首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Effects of purealin isolated from a sea sponge, Psammaplysilla purea, on the enzymatic and physiochemical properties of chicken gizzard myosin were studied. At 0.15 M KCl, 40 microM purealin increased the Ca2+- and Mg2+-ATPase activity of dephosphorylated gizzard myosin to 2.5- and 3-fold, respectively, but decreased the K+-EDTA-ATPase activity of the myosin to 0.25-fold. In contrast, purealin had little effect on the ATPase activities of phosphorylated gizzard myosin. The ATP-induced decrease in light scattering of dephosphorylated gizzard myosin at 0.15 M KCl was lessened by 40 microM purealin. Electron microscopic observations indicated that thick filaments of dephosphorylated myosin were disassembled immediately by addition of 1 mM ATP at 0.15 M KCl, although they were preserved by purealin for a long time even after addition of ATP. Upon ultracentrifugation, dephosphorylated myosin sedimented as two components, the 10 S species and myosin filaments, in the solution containing 0.18 M KCl and 1 mM Mg X ATP in the presence of 60 microM purealin. These results suggest that purealin modulates the ATPase activities of dephosphorylated gizzard myosin by enhancing the stability of myosin filaments against the disassembling action of ATP.  相似文献   

2.
Actin-activation of unphosphorylated gizzard myosin   总被引:2,自引:0,他引:2  
The effect of light chain phosphorylation on the actin-activated ATPase activity and filament stability of gizzard smooth muscle myosin was examined under a variety of conditions. When unphosphorylated and phosphorylated gizzard myosins were monomeric, their MgATPase activities were not activated or only very slightly activated by actin, and when they were filamentous, their MgATPase activities could be stimulated by actin. At pH 7.0, the unphosphorylated myosin in the presence of ATP required 2-3 times as much Mg2+ for filament formation as did the phosphorylated myosin. The amount of stimulation of the unphosphorylated myosin filaments depended upon pH, temperature, and the presence of tropomyosin. At pH 7.0 and 37 degrees C and at pH 6.8 and 25 degrees C, the MgATPase activity of filamentous, unphosphorylated, gizzard myosin was stimulated 10-fold by actin complexed with gizzard tropomyosin. These tropomyosin-actin-activated ATPase activities were 40% of those of the phosphorylated myosin. Under other conditions, pH 7.5 and 37 degrees C and pH 7.0 and 25 degrees C, even though the unphosphorylated myosin was mostly filamentous, its MgATPase activity was stimulated only 4-fold by tropomyosin-actin. Thus, both unphosphorylated and phosphorylated gizzard myosin filaments appear to be active, but the cycling rate of the unphosphorylated myosin is less than that of the phosphorylated myosin. Active unphosphorylated myosin may help explain the ability of smooth muscles to maintain tension in the absence of myosin light chain phosphorylation.  相似文献   

3.
The ATPase activity of chicken gizzard myosin was studied by varying the KCl concentration in the reaction medium. The following was thus found: (a) A sharp depression of the activity occurred when the KCl concentration was reduced to less than 0.3 M, showing the minimum activity around 0.15 M KCl. (b) The activity depression was removed by addition of urea or bay papain-digestion, but not by addition of p-chloromercuribenzoate. (c) In the KCl concentration where the activity depression occurred, the ATPase reaction proceeded in two distinct phases; the activity was relatively high in the early phase of the reaction and declined into the later phase where the steady state reaction took place. (d) In the KCl concentrations higher than that particular concentration or in the presence of urea, the ATPase reaction proceeded in one phase. (e) The temperature dependence of the ATPase activity in the early phase was of an ordinary magnitude being approximately equal to that of the ATPase activity in 0.6 M KCl. In contrast, the temperature dependence of the activity in the later phase was unusually small. Gizzard myosin in various concentrations of KCl was also examined by measuring the turbidity and the light-scattering intensity, and by observation under an electron microscope. The following was thus found: (a) In the KCl concentration where the activity depression occurred, there was a stagnation in the turbidity decrease as the KCl concentration was gradually increased and also the formation of "thick filaments," each of which was approximately 0.6-0.9 micron in length and 20-30 nm in diameter with no central "bare zone." (b) Addition of ATP induced dissociation of the thick filaments, and the dissociation occurred during the early phase of the ATPaseeaction. (c) Moreover, the temperature dependence of the ATP-induced dissociation rate was approximately equal to that of the ATPase activity in the early phase. On the basis of the findings mentioned above, it is concluded that the activity depression results from the ATP-induced dissociation of myosin filaments. Moreover, since high concentrations of KCl or urea also caused dissociation of myosin filaments and yet did not produce the activity depression, it was strongly suggested that gizzard myosin in the ATP-dissociated form must be different from that in the urea- or KCl-dissociated form, probably in the physical state of some myosin aggregates which were not detectable by the physical methods we used. As a side-observation, gizzard myosin filaments formed in the presence of ADP were found to be unusually long (longer than 2 micron), and they looked very similar to the particular filaments of skeletal myosin that were reported, by Moos, to be formed in the absence of the C protein.  相似文献   

