首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Nanodisks (ND) are discrete nanometer scale phospholipid bilayers whose perimeter is circumscribed by amphipathic apolipoproteins. The membranous environment of ND serves as a matrix for solubilizing the polyene antibiotic amphotericin B (AMB). The spectral properties of AMB in ND are dependent upon AMB concentration. Whereas AMB-ND prepared at a concentration of 2.5 mg AMB per 10 mg phospholipid are consistent with AMB self association in the ND membrane environment, AMB-ND prepared at 0.25 or 0.025 mg AMB per 10 mg phospholipid give rise to spectra reminiscent of AMB in organic solvent. Incubation of ND prepared at a phospholipid/AMB ratio of 400:1 (w/w) at 37 °C for 1 h induced a shift in absorbance and near UV circular dichroism spectra consistent with antibiotic self-association. The kinetics of this spectral transition were investigated as a function of incubation temperature. While no change in A388 nm occurred in incubations at 20 °C, a time-dependent decrease in A388 nm was observed at 25, 30 and 37 °C. Inclusion of ergosterol in the ND membrane attenuated temperature-induced AMB spectral changes. In Saccharomyces cerevisiae growth inhibition assays, ND containing self associated AMB were somewhat less effective than ND possessing a greater proportion of monomeric AMB. On the other hand, inclusion of ergosterol or cholesterol in the ND particle did not alter the growth inhibition properties of AMB-ND. The miniature membrane environment of ND provides a novel milieu for solubilization and characterization of lipophilic biomolecules.  相似文献   

2.
Nanometer scale apolipoprotein A-I stabilized phospholipid disk complexes (nanodisks; ND) have been formulated with the polyene antibiotic amphotericin B (AMB). The present studies were designed to evaluate if a peptide can substitute for the function of the apolipoprotein component of ND with respect to particle formation and stability. An 18-residue synthetic amphipathic alpha-helical peptide, termed 4F (Ac-D-W-F-K-A-F-Y-D-K-V-A-E-K-F-K-E-A-F-NH(2)), solubilized vesicles comprised of egg phosphatidylcholine (egg PC), dipentadecanoyl PC or dimyristoylphosphatidylcholine (DMPC) at rates greater than or equal to solubilization rates observed with human apolipoprotein A-I (apoA-I; 243 amino acids). Characterization studies revealed that interaction with DMPC induced a near doubling of 4F tryptophan fluorescence emission quantum yield (excitation 280 nm) and a approximately 7 nm blue shift in emission wavelength maximum. Inclusion of AMB in the vesicle substrate resulted in formation of 4F AMB-ND. Spectra of AMB containing particles revealed the antibiotic is a highly effective quencher of 4F tryptophan fluorescence emission, giving rise to a Ksv=7.7 x 10(4). Negative stain electron microscopy revealed that AMB-ND prepared with 4F possessed a disk shaped morphology similar to ND prepared without AMB or prepared with apoA-I. In yeast and pathogenic fungi growth inhibition assays, 4F AMB-ND was as effective as apoA-I AMB-ND. The data indicate that AMB-ND generated using an amphipathic peptide in lieu of apoA-I form a discrete population of particles that possess potent biological activity. Given their intrinsic versatility, peptides may be preferred for scale up and clinical application of AMB-ND.  相似文献   

3.
Amphotericin B nanodisks (AMB-ND) are ternary complexes of AMB, phospholipid and apolipoprotein organized as discrete nanometer scale disk-shaped bilayers. In gel filtration chromatography experiments, empty ND lacking AMB elute as a single population of particles with a molecular weight in the range of 200 kDa. AMB-ND formulated at a 4:1 phospholipid:AMB weight ratio separated into two peaks. One peak eluted at the position of control ND lacking AMB while the second peak, containing all of the AMB present in the original sample, eluted in the void volume. When ND prepared with increased AMB were subjected to gel filtration chromatography an increased proportion of phospholipid and apolipoprotein was recovered in the void volume with AMB. Native gradient gel electrophoresis corroborated the gel filtration chromatography data and electron microscopy studies revealed an AMB concentration-dependent heterogeneity in ND particle size. Stability studies revealed that introduction of AMB into ND decreases the ability of apoA-I to resist denaturation. Atomic force microscopy experiments showed that AMB induces compression of ND bilayer thickness while infrared spectroscopy analysis revealed that the presence of AMB does not induce extreme lipid disorder or alter the mean angle of the molecular axis along fatty acyl chains of ND phospholipids. Taken together the results are consistent with AMB-induced bilayer interdigitation, a phenomenon that likely contributes to AMB-dependent pore formation in susceptible membranes.  相似文献   

