Vmax increased 2.3-fold and Km decreased threefold. Based on the results presented, we assume that PA supports binding of PLC-delta3 to lipid membranes by interaction with the PH domain of the enzyme. The stimulatory effect of PA depends on calcium-dependent interaction with the C2 domain of PLC-delta3. We propose that binding of PLC-delta3 to PA may serve as a mechanism for dynamic membrane association and modulation of PLC-delta3 activity.  相似文献   

7.
We have studied the transport of soluble cargo molecules by inhibiting specific transport steps to and from the Golgi apparatus. Inhibition of export from the Golgi via coexpression of a dominant-negative GTP-restricted ARF1 mutant (Q71L) inhibits the secretion of alpha-amylase and simultaneously induces the secretion of the vacuolar protein phytepsin to the culture medium. By contrast, specific inhibition of endoplasmic reticulum export via overexpression of Sec12p or coexpression of a GTP-restricted form of Sar1p inhibits the anterograde transport of either cargo molecule in a similar manner. Increased secretion of the vacuolar protein was not observed after incubation with the drug brefeldin A or after coexpression of the GDP-restricted mutant of ARF1 (T31N). Therefore, the differential effect of inducing the secretion of one cargo molecule while inhibiting the secretion of another is dependent on the GTP hydrolysis by ARF1p and is not caused by a general inhibition of Golgi-derived COPI vesicle traffic. Moreover, we demonstrate that GTP-restricted ARF1-stimulated secretion is observed only for cargo molecules that are expected to be sorted in a BP80-dependent manner, exhibiting sequence-specific, context-independent, vacuolar sorting signals. Induced secretion of proteins carrying C-terminal vacuolar sorting signals was not observed. This finding suggests that ARF1p influences the BP80-mediated transport route to the vacuole in addition to transport steps of the default secretory pathway to the cell surface.  相似文献   

8.
Nuclear phosphoinositides, especially phosphatidylinositol 4,5-bisphosphate, fluctuate throughout the cell cycle and are linked to proliferation and differentiation. Here we report that phospholipase C-delta(1) accumulates in the nucleus at the G(1)/S boundary and in G(0) phases of the cell cycle. Furthermore, as wild-type protein accumulated in the nucleus, nuclear phosphatidylinositol 4,5-bisphosphate levels were elevated 3-5-fold, whereas total levels were decreased compared with asynchronous cultures. To test whether phosphatidylinositol 4,5-bisphosphate binding is important during this process, we introduced a R40D point mutation within the pleckstrin homology domain of phospholipase C-delta(1), which disables high affinity phosphatidylinositol 4,5-bisphosphate binding, and found that nuclear translocation was significantly reduced at G(1)/S and in G(0). These results demonstrate a cell cycle-dependent compartmentalization of phospholipase C-delta(1) and support the idea that relative levels of phosphoinositides modulate the portioning of phosphoinositide-binding proteins between the nucleus and other compartments.  相似文献   

9.
The phosphoinositide phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P(2)] is a key signaling molecule in animal cells. It can be hydrolyzed to release 1,2-diacyglycerol and inositol 1,4,5-trisphosphate (IP(3)), which in animal cells lead to protein kinase C activation and cellular calcium mobilization, respectively. In addition to its critical roles in constitutive and regulated secretion of proteins, PtdIns(4,5)P(2) binds to proteins that modify cytoskeletal architecture and phospholipid constituents. Herein, we report that Arabidopsis plants grown in liquid media rapidly increase PtdIns(4,5)P(2) synthesis in response to treatment with sodium chloride, potassium chloride, and sorbitol. These results demonstrate that when challenged with salinity and osmotic stress, terrestrial plants respond differently than algae, yeasts, and animal cells that accumulate different species of phosphoinositides. We also show data demonstrating that whole-plant IP(3) levels increase significantly within 1 min of stress initiation, and that IP(3) levels continue to increase for more than 30 min during stress application. Furthermore, using the calcium indicators Fura-2 and Fluo-3 we show that root intracellular calcium concentrations increase in response to stress treatments. Taken together, these results suggest that in response to salt and osmotic stress, Arabidopsis uses a signaling pathway in which a small but significant portion of PtdIns(4,5)P(2) is hydrolyzed to IP(3). The accumulation of IP(3) occurs during a time frame similar to that observed for stress-induced calcium mobilization. These data also suggest that the majority of the PtdIns(4,5)P(2) synthesized in response to salt and osmotic stress may be utilized for cellular signaling events distinct from the canonical IP(3) signaling pathway.  相似文献   