4.
A method was developed to obtain a preparation of chicken gizzard heavy meromyosin (HMM) that retains the two light-chain components of parent myosin: the 20,000-dalton and 17,000-dalton light-chains. The HMM preparation was also shown to retain two characteristics of the ATPase activity of the parent myosin: the characteristic effect of phosphorylation of the 20,000-dalton light-chain component on the ATPase activity, and the characteristic dependence of the ATPase activity on the KCl concentration. 1. Two distinct stages were observed in the Mg-ATPase reaction catalyzed by gizzard HMM and rabbit skeletal actin in the presence of gizzard "native" tropomyosin (NTM) and Ca2+ ions: an early lag phase, in which the reaction rate gradually increased, and a subsequent steady state, in which the reaction proceeded at a high, constant rate. Urea-gel electrophoresis revealed that the 20,000-dalton light-chain component was gradually phosphorylated in the lag phase, and was fully phosphorylated in the steady state. It was also observed that addition of EGTA (to remove Ca2+ ions) at various times in the lag phase caused neither a further increase nor a decrease in the reaction rate, and that addition of EGTA in the steady state caused no change in the reaction rate. These observations imply that the ATPase activity increased as the amount of phosphorylated 20,000-dalton light-chain component increased, and also that Mg-ATPase of acto-phosphorylated HMM was no longer calcium-sensitive. 2. The Mg-ATPase activity of HMM in the presence of gizzard NTM and Ca2+ ions or EGTA was studied as a function of the concentration of rabbit skeletal actin. The maximal activity (Vmax) and the apparent affinity constant of acto-HMM (KA) were thus estimated from the double-reciprocal plot of Eisenberg-Moos: the Vmax and KA values for phosphorylated HMM (in the presence of Ca2+ ions) were 5 S(-1) and 5.5 mg/ml actin, respectively, and the Vmax value for unphosphorylated HMM (in the presence of EGTA) was 0.3 S(-1), assuming that the KA value with unphosphorylated HMM is equal to that with phosphorylated HMM.  相似文献   

5.
The relationship between the light-chain phosphorylation and the actin-activated ATPase activity of pig urinary bladder myosin was either linear or nonlinear depending on the free Mg2+ concentration. Varying the free [Mg2+] in the presence of 50 mM ionic strength (I) had a biphasic effect on the actin-activated ATPase. In 100 mM I, the activity increased on raising the free [Mg2+]. The activity of the phosphorylated myosin was 3-23-fold higher than that of the unphosphorylated myosin at all concentrations of free Mg2+, pH, and temperature used in this study. The increase in the turbidity and sedimentability of both phosphorylated and unphosphorylated myosins on raising the free [Mg2+] was associated with a rise in the actin-activated ATPase activity. However, myosin light-chain phosphorylation still had a remarkable effect on the actin activation. The myosin polymers formed under these conditions were sedimented by centrifugation. Experiments performed with myosin polymers formed in mixtures of unphosphorylated and phosphorylated myosins showed that the presence of phosphorylated myosin in these mixtures had a slight effect on the sedimentation of the unphosphorylated myosin but it had no effect on the actin-activated ATP hydrolysis. Electron microscopy showed that the unphosphorylated myosin formed unorganized aggregates while phosphorylated myosin molecules assembled into bipolar filaments with tapered ends. These data show that although the unphosphorylated and phosphorylated myosins have the same level of sedimentability and turbidity, the filament assembly present only with the phosphorylated myosin can be associated with the maximal actin activation of Mg-ATPase.  相似文献   