4.
Amphotericin B nanodisks (AMB-ND) are ternary complexes of AMB, phospholipid and apolipoprotein organized as discrete nanometer scale disk-shaped bilayers. In gel filtration chromatography experiments, empty ND lacking AMB elute as a single population of particles with a molecular weight in the range of 200 kDa. AMB-ND formulated at a 4:1 phospholipid:AMB weight ratio separated into two peaks. One peak eluted at the position of control ND lacking AMB while the second peak, containing all of the AMB present in the original sample, eluted in the void volume. When ND prepared with increased AMB were subjected to gel filtration chromatography an increased proportion of phospholipid and apolipoprotein was recovered in the void volume with AMB. Native gradient gel electrophoresis corroborated the gel filtration chromatography data and electron microscopy studies revealed an AMB concentration-dependent heterogeneity in ND particle size. Stability studies revealed that introduction of AMB into ND decreases the ability of apoA-I to resist denaturation. Atomic force microscopy experiments showed that AMB induces compression of ND bilayer thickness while infrared spectroscopy analysis revealed that the presence of AMB does not induce extreme lipid disorder or alter the mean angle of the molecular axis along fatty acyl chains of ND phospholipids. Taken together the results are consistent with AMB-induced bilayer interdigitation, a phenomenon that likely contributes to AMB-dependent pore formation in susceptible membranes.  相似文献   

5.
Delipidated bacteriorhodopsin purified from purple membrane of H. halobium was reconstituted with the circular dichroism active phospholipid. The observed circular dichroism spectra in the 450-700 nm region characteristic of bacteriorhodopsin showed the temperature dependence characterized by a midpoint at ca. 45 degrees C and this spectral change showed the disaggregation of bacteriorhodopsin trimer to monomer. The circular dichroism spectra in the 250-400 nm region characteristic of the azo chromophore of phospholipid exhibited a remarkable temperature dependence synchronized with the disaggregation of bacteriorhodopsin, suggesting that a large proportion of the phospholipid is present as boundary lipid.  相似文献   

6.
The relationship between lipid composition and phase transition was investigated by differential scanning calorimetry for intact and membrane phospholipid extracts of wild-type (w/t) and the cel-(Tw 40) mutant of Neurospora crassa. The cel-(Tw 40) mutant (grown on minimal, sucrose medium supplemented with Tween 40 at approximately 34 degrees C) had approximately twice the saturated fatty acid content of w/t organisms grown at approximately 22 degrees C. The gel-liquid crystal phase transitions of ergosterol-free extracts derived from w/t and cel-(Tw 40) occur at -31 and -11 degrees C, respectively. The heats of transition (delta H) of these extracts were 1 and 13 cal/g, respectively. The addition of ergosterol (the predominant sterol in Neurospora) to the phospholipid extracts decreased the observed heats of transition, but did not alter the transition temperature. Intact Neurospora, whether w/t or cal-(Tw 40) did not manifest similar gel-liquid crystal phase transitions in the differential scanning calorimeter. However, an endothermic peak at approximately 30 degrees C was observed in intact cells and extracted phospholipids of both w/t and cel-(Tw 40) organisms. This peak was insensitive to the addition of ergosterol, had a low heat content (delta H congruent to 1 cal/g), and was reversible.  相似文献   

