首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
目的:通过观察缺氧预适应和银杏内酯B预处理对小鼠急性缺氧的影响,了解银杏内酯B的脑保护作用。方法:采用小鼠常压缺氧模型,观察小鼠的行为学并记录各组小鼠的最后死亡时间,脑组织含水量,用RT-PCR、Western blot分别检测各组小鼠皮层组织中RTP801mRNA表达和EPO蛋白表达。结果:银杏内酯B和低氧预适应均能明显延长常压缺氧小鼠的存活时间,降低脑水肿程度,并且银杏内酯组和低氧预适应组RTP801mRNA表达和EPO的表达均明显增加。结论:银杏内酯B与低氧预适应具有相类似的对抗小鼠急性低氧的作用,其脑保护作用与上调RTPS01mRNA和EPO蛋白的表达有关。  相似文献   

2.
Brief "preconditioning" ischemia inducesischemic tolerance (IT) and protects the animal brain from subsequentotherwise lethal ischemia. Identification of the signalingsteps most proximal to the development of the IT will allow inductionof the resistance to ischemia shortly after the onset ofstroke. Animal studies demonstrate a key role of tumor necrosisfactor- (TNF-) in induction of IT. The sphingolipid ceramide isknown as a second messenger in many of the multiple effects of TNF-.We hypothesized that ceramide could mediate IT. We demonstrate thatpreconditioning of rat cortical neurons with mild hypoxia protects themfrom hypoxia and O2-glucosedeprivation injury 24 h later (50% protection). TNF- pretreatmentcould be substituted for hypoxic preconditioning (HP). HP wasattenuated by TNF--neutralizing antibody. HP and TNF-pretreatment cause a two- to threefold increase of intracellular ceramide levels, which coincides with the state of tolerance. FumonisinB1, an inhibitor of ceramidesynthase, attenuated ceramide upregulation and HP. C-2 ceramide addedto the cultures right before the hypoxic insult mimicked the effect ofHP. Ceramide did not induce apoptosis. These results suggest that HP ismediated via ceramide synthesis triggered by TNF-.

  相似文献   

3.
Impaired lung function in severe acute pancreatitis is the primary cause of morbidity and mortality in this condition. Preprotachykinin-A (PPT-A) gene products substance P and neurokinin (NK)-A have been shown to play important roles in neurogenic inflammation. Substance P acts primarily (but not exclusively) via the NK1 receptor. NKA acts primarily via the NK2 receptor. Earlier work has shown that knockout mice deficient in NK1 receptors are protected against acute pancreatitis and associated lung injury. NK1 receptors, however, bind other peptides in addition to substance P, not all of which are derived from the PPT-A gene. To examine the role of PPT-A gene products in acute pancreatitis, the effect of PPT-A gene deletion on the severity of acute pancreatitis and the associated lung injury was investigated. Deletion of PPT-A almost completely protected against acute pancreatitis-associated lung injury, with a partial protection against local pancreatic damage. These results show that PPT-A gene products are critical proinflammatory mediators in acute pancreatitis and the associated lung injury.  相似文献   

4.
In this study, the intraperitoneal administration of 1 mg/kg thioacetamide (TAA) produced hepatotoxicity in mice. The increase in serum SGOT and SGPT produced at 24 h by this regimen was decreased in a dose-dependent manner by coadministration of tetramethylpyrazine (TMP; 10, 25 and 50 mg/kg). A rise in serum interleukin-2 was similarly prevented. Increased concentrations of malondialdehyde (MDA) generated in vitro in liver homogenates prepared from TAA-treated mice were decreased by TMP treatments. The increase in MDA produced by TAA was also prevented by in vitro addition of TMP to liver homogenates. These results suggest that part of the hepatocellular injury induced by TAA is mediated by oxidative stress caused by the action of cytokines through lipid peroxidation. TMP appears to act by preventing lipid peroxidation.  相似文献   