10.
Rat hepatocytes whose phosphatidylinositol 4-phosphate (PIP) and phosphatidylinositol 4,5-bisphosphate (PIP2) had been labelled for 60 min with 32P were treated with glucagon for 10 min or phenylephrine for 2 min. Glucagon caused a 20% increase in PIP but no change in PIP2 whereas phenylephrine caused a similar increase in PIP but a 15% decrease in PIP2. Addition of both hormones together for 10 min produced a 40% increase in PIP. A crude liver mitochondrial fraction incubated with [32P]Pi and ADP incorporated label into PIP, PIP2 and phosphatidic acid. The PIP2 was shown to be in contaminating plasma membranes and PIP in both lysosomal and plasma-membrane contamination. A minor but definitely mitochondrial phospholipid, more polar than PIP2, was shown to be labelled with 32P both in vitro and in hepatocytes. The rate of 32P incorporation into PIP was faster in mitochondrial/plasma-membrane preparations from rats treated with glucagon or if 3 microM-Ca2+ and Ruthenium Red were present in the incubation buffer. Loss of 32P from membranes labelled in vitro was shown to be accompanied by formation of inositol 1,4,5-trisphosphate (IP3) and inositol 1,4-bisphosphate, and was faster in preparations from glucagon-treated rats or in the presence of 3 microM-Ca2+. It is concluded that glucagon stimulates both PIP2 phosphodiesterase and phosphatidylinositol kinase activities, as does the presence of 3 microM-Ca2+. The resulting formation of IP3 may be responsible for the observed release of intracellular Ca2+ stores. The roles of a guanine nucleotide regulatory protein and phosphorylation in mediating these effects are discussed.  相似文献   

11.
Exogenously added phosphatidylinositol 4,5-bisphosphate (PtdInsP2) is rapidly associated with cerebral-cortical membranes. Substrate association with membranes was promoted by Mg2+, but inhibited by bivalent chelators. Once associated with the membrane, the PtdInsP2 was resistant to displacement by EDTA. The apparent phospholipase C activity was dependent on the degree of association of substrate with membranes. After preincubation of membranes with substrate, PtdInsP2 hydrolysis was independent of the incubation volume, indicating that substrate and membrane-associated phospholipase C were not independently diluted. Hydrolysis of the membrane-associated substrate was stimulated by Ca2+, guanosine 5'-[beta gamma-imido]triphosphate (p[NH]ppG), guanosine 5'[gamma-thio]triphosphate and carbachol in the presence of p[NH]ppG. Carbachol in the absence of guanine nucleotides, GDP, GTP, ATP and pyrophosphate was ineffective. These results demonstrate that exogenously added PtdInsP2 substrate is rapidly associated with membranes and hydrolysed by a phospholipase C whose activity is regulated by guanine nucleotides and agonist in the presence of guanine nucleotides. Use of exogenously added substrate for studies on the regulation of membrane phospholipase C requires consideration as to possible effects of incubation conditions on the partitioning of substrate into membranes.  相似文献   

12.
Phosphoinositide phosphatases play an essential but as yet not well-understood role in lipid-based signal transduction. Members of a subfamily of these enzymes share a specific domain that was first identified in the yeast Sac1 protein [1]. Sac1 homology domains were shown to exhibit 3- and 4-phosphatase activity in vitro [2, 3] and were also found, in addition to rat and yeast Sac1p, in yeast Inp/Sjl proteins [4, 5] and mammalian synaptojanins [6]. Despite the detailed in vitro characterization of the enzymatic properties of yeast Sac1p, the exact cellular function of this protein has remained obscure. We report here that Sac1p has a specific role in secretion and acts as an antagonist of the phosphatidylinositol 4-kinase Pik1p in Golgi trafficking. Elimination of Sac1p leads to excessive forward transport of chitin synthases and thus causes specific cell wall defects. Similar defects in membrane trafficking are caused by the overexpression of PIK1. Taken together, these findings provide strong evidence that the generation of PtdIns(4)P is sufficient to trigger forward transport from the Golgi to the plasma membrane and that Sac1p is critically required for the termination of this signal.  相似文献   