7.
The polyene antibiotic amphotericin B (AMB) is an effective antifungal agent whose therapeutic potential is limited by poor aqueous solubility and toxicity toward host tissues. Addition of apolipoprotein A-I to a multilamellar phospholipid vesicle dispersion containing 20% (w/w) AMB induces the formation of reconstituted high density lipoprotein (rHDL), with solubilization of the antibiotic. Density gradient ultracentrifugation resulted in flotation of the complexes to a density of 1.16 g/ml, and negative stain electron microscopy revealed a population of disk-shaped particles. Native gradient polyacrylamide gel electrophoresis indicated a particle diameter of approximately 8.5 nm. Absorbance spectroscopy provided evidence for AMB integration into the lipid milieu. AMB-rHDLs were potent inhibitors of Saccharomyces cerevisiae growth, yielding 90% growth inhibition at <1 microg/ml yeast culture. In studies with pathogenic fungal species, similar growth inhibition characteristics were observed. Compared with AMB-deoxycholate micelles, AMB-rHDL displayed greatly attenuated red blood cell hemolytic activity and decreased toxicity toward cultured hepatoma cells. In in vivo studies in immunocompetent mice, AMB-rHDLs were nontoxic at 10 mg/kg, and they showed efficacy in a mouse model of candidiasis at concentrations as low as 0.25 mg/kg. These results indicate that AMB-rHDLs constitute a novel formulation that effectively solubilizes the antibiotic and elicits strong in vitro and in vivo antifungal activity with no observed toxicity at therapeutic doses.  相似文献   

8.
This paper reports on the synthesis, characterisation, and efficiency of a new intravenous conjugate of amphotericin B (AMB). Twelve molecules of AMB were attached to block copolymer poly(ethylene glycol)-b-poly(L-lysine) via pH-sensitive imine linkages. In vitro drug release studies demonstrated the conjugate (M(w)=26,700) to be relatively stable in human plasma and in phosphate buffer (pH 7.4, 37 degrees C). Controlled release of AMB was observed in acidic phosphate buffer (pH 5.5, 37 degrees C) with the half-life of 2 min. The LD(50) value determined in vivo (mouse) is 45 mg/kg.  相似文献   

9.
Experiments were conducted to examine the effects of temperature acclimation on sterol and phospholipid biosynthesis in Neurospora crassa. Cultures grown at high (37 degrees C) and low (15 degrees C) temperatures show significant differences in free and total sterol content, sterol/phospholipid ratios and distribution of major phospholipid species in total lipids and two functionally distinct membrane fractions. The ratio of free sterols to phospholipids in total cellular lipids from 15 degrees C cultures was found to be about one-half that found at 37 degrees C, whereas sterol/phospholipid ratios of mitochondrial and microsomal membranes were found to be higher at the low growth temperature. Total sterol and phospholipid biosynthetic rates showed parallel reductions in cultures acclimating to a shift from 37 to 15 degrees C growth conditions. Distribution of [14C]acetate label into free sterols was significantly lower under these conditions, however; indicating an increase in the conversion rate of sterols to sterol esters at the lower temperature. Mitochondrial and microsomal membrane fractions showed distinct phospholipid distributions which also differed from total lipid distributions at the two growth temperatures. In each case there was a consistent decrease in phosphatidylcholine and a corresponding increase in phosphatidylethanolamine as growth temperatures were lowered.  相似文献   

10.
The influence of the physical state of the membrane on the swimming behaviour of Tetrahymena pyriformis was studied in cells with lipid-modified membranes. When the growth temperature of Tetrahymena cells was increased from 15 degrees C to 34 degrees C or decreased from 39 degrees C to 15 degrees C, their swimming velocity changed gradually in a similar to the adaptive change in membrane lipid composition. Therefore, such adaptive changes in swimming velocity were not observed during short exposures to a different environment. Tetrahymena cells adapted to 34 degrees C swam at 570 microns/s. On incubation at 15 degrees C these cells swam at 100 microns/s. When the temperature was increased to 34 degrees C after a 90-min incubation at 15 degrees C, the initial velocity was immediately recovered. On replacement of tetrahymanol with ergosterol, the swimming velocity of 34 degrees C-grown cells decreased to 210 microns/s, and the cells ceased to move when the temperature was decreased to 15 degrees C. To investigate the influence of the physical state of the membrane on the swimming velocity, total phospholipids were prepared from Tetrahymena cells grown under these different conditions. The fluidities of liposomes of these phospholipid were measured using stearate spin probe. The membrane fluidity of the cells cooled to 15 degrees C increased gradually during incubation at 15 degrees C. On the other hand, the fluidity of the heated cell decreased during incubation at 34 degrees C. Replacement of tetrahymanol with ergosterol decreased the membrane fluidity markedly. Consequently, a good correlation was observed between swimming velocity and membrane fluidity; as the membrane fluidity increased, the swimming velocity increased linearly up to 600 microns/s. These results provide evidence for the regulation of the swimming behaviour by physical properties of the membrane.  相似文献   