6.
Actin, myosin, and "native" tropomyosin (NTM) were separately isolated from chicken gizzard muscle and rabbit skeletal muscle. With various combinations of the isolated contractile proteins, Mg-ATPase activity and superprecipitation activity were measured. It was thus found that gizzard myosin and gizzard NTM behaved differently from skeletal myosin and skeletal NTM, whereas gizzard actin functioned in the same wasy as skeletal actin. It was also found that gizzard myosin preparations were often Ca-sensitive, that is, that the two activities of gizzard myosin plus actin without NTM were activated by low concentrations of Ca2+. The Mg-ATPase activity of a Ca-insensitive preparation of gizzard myosin was not activated by actin even in the presence of Ca2+. When Ca-sensitive gizzard myosin was incubated with ATP (and Mg2+) in the presence of Ca2+, a light-chain component of gizzard myosin was phosphorylated. The light-chain phosphorylation also occurred when Ca-insensitive myosin was incubated with gizzard NTM and ATP (plus Mg2+) in the presence of Ca2+. In either case, the light-chain phosphorylation required Ca2+. Phosphorylated gizzard myosin in combination with actin was able to exhibit superprecipitation, and Mg-ATPase of the phosphorylated gizzard myosin was activated by actin; the actin activation and superprecipitation were found to occur even in the absence of Ca2+ and NTM or tropomyosin. The phosphorylated light-chain component was found to be dephosphorylated by a partially purified preparation of gizzard myosin light-chain phosphatase. Gizzard myosin thus dephosphorylated behaved exactly like untreated Ca-insensitive gizzard myosin; in combination with actin, it did not superprecipitate either in the presence of Ca2+ or in its absence, but did superprecipitated in the presence of NTM and Ca2+. Ca-activated hydrolysis of ATP catalyzed by gizzard myosin B proceeded at a reduced rate after removal of Ca2+ (by adding EGTA), whereas that catalyzed by a combination of actin, gizzard myosin, and gizzard NTM proceeded at the same rate even after removal of Ca2+. However, addition of a partially purified preparation of gizzard myosin light-chain phosphatase was found to make the recombined system behave like myosin B. Based on these findings, it appears that myosin light-chain kinase and myosin light-chain phosphatase can function as regulatory proteins for contraction and relaxation, respectively, of gizzard muscle.  相似文献   

7.
P D Wagner  N D Vu 《Biochemistry》1988,27(17):6236-6242
The effects of light chain phosphorylation on the actin-activated ATPase activity and filament assembly of calf thymus cytoplasmic myosin were examined under a variety of conditions. When unphosphorylated and phosphorylated thymus myosins were monomeric, their MgATPase activities were not activated or only very slightly activated by actin, but when they were filamentous, their MgATPase activities were stimulated by actin. The phosphorylated myosin remained filamentous at lower Mg2+ concentrations and higher KC1 concentrations than did the unphosphorylated myosin, and the myosin concentration required for filament assembly was lower for phosphorylated myosin than for unphosphorylated myosin. By varying the myosin concentration, it was possible to have under the same assay conditions mostly monomeric myosin or mostly filamentous myosin; under these conditions, the actin-activated ATPase activities of the filamentous myosins were much greater than those of the monomeric myosins. The addition of phosphorylated myosin to unphosphorylated myosin promoted the assembly of unphosphorylated myosin into filaments. These results suggest that phosphorylation may regulate the actomyosin-based motile activities in vertebrate nonmuscle cells by regulating myosin filament assembly.  相似文献   