13.
The kinetics of phosphatidylcholine-specific phospholipase D activated by phosphatidylinositol 4,5-bisphosphate (PIP2) and inhibition by neomycin were studied in an enzyme preparation partially purified from human hepatocarcinoma cell line. It was found that phospholipase D was marginally activated by phosphatidyl-4-phosphate (PIP) and phosphatidylethanolamine (PE). In contrast, it was considerably activated by PIP2 in different concentration of phosphatidylcholine (PC). Sphingomyelin (SM), lysophosphatidylcholine (LPC) and phosphatidylserine (PS) were neither substrates nor inhibitors of the phospholipase D. PIP2 induced an allosteric effect on phospholipase D and a negative cooperative effect with respect to phosphatidylcholine as indicated in the Lineweaver-Burk plot. In the absence of PIP2, a straight line was obtained, whereas a downward concave curve was observed in the presence of 25 M of PIP2. The Hill coefficient and the apparent Km of phosphatidylcholine in the presence of 25 M PIP2 were calculated to be 0.631 and 10.79 mM, respectively. PIP2 also increased the maximal velocity (Vmax) of the phospholipase D reaction, suggesting that the affinity of substrate to enzyme was decreased, and the turnover number of the enzyme (kcat) was increased by PIP2. The activation of phospholipase D by PIP2 was dose dependent up to 50 M of PIP2. The Ka of PIP2 was 15.8 mM. Neomycin, a polycationic glycoside, was shown to be an uncompetitive inhibitor of phospholipase D, and revealed the formation of a neomycin-PIP2 complex. The Ki of neomycin was estimated to be 8.7 mM.  相似文献   

14.
The vacuolar H(+)-ATPase (V-ATPase) along with ion channels and transporters maintains vacuolar pH. V-ATPase ATP hydrolysis is coupled with proton transport and establishes an electrochemical gradient between the cytosol and vacuolar lumen for coupled transport of metabolites. Btn1p, the yeast homolog to human CLN3 that is defective in Batten disease, localizes to the vacuole. We previously reported that Btn1p is required for vacuolar pH maintenance and ATP-dependent vacuolar arginine transport. We report that extracellular pH alters both V-ATPase activity and proton transport into the vacuole of wild-type Saccharomyces cerevisiae. V-ATPase activity is modulated through the assembly and disassembly of the V(0) and V(1) V-ATPase subunits located in the vacuolar membrane and on the cytosolic side of the vacuolar membrane, respectively. V-ATPase assembly is increased in yeast cells grown in high extracellular pH. In addition, at elevated extracellular pH, S. cerevisiae lacking BTN1 (btn1-Delta), have decreased V-ATPase activity while proton transport into the vacuole remains similar to that for wild type. Thus, coupling of V-ATPase activity and proton transport in btn1-Delta is altered. We show that down-regulation of V-ATPase activity compensates the vacuolar pH imbalance for btn1-Delta at early growth phases. We therefore propose that Btn1p is required for tight regulation of vacuolar pH to maintain the vacuolar luminal content and optimal activity of this organelle and that disruption in Btn1p function leads to a modulation of V-ATPase activity to maintain cellular pH homeostasis and vacuolar luminal content.  相似文献   