11.
New intravenous conjugates of amphotericin B (AMB) with poly(ethylene glycols) (PEG) (M=5000, 10,000, 20,000) have been synthesized and characterised. The intermediate PEGs possess a 1,4-disubstituted benzene ring with aldehyde group at the end of the chain. The benzene ring is connected with PEG at its 4-position (with respect to the aldehyde group) by various functional groups (ether, amide, ester). Reaction of terminal aldehyde group of the substituted PEGs with AMB gave conjugates containing a pH-sensitive imine linkage, which can be presumed to exhibit antimycotic effect at sites with lowered pH value. All types of the conjugates are relatively stable in phosphate buffer at physiological conditions of pH 7.4 (37 degrees C), less than 5 mol% AMB being split off from them within 24 h. For a model medium of afflicted tissue was used a phosphate buffer (pH 5.5, 37 degrees C), in which controlled release of AMB from the conjugates takes place. The imine linkage is split to give free AMB with half-lives of 2-45 min. The rate of acid catalysed hydrolysis depends upon substitution of the benzene ring; however, it does not depend on molecular weights of the PEGs used. The conjugates with ester linkage undergo enzymatic splitting in human blood plasma and/or blood serum at pH 7.4 (37 degrees C) with half-lives of 2-5 h depending on molecular weights of the PEGs used (M = 5000, 10,000, 20,000). At first, the splitting of ester linkage produces the relatively stable pro-drug, that is, 4-carboxybenzylideniminoamphotericin B, which is decomposed to AMB and 4-formylbenzoic acid in a goal-directed manner only at pH 7 (t1/2 = 2 min, pH 5.5, 37 degrees C). A goal-directed release of AMB is only achieved by acid catalysed hydrolysis of imine linkage, either from the polymeric conjugate or from the pro-drug released thereof. The LD50 values determined in vivo (mouse) are 20.7 mg/kg and 40.5 mg/kg for the conjugates with ester linkage (M = 10,000 and 5000, respectively), which means that they are ca. 6-11 times less toxic than free AMB.  相似文献   

12.
Amphotericin B (AmB) is thought to exert its antifungal activity by forming an ion-channel assembly in the presence of ergosterol. In the present study we aimed to elucidate the mode of molecular interactions between AmB and ergosterol in hydrated phospholipid bilayers using the rotational echo double resonance (REDOR) spectra. We first performed (13)C{(19)F}REDOR experiments with C14-(19)F-labeled AmB and biosynthetically (13)C-labeled ergosterol and implied that both "head-to-head" and "head-to-tail" orientations occur for AmB-ergosterol interaction in the bilayers. To further confirm the "head-to-tail" pairing, (13)C-labeled ergosterol at the dimethyl terminus (C26/C27) was synthesized and subjected to the REDOR measurements. The spectra unambiguously demonstrated the presence of a "head-to-tail" orientation for AmB-ergosterol pairing. In order to obtain information on the position of the dimethyl terminus of ergosterol in membrane, (13)C{(31)P}REDOR were carried out using the labeled ergosterol and the phosphorus atom of a POPC headgroup. Significant REDOR dephasing was observed at the C26/C27 signal of ergosterol in the presence of AmB, but not in the absence of AmB, clearly indicating that the side-chain terminus of ergosterol in the AmB complex comes close to the bilayer surface.  相似文献   

13.
Experiments were conducted on the effect of growth temperature on phospholipids of Neurospora. Strains grown at high (37 degrees C) and low (15 degrees C) temperatures show large differences in the proportions of phospholipid fatty acid alpha-linolenate (18 : 3) which can vary by 10-fold over this temperature range. Changes in the phospholipid base composition are less dramatic; the most significant is an increase in phosphatidylethanolamines at low temperatures accompanied by a concomitant decrease in phosphatidylcholine. It appears that phospholipid fatty acid desaturation is closely regulated with respect to growth temperature. Over the 37 to 15 degrees C growth temperature range there appear to be at least two desaturase systems in Neurospora which are under different controls. Production of 18 : 1 and 18 : 2 species appears to occur at high levels over the entire temperature range, whereas the production of 18 : 3 seems to be inversely related to growth temperature. Shifting 37 degrees C-acclimated cultures to 15 degrees C produces a growth lag period of approximately 3 h, during which the level of 18 : 3 increases markedly. Differential scanning calorimetry of phospholipids from 37 degrees C cells shows a phase transition at -22 degrees C while lipids from 15 degrees C cultures exhibit a phase transition with reduced enthalpy at about -41 degrees C. The data are consistent with the idea that phospholipid composition in Neurospora is under strict control and suggest that membrane fluidity is regulated with respect to growth temperature through changes in membrane lipid composition.  相似文献   