8.
The possible role of the regulatory light chains (LC2) in in vitro assembly of rabbit skeletal and dog cardiac myosins was examined by formation of minifilaments and synthetic thick filaments. After LC2 was removed, the resulting myosin preparations exhibited little aggregation in 0.5 M KCl and 0.05 M potassium phosphate (pH 6.5). Minifilaments migrated as a single, hypersharp peak during sedimentation velocity, but electron microscopic analysis revealed a more destabilized structure for LC2-deficient minifilaments. Thick filaments were formed in buffers containing 0.15 M KCl and the following: 20 mM imidazole; 20 mM imidazole, 5 mM ATP; or 20 mM imidazole, 5 mM ATP, and 5 mM MgCl2, all at pH 7.0. Skeletal and cardiac myosin filaments formed in imidazole buffer alone were bipolar, tapered at both ends, and about 1.6 micron long. Removal of LC2 resulted in the formation of shorter thick filaments (1.2 micron long). This effect could be reversed by reassociation with LC2. Inclusion of ATP in the buffer disrupted the filament structure, resulting in irregular, short filaments (less than 0.6 micron); addition of both ATP and MgCl2 largely reversed the effects of ATP alone. In cardiac myosin filaments, the bare zone diameter increased from 16 nm as measured in control and LC2-recombined samples to 20 nm in LC2-deficient myosin assemblies. These results implicate LC2 in an active role in controlling synthetic thick filament length in both skeletal and cardiac muscles.  相似文献   

9.
Phosphorylation of chicken gizzard myosin light chain in myofibril and its effect on myofibrillar ATPase activity were investigated in the contracted state of myofibrils. When myofibrils were incubated for two hours at 30 degreeds C with ATP, magnesium and calcium, the myosin light chain was phosphorylated by endogenous light-chain kinase. Standing overnight, the phosphorylated light chain was dephosphorylated by endogenous light-chain phosphatase. Control myofibril had much higher ATPase activity than phosphorylated and phosphorylated-dephosphorylated myofibrils. It was very interesting that the phosphorylated and phosphorylated-dephosphorylated myofibrils were quite similar in ATPase activity. However, phosphorylated myofibril differed from phosphorylated-dephosphorylated myofibril in Ca2+ dependency of Mg2+-ATPase activity. The phosphorylated-dephosphorylated myofibril was not affected by the presence or absence of Ca2+. In contrast, phosphorylated myofibril apparently showed a negative Ca2+-sensitivity. On the other hand, the results indicating that the superprecipitation gel formed by phosphorylated-dephosphorylated myosin could not be dissolved in 0.6 M NaCl, suggest that the phosphorylation-dephosphorylation process of the actomyosin system in gizzard myofibril results in stronger actin-myosin interaction.  相似文献   

10.
On studying the steady-state activity in 0.6 M KCl, it was found that Mg-ATPase of chicken gizzard myosin was identical with that of rabbit skeletal myosin in the pH-activity profile, Michaelis-Menten constant, and maximum velocity. As regards the "initial burst" of ATP splitting in the presence of Mg (0.6 M KCl), it was found that gizzard and skeletal myosins were identical both in the size of the initial burst and in the velocity-ATP concentration relationship. The only difference we observed was that the Ca- and EDTA-ATPase activities of gizzard myosin were, as reported by other investigators, approximately one-half to one-third of those of skeletal myosin, although the pH-activity profiles for the ATPase of gizzard myosin was essentially the same as that of skeletal myosin.  相似文献   

11.
Myorod is expressed exclusively in molluscan catch muscle and localizes on the surface of thick filaments together with twitchin and myosin. This protein is an alternatively spliced product of the myosin heavy-chain gene containing the C-terminal rod part of myosin and a unique N-terminal domain. We have recently reported that this unique domain is a target for phosphorylation by gizzard smooth muscle myosin light chain kinase (MLCK) and molluscan twitchin, which contains a MLCK-like domain. To elucidate the role of myorod phosphorylation in catch muscle, a peptide corresponding to the specific N-terminal region of the protein was synthesized in phosphorylated and unphosphorylated form. We report, for the first time, that unphosphorylated full-length myorod and its unphosphorylated N-terminal synthetic peptide are able to interact with rabbit F-actin and thin filaments from molluscan catch muscle. The binding between thin filaments and the peptide was Ca2+-dependent. In addition, we found that phosphorylated N-terminal peptide of myorod has higher affinity for myosin compared to the unphosphorylated peptide. Together, these observations suggest the direct involvement of the N-terminal domain of myorod in the regulation of molluscan catch muscle.  相似文献   