15.
Small monomeric GTPases act as molecular switches, regulating many biological functions via activation of membrane localized signaling cascades. Activation of their switch function is controlled by GTP binding and hydrolysis. Two Rho GTPases, Cdc42p and Rho1p, are localized to the yeast vacuole where they regulate membrane fusion. Here, we define a method to directly examine vacuole membrane Cdc42p and Rho1p activation based on their affinity to probes derived from effectors. Cdc42p and Rho1p showed unique temporal activation which aligned with distinct subreactions of in vitro vacuole fusion. Cdc42p was rapidly activated in an ATP-independent manner while Rho1p activation was kinetically slower and required ATP. Inhibitors that are known to block vacuole membrane fusion were examined for their effect on Cdc42p and Rho1p activation. Rdi1p, which inhibits the dissociation of GDP from Rho proteins, blocked both Cdc42p and Rho1p activation. Ligands of PI(4,5)P2 specifically inhibited Rho1p activation while pre-incubation with U73122, which targets Plc1p function, increased Rho1p activation. These results define unique activation mechanisms for Cdc42p and Rho1p, which may be linked to the vacuole membrane fusion mechanism.  相似文献   

16.
In the Golgi apparatus, lipid homeostasis pathways are coordinated with the biogenesis of cargo transport vesicles by phosphatidylinositol 4-kinases (PI4Ks) that produce phosphatidylinositol 4-phosphate (PtdIns4P), a signaling molecule that is recognized by downstream effector proteins. Quantitative analysis of the intra-Golgi distribution of a PtdIns4P reporter protein confirms that PtdIns4P is enriched on the trans-Golgi cisterna, but surprisingly, Vps74 (the orthologue of human GOLPH3), a PI4K effector required to maintain residence of a subset of Golgi proteins, is distributed with the opposite polarity, being most abundant on cis and medial cisternae. Vps74 binds directly to the catalytic domain of Sac1 (K(D) = 3.8 μM), the major PtdIns4P phosphatase in the cell, and PtdIns4P is elevated on medial Golgi cisternae in cells lacking Vps74 or Sac1, suggesting that Vps74 is a sensor of PtdIns4P level on medial Golgi cisternae that directs Sac1-mediated dephosphosphorylation of this pool of PtdIns4P. Consistent with the established role of Sac1 in the regulation of sphingolipid biosynthesis, complex sphingolipid homeostasis is perturbed in vps74Δ cells. Mutant cells lacking complex sphingolipid biosynthetic enzymes fail to properly maintain residence of a medial Golgi enzyme, and cells lacking Vps74 depend critically on complex sphingolipid biosynthesis for growth. The results establish additive roles of Vps74-mediated and sphingolipid-dependent sorting of Golgi residents.  相似文献   

17.
Signaling by phosphatidylinositol 3-kinases (PI3Ks) is often mediated by proteins which bind PI3K products directly and are localized to intracellular membranes rich in PI3K products. The FYVE finger domain binds with high specificity to PtdIns3P and proteins containing this domain have been shown to be important components of diverse PI3K signaling pathways. The genome of the yeast Saccharomyces cerevisiae encodes five proteins containing FYVE domains, including Pib1p, whose function is unknown. In addition to a FYVE finger motif, the primary structure of Pib1p contains a region rich in cysteine and histidine residues that we demonstrate binds 2 mol eq of zinc, consistent with this region containing a RING structural domain. The Pib1p RING domain exhibited E2-dependent ubiquitin ligase activity in vitro, indicating that Pib1p is an E3 RING-type ubiquitin ligase. Fluorescence microscopy was used to demonstrate that a GFP-Pib1p fusion protein localized to endosomal and vacuolar membranes and deletional analysis of Pib1p domains indicated that localization of GFP-Pib1p is mediated solely by the FYVE domain. These results suggest that Pib1p mediates ubiquitination of a subset of cellular proteins localized to endosome and vacuolar membranes, and they expand the repertoire of PI3K-regulated pathways identified in eukaryotic cells.  相似文献   