14.
N-Methyl-N-D-fructosyl amphotericin B methyl ester (MFAME) is a semisynthetic derivative of the antifungal antibiotic amphotericin B (AMB). In contrast to the parent antibiotic, the derivative is characterised by low toxicity to mammalian cells and good solubility in water of its salts. Comparative studies on biological properties of free MFAME, AMB and their liposomal formulations were performed. To obtain liposomal forms, the antibiotics were incorporated into small unilamellar vesicles composed of dimyristoyl phosphatidylcholine (DMPC) and DMPC:cholesterol or ergosterol, 8:2 molar ratio. The effectivity of the liposomal and free forms of AMB and MFAME were compared by determination of fungistatic and fungicidal activity against Candida albicans ATCC 10261, potassium release from erythrocytes, and haemolysis. The results obtained indicate that in contrast to AMB, incorporation of MFAME into liposomes did not further improve its selective toxicity. Studies on the antagonistic effect of ergosterol and cholesterol on the antifungal activity of the antibiotics indicated that sterol interference was definitely less pronounced in the case of MFAME than in the case of AMB.  相似文献   

15.
Sterol effects on phospholipid biosynthesis in the yeast strain GL7   总被引:1,自引:0,他引:1  
Cells of the yeast sterol auxotroph GL7 were grown on either ergosterol or cholesterol to mid-logarithmic phase and total membrane fractions prepared. Activities of phospholipid biosynthetic enzymes in the two cell types were determined. The rates of phosphatidyl-ethanolamine-phosphatidyl-choline-N-methyl transferase and acyl-CoA-alpha-glycerol-3-phosphate transcylase were significantly greater in ergosterol-grown than in cholesterol-grown cells. These reactions were also inhibited by the polyene antibiotic filipin. By contrast the activities of long-chain fatty acyl-CoA synthetase, CTP-phosphatidate-cytidyl transferase, phosphatidylserine decarboxylase and of phosphatidylinositol synthetase were identical in the two (ergosterol and cholesterol) cultures and unaffected by filipin. The ergosterol effect on phosphatidyl-ethanolamine N-methyl transferase was greatest in cells harvested in early log phase, intermediate in the mid-log phase cells, and not significant in stationary phase cells.  相似文献   

16.
Suspensions of proximal tubules were obtained by collagenase digestion of rat renal cortex followed by centrifugation on a percoll gradient. NAD content in tubules incubated at 37 degrees C was decreased by 40-60% compared with tubules incubated at 4 degrees C. This change occurred within 30 min and was maintained for up to 2 hr. Inhibitors of NAD hydrolysing enzymes prevented the depletion of cellular NAD at 37 degrees C. Acute changes in proximal tubule NAD content at 37 degrees C were not accompanied by changes in phosphate uptake by brush border membrane vesicles subsequently prepared from the same tubules. In contrast, incubation of tubules with parathyroid hormone (10(-6) M) produced the expected inhibition (20%) of brush border membrane transport of phosphate. One implication of these findings is that acute changes in total NAD content of proximal tubules at 37 degrees C may not influence the phosphate transport system in the renal brush border membrane. Other interpretations are discussed.  相似文献   

17.
A Raman scattering study of the channel-forming polyene antibiotic nystatin, is reported in the solid state, in organic and aqueous solutions as well as in phospholipid and phospholipid-cholesterol multilayers. Measurements of the solid and solution spectra as a function of excitation wavelengths in the 459.7–514.5 nm range, and the phospholipid spectra as a function of temperature in the 10–60°C range, have also been made. The spectral features indicate a pre-resonance-enhanced Raman spectrum in which the CC and CC stretching modes of the polyene segment of nystatin are dominant. However, in contrast to previously published results on the nearly isostructural polyene antibiotic amphotericin B, a line at 1610 cm?1 assignable to the CO stretching mode is also observed to be strongly resonance enhanced. This is explained by a postulated ground-state conformation model in which a twisting of the molecule is facilitated by the break in the polyene chain. This allows the CO group at one end of the molecule to be aligned along the polyene unit at the other end, and the CC stretching vibration, which is strongly modulated by the polyene π → π1 excited state, to mix with the CO stretching vibration. The peak frequencies and intensities of the CC and CC stretching modes in nystatin, however, remain essentially unchanged compared with amphotericin B, indicating that the polyene units in nystatin remain planar and trans both in the ground and excited states.The intensity of the CO mode with respect to the CC stretching mode was observed to vary appreciably with nystatin environment, indicating a  相似文献   

18.
Gramicidin-induced hexagonal HII phase formation in erythrocyte membranes   总被引:3,自引:0,他引:3  
Using 31P nuclear magnetic resonance (NMR), small-angle X-ray scattering (SAXS), and freeze-fracture electron microscopic (FFEM) techniques, it is shown that gramicidin induces a hexagonal HII phase not only in liposomes prepared from total lipids extracted from human erythrocytes but also in isolated human erythrocyte membranes (white ghosts). A 37 degrees C, HII phase formation is detected at a gramicidin to phospholipid molar ratio exceeding 1:80. At a molar ratio of 1:5, about 30% of the phospholipid is organized in the HII phase. The gramicidin-induced HII phase exhibits a very small 31P chemical shift anisotropy [(CSA) approximately 10 +/- 1 ppm], indicating decreased head-group order, and it displays a temperature-dependent increase in tube diameter from 60.2 A at 4 degrees C to 64.2 A at 37 degrees C in ghosts and from 62.8 to 69.4 A at 37 degrees C in total lipid extracts, both in the presence of 1 mol of gramicidin/10 mol of phospholipid. This anomalous temperature-dependent behavior is probably due to the presence of cholesterol. 31P NMR data indicate that the HII phase formation by gramicidin is temperature dependent and show the gradual disappearance of the HII phase at low temperatures (less than 20 degrees C), resulting in a bilayer type of 31P NMR line shape at 4 degrees C, whereas SAXS and FFEM data suggest equal amounts of HII phases at all temperatures. This apparent discrepancy is probably the result of a decrease in the rate of lateral diffusion of the membrane phospholipids which leads to incomplete averaging of the 31P CSA in the HII phase.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
20.
Microemulsions (oil-in-water) have been employed as templates to engineer nanoparticles containing high concentrations of gadolinium for potential application in neutron capture therapy of tumors. Gadolinium hexanedione (GdH), synthesized by complexation of Gd(3+) with 2,4-hexanedione, was used as the nanoparticle matrix alone or in combination with either emulsifying wax or PEG-400 monostearate. Solid nanoparticles (<125 nm size) were obtained by simple cooling of the microemulsions prepared at 60 degrees C to room temperature in one vessel. The feasibility of tumor targeting via folate receptors was studied. A folate ligand was synthesized by chemically linking folic acid to distearoylphosphatidylethanolamine (DSPE) via a poly(ethylene glycol) (PEG; MW 3350) spacer. To obtain folate-coated nanoparticles, the folate ligand (0.75% w/w to 15% w/w) was added to either the microemulsion templates at 60 degrees C or nanoparticle suspensions at 25 degrees C. Efficiencies of folate ligand attachment/adsorption to nanoparticle formulations were monitored by gel permeation chromatography. Cell uptake studies were carried out in KB cells (human nasopharyngeal epidermal carcinoma cell line), known to overexpress folate receptors. The uptake of folate-coated nanoparticles was about 10-fold higher than uncoated nanoparticles after 30 min at 37 degrees C. The uptake of folate-coated nanoparticles at 4 degrees C was 20-fold lower than the uptake at 37 degrees C and comparable to the uptake of uncoated nanoparticles at 37 degrees C. Folate-mediated endocytosis was further verified by the inhibition of folate-coated nanoparticles uptake by free folic acid. It was observed that folate-coated nanoparticles uptake decreased to approximately 2% of its initial value with the coincubation of 0.001 mM of free folic acid. The results suggested that these tumor-targeted nanoparticles containing high concentrations of Gd may have potential for neutron capture therapy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号