12.
When 1 mM ATP is added to human dermal fibroblasts (DF) in monolayer culture permeabilized by glycerol, they undergo a rapid reduction in length and their intracellular actin filaments aggregate. This process is referred to as cell contraction. Treating glycerol-permeabilized DF with alkaline phosphatase before adding 1 mM ATP should cause dephosphorylation. Dephosphorylated preparations do not undergo cell contraction initiated by ATP. When myosin light-chain kinase (MLCK) isolated from turkey gizzard is added with cofactors to cells dephosphorylated by alkaline phosphatase treatment, contraction is restored. DF incubated for 24 h with db cAMP or cholera toxin show elevated intracellular concentrations of cAMP and little cell contraction. Contraction is reestablished when MLCK with cofactors is incubated with these preparations before ATP is added. Fibroblasts from Epidermolysis Bullosa dystrophica recessive patients produce excess cAMP. Those cells show minimal contraction, however; treating them with MLCK and cofactors renews contraction brought about by ATP. When DF are incubated with trifluoperazine to block calmodulin-dependent enzyme reactions, cell contraction is inhibited. Adding cytochalasin B disrupts microfilaments and also inhibits contraction. This work supports the idea that myosin ATPase is critical to cell contraction. Myosin ATPase is dependent on the phosphorylation of the regulatory peptide, myosin light chain. Elevating intracellular concentrations of cAMP or treatment of permeabilized cell preparations with alkaline phosphatase may inhibit myosin ATPase activity. The restoration of phosphorylation by adding MLCK with cofactors served to reestablish cell contraction.  相似文献   

13.
LOCALIZATION OF MYOSIN FILAMENTS IN SMOOTH MUSCLE   总被引:11,自引:10,他引:1       下载免费PDF全文
Thick myosin filaments, in addition to actin filaments, were found in sections of glycerinated chicken gizzard smooth muscle when fixed at a pH below 6.6. The thick filaments were often grouped into bundles and run in the longitudinal axis of the smooth muscle cell. Each thick filament was surrounded by a number of thin filaments, giving the filament arrangement a rosette appearance in cross-section. The exact ratio of thick filaments to thin filaments could not be determined since most arrays were not so regular as those commonly found in striated muscle. Some rosettes had seven or eight thin filaments surrounding a single thick filament. Homogenates of smooth muscle of chicken gizzard also showed both thick and thin filaments when the isolation was carried out at a pH below 6.6, but only thin filaments were found at pH 7.4. No Z or M lines were observed in chicken gizzard muscle containing both thick and thin filaments. The lack of these organizing structures may allow smooth muscle myosin to disaggregate readily at pH 7.4.  相似文献   

14.
The movement of reconstituted thin filaments over an immobilized surface of thiophosphorylated smooth muscle myosin was examined using an in vitro motility assay. Reconstituted thin filaments contained actin, tropomyosin, and either purified chicken gizzard caldesmon or the purified COOH-terminal actin-binding fragment of caldesmon. Control actin-tropomyosin filaments moved at a velocity of 2.3 +/- 0.5 microns/s. Neither intact caldesmon nor the COOH-terminal fragment, when maintained in the monomeric form by treatment with 10 mM dithiothreitol, had any effect on filament velocity; and yet both were potent inhibitors of actin-activated myosin ATPase activity, indicating that caldesmon primarily inhibits myosin binding as reported by Chalovich et al. (Chalovich, J. M., Hemric, M. E., and Velaz, L. (1990) Ann. N. Y. Acad. Sci. 599, 85-99). Inhibition of filament motion was, however, observed under conditions where cross-linking of caldesmon via disulfide bridges was present. To determine if monomeric caldesmon could "tether" actin filaments to the myosin surface by forming an actin-caldesmon-myosin complex as suggested by Chalovich et al., we looked for caldesmon-dependent filament binding and motility under conditions (80 mM KCl) where filament binding to myosin is weak and motility is not normally seen. At caldesmon concentrations > or = 0.26 microM, actin filament binding was increased and filament motion (2.6 +/- 0.6 microns/s) was observed. The enhanced motility seen with intact caldesmon was not observed with the addition of up to 26 microM COOH-terminal fragment. Moreover, a molar excess of the COOH-terminal fragment competitively reversed the enhanced binding seen with intact caldesmon. These results show that tethering of actin filaments to myosin by the formation of an actin-caldesmon-myosin complex enhanced productive acto-myosin interaction without placing a significant mechanical load on the moving filaments.  相似文献   

15.
X Wu  P S Blank    F D Carlson 《Biophysical journal》1992,63(1):169-179
We have investigated the hydrodynamic properties of turkey gizzard smooth muscle myosin in solution using quasi-elastic light scattering (QELS). The effects of ionic strength (0.05-0.5 M KCl) and light chain phosphorylation on the conformational transition of myosin were examined in the presence of ATP at 20 degrees C. Cumulant analysis and light scattering models were used to describe the myosin system in solution. A nonlinear least squares fitting procedure was used to determine the model that best fits the data. The conformational transition of the myosin monomer from a folded form to an extended form was clearly demonstrated in a salt concentration range of 0.15-0.3 M KCl. Light chain phosphorylation regulates the transition and promotes unfolding of the myosin. These results agree with the findings obtained using sedimentation velocity and electron microscopy (Onishi and Wakabayashi, 1982; Trybus et al., 1982; Trybus and Lowey, 1984). In addition, we present evidence for polymeric myosin coexisting with the two monomeric myosin species over a salt concentration range from 0.05 to 0.5 M KCl. The size of the polymeric myosin varied with salt concentration. This observation supports the hypothesis that, in solution, a dynamic equilibrium exists between the two conformations of myosin monomer and filaments.  相似文献   

16.
Chicken gizzard myosin in 0.15 M or 0.5 M NaCl was cleaved at two sites of heavy chain with 2-10 micrograms/ml papain. MgATP inhibited these cleavages of myosin in 0.15 M NaCl but not in 0.5 M NaCl. The protective effect of ATP was observed at concentrations as low as 10 microM and increased in proportion to ATP concentration to a maximum at 1 mM. ADP was as effective as ATP, while adenosine 5'-[beta, gamma-imido]triphosphate, an unhydrolyzable ATP analogue, was less effective than ATP or ADP. AMP had no protective effect on the digestion of myosin and GTP inhibited slightly the digestion. When the papain-insensitive myosin in 0.15 M NaCl and 2.5 mM MgATP was phosphorylated by Ca2+/calmodulin-dependent myosin light-chain kinase, the myosin restored the vulnerability to papain. However, the two papain-susceptible forms, nonphosphorylated form in the absence of MgATP and phosphorylated form in the presence of MgATP, yielded very similar but distinct proteolytic fragments upon the digestion. When the extent of myosin assembly was estimated by the turbidimetry of myosin suspension in 0.15 M NaCl, nonphosphorylated myosin in the absence and presence of MgATP was assembled and disassembled, respectively, and phosphorylated myosin in the presence of MgATP was assembled. These results suggest that, at physiological ionic strength, papain as a probe distinguishes disassembled myosin and assembled myosin as papain-insensitive and papain-sensitive forms, respectively.  相似文献   

17.
Regulation of the actin-activated ATPase of aorta smooth muscle myosin   总被引:1,自引:0,他引:1  
Phosphorylation of the 20,000-Da light chains, LC20, of vertebrate smooth muscle myosins is thought to be the primary mechanism for regulating the actin-activated ATPase activities of these myosins and consequently smooth muscle contraction. While actin stimulates the MgATPase activities of phosphorylated smooth muscle myosins, it is generally believed that the MgATPase activities of the unphosphorylated myosins are not stimulated by actin. However, under conditions where both unphosphorylated (5% phosphorylated LC20) and phosphorylated calf aorta myosins are mostly filamentous, the maximum rate, Vmax, of the actin-activated ATPase of the unphosphorylated myosin is one-half that of the phosphorylated myosin. While LC20 phosphorylation causes only a modest increase in Vmax, in the presence of tropomyosin, this phosphorylation does cause up to a 10-fold decrease in Kapp, the actin concentration required to achieve 1/2 Vmax. In the presence of low concentrations of tropomyosin/actin, a linear relationship is obtained between the fraction of LC20 phosphorylated and stimulation of the actin-activated ATPase. The relatively high actin-activated ATPase activity of unphosphorylated aorta myosin suggests that other proteins may be involved in the regulation of smooth muscle contraction. In contrast to the results presented here for aorta myosin, it has been reported that actin does not activate the MgATPase activity of unphosphorylated gizzard myosin and that the actin-activated ATPase of gizzard myosin increases more slowly than LC20 phosphorylation.  相似文献   

18.
Myosin has been isolated from bovine retinae and characterised by its ATPase (ATP phosphohydrolase, EC 3.6.1.3) activity, its mobility in sodium dodecyl sulphate polyacrylamide gels and by electron microscopy. The purified myosin shows high ATPase activity in the presence of EDTA or Ca2+ and a low activity in the presence of Mg2+. The Mg2+-dependent ATPase activity is stimulated by rabbit skeletal muscle actin. The presumptive retinal myosin possesses a major component which has a mobility in sodium dodecyl sulphate polyacrylamide gel electrophoresis similar to that of the heavy chain of bovine skeletal muscle myosin. Electron microscopy showed retinal myosin to form bipolar filaments in 0.1 M KCl. It is concluded that the retina possesses a protein with enzymic and structural properties similar to those of muscle myosin.  相似文献   

19.
A myosin was isolated from the clonal rat glial cell strain C-6 and compared with rat skeletal muscle myosin. After cell extracts were subjected to gel filtration chromatography in the presence of KI and magnesium pyrophosphate the C-6 myosin was rapidly purified by a procedure similar to that used for skeletal muscle myosin. The C-6 myosin resembles muscle myosin both physically and enzymatically. It contains heavy chains of 200,000 daltons and two classes of light chains of 17,000 and 19,000 daltons in approximately equal molar ratios. This myosin forms bipolar thick filaments in 0.1 M KCl and binds reversibly to skeletal muscle F-actin, the binding being inhibited by MgATP. Skeletal muscle F-actin stimulates the C-6 myosin adenosine triphosphatase 2- to 3-fold in the presence of KCl and Mg2+. The action activation of muscle myosin ATPase at low ionic strength is 10-fold greater than that of C-6 myosin. Ca2+ and EDTA stimulated the ATPase activities of both enzymes. When assayed in the presence of 0.6 M KCl and 1 mM EDTA the skeletal muscle myocin ATPase demonstrates substrate saturation while the C-6 myosin enzyme activity is stimulated by ATP concentrations above 2.5 mM.  相似文献   

20.
Inosine triphosphate (ITP) does not serve as a substrate for myosin light-chain kinase from gizzard muscle. That is to say, myosin light-chain is not phosphorylated in ITP media. Nevertheless, at pH 6.8, 1 mM or 5 mM ITP induces superprecipitation of skeletal acto-gizzard myosin. The ITP-induced superprecipitation occurs in the absence or presence of calcium ions, and regardless of whether gizzard myosin is phosphorylated or not. On the other hand, at pH 8, 5 MM ITP induces practically no superprecipitation of skeletal acto-gizzard unphosphorylated myosin, whereas it does induce a strong superprecipitation of skeletal acto-gizzard phosphorylated myosin. Superprecipitation is also independent of the presence or absence of calcium ions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号