5.
Endothelial cells (ECs) are directly exposed to hypoxia and contribute to injury during myocardial ischemia/reperfusion. Hypoxic preconditioning (HPC) protects ECs against hypoxia injury. This study aimed to explore whether HPC attenuates hypoxia/reoxygenation (H/R) injury by suppressing excessive endoplasmic reticulum stress (ERS) in cultured microvascular ECs (MVECs) from rat heart. MVECs injury was measured by lactate dehydrogenase (LDH) leakage, cytoskeleton destruction, and apoptosis. Expression of glucose regulating protein 78 (GRP78) and C/EBP homologous protein (CHOP), activation of caspase-12 (pro-apoptosis factors) and phosphorylation of p38 mitogen-activated protein kinase (p38 MAPK) were detected by western blot analysis. HPC attenuated H/R-induced LDH leakage, cytoskeleton destruction, and cell apoptosis, as shown by flow cytometry, Bax/Bcl-2 ratio, caspase-3 activation and terminal deoxynucleotidyl transferase mediated dUTP-biotin nick end labeling. HPC suppressed H/R-induced ERS, as shown by a decrease in expression of GRP78 and CHOP, and caspase-12 activation. HPC enhanced p38 MAPK phosphorylation but decreased that of protein kinase R-like ER kinase (PERK, upstream regulator of CHOP). SB202190 (an inhibitor of p38 MAPK) abolished HPC-induced cytoprotection, downregulation of GRP78 and CHOP, and activation of caspase-12, as well as PERK phosphorylation. HPC may protect MVECs against H/R injury by suppressing CHOP-dependent apoptosis through p38 MAPK mediated downregulation of PERK activation.  相似文献   

6.
Acute adaptation of mice to hypoxic hypoxia.   总被引:8,自引:0,他引:8  
Tolerance to hypoxia in vivo and in vitro was significantly increased by acute and repetitive exposure of mice to autoprogressive hypoxia. The average tolerance times of the successive 2nd, 3rd, 4th and 5th runs of exposure were, respectively, 2, 4, 6 and 8 times as long as that of the first exposure. The survival times under hypobaric chamber and cyanide toxification in the 4th exposure were, respectively, 10 (and even as much as 86) and 4 times those in control mice without exposure to hypoxia. Mandibular respiration and spinal reflex in vitro in hypoxia-resistant animals lasted 5-6 times as long as in control animals not previously exposed to hypoxia. Animals that received brain homogenate from hypoxia-resistant mice remained alive in a hypobaric chamber 2 times as long as those that received homogenate from controls and those that received saline. These results indicate that a kind of quickly developing adaptation with increased tolerance is achieved by acute and repetitive exposure of mice to progressive autohypoxia and some plastic or adaptive changes occur in the brain of hypoxia-resistant animals, including the production of some kind of water-soluble antihypoxic factors.  相似文献   

7.
Macroautophagy has been implicated in a variety of pathological processes. Hypoxic/ischemic cellular injury is one such process in which autophagy has emerged as an important regulator. In general, autophagy is induced after a hypoxic/ischemic insult; however, whether the induction of autophagy promotes cell death or recovery is controversial and appears to be context dependent. We have developed C. elegans as a genetically tractable model for the study of hypoxic cell injury. Both necrosis and apoptosis are mechanisms of cell death following hypoxia in C. elegans. However, the role of autophagy in hypoxic injury in C. elegans has not been examined. Here, we found that RNAi knockdown of the C. elegans homologs of beclin 1/Atg6 (bec-1) and LC3/Atg8 (lgg-1, lgg-2), and mutation of Atg1 (unc-51) decreased animal survival after a severe hypoxic insult. Acute inhibition of autophagy by the type III phosphatidylinositol 3-kinase inhibitors, 3-methyladenine and Wortmannin, also sensitized animals to hypoxic death. Hypoxia-induced neuronal and myocyte injury as well as necrotic cellular morphology were increased by RNAi knockdown of BEC-1. Hypoxia increased the expression of a marker of autophagosomes in a bec-1-dependent manner. Finally, we found that the hypoxia hypersensitive phenotype of bec-1(RNAi) animals could be blocked by loss-of-function mutations in either the apoptosis or necrosis pathway. These results argue that inhibition