18.
The Saccharomyces cerevisiae SAC1 gene was identified via independent analyses of mutations that modulate yeast actin function and alleviate the essential requirement for phosphatidylinositol transfer protein (Sec14p) activity in Golgi secretory function. The SAC1 gene product (Sac1p) is an integral membrane protein of the endoplasmic reticulum and the Golgi complex. Sac1p shares primary sequence homology with a subfamily of cytosolic/peripheral membrane phosphoinositide phosphatases, the synaptojanins, and these Sac1 domains define novel phosphoinositide phosphatase modules. We now report the characterization of a rat counterpart of Sac1p. Rat Sac1 is a ubiquitously expressed 65-kDa integral membrane protein of the endoplasmic reticulum that is found at particularly high levels in cerebellar Purkinje cells. Like Sac1p, rat Sac1 exhibits intrinsic phosphoinositide phosphatase activity directed toward phosphatidylinositol 3-phosphate, phosphatidylinositol 4-phosphate, and phosphatidylinositol 3,5-bisphosphate substrates, and we identify mutant rat sac1 alleles that evoke substrate-specific defects in this enzymatic activity. Finally, rat Sac1 expression in Deltasac1 yeast strains complements a wide phenotypes associated with Sac1p insufficiency. Biochemical and in vivo data indicate that rat Sac1 phosphatidylinositol-4-phosphate phosphatase activity, but not its phosphatidylinositol-3-phosphate or phosphatidylinositol-3, 5-bisphosphate phosphatase activities, is essential for the heterologous complementation of Sac1p defects in vivo. Thus, yeast Sac1p and rat Sac1 are integral membrane lipid phosphatases that play evolutionary conserved roles in eukaryotic cell physiology.  相似文献   

19.
Profilactin, the profilin:actin complex, which is present in large amounts in extracts of many types of eukaryotic cells, appears to serve as the precursor of microfilaments. It was reported recently that profilactin interacts specifically with phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2) (Lassing and Lindberg: Nature 314:472-474, 1985.) The present paper describes in detail the behaviour of profilactin and profilin in the presence of different types of phospholipids and neutral lipids under different conditions. PtdIns(4,5)P2 is the only phospholipid found so far which in the presence of 80 mM KCl and at Ca2+ concentrations below 10(-5) M effectively dissociates profilactin with the resulting polymerization of the actin. Phosphatidylinositol 4-monophosphate exhibits some activity but phosphatidylinositol is inactive. Both calf spleen profilin and profilin from human platelets form stable complexes with PtdIns(4,5)P2 micelles. PtdIns(4,5)P2 is active also when incorporated together with other phospholipids in mixed vesicles.  相似文献   

20.
Annexin 2 is a Ca(2+)-binding protein that has an essential role in actin-dependent macropinosome motility. We show here that macropinosome rocketing can be induced by hyperosmotic shock, either alone or synergistically when combined with phorbol ester or pervanadate. Rocketing was blocked by inhibitors of phosphatidylinositol-3-kinase(s), p38 mitogen-activated protein (MAP) kinase, and calcium, suggesting the involvement of phosphoinositide signaling. Since various phosphoinositides are enriched on inwardly mobile vesicles, we examined whether or not annexin 2 binds to any of this class of phospholipid. In liposome sedimentation assays, we show that recombinant annexin 2 binds to phosphatidylinositol 4,5-bisphosphate (PtdIns-4,5P(2)) but not to other poly- and mono-phosphoinositides. The affinity of annexin 2 for PtdIns-4,5P(2) (K(D) approximately 5 microm) is comparable with those reported for a variety of PtdIns-4,5P(2)-binding proteins and is enhanced in the presence of Ca(2+). Although annexin 1 also bound to PtdIns-4,5P(2), annexin 5 did not, indicating that this is not a generic annexin property. To test whether annexin 2 binds to PtdIns-4,5P(2) in vivo, we microinjected rat basophilic leukemia cells stably expressing annexin 2-green fluorescent protein (GFP) with fluorescently tagged antibodies to PtdIns-4,5P(2). Annexin 2-GFP and anti-PtdIns-4,5P(2) IgG co-localize at sites of pinosome formation, and annexin 2-GFP relocalizes to intracellular membranes in Ptk cells microinjected with Arf6Q67L, which has been shown to stimulate PtdIns-4,5P(2) synthesis on pinosomes through activation of phosphatidylinositol 5 kinase. These results establish a novel phospholipid-binding specificity for annexin 2 consistent with a role in mediating the interaction between the macropinosome surface and the polymerized actin tail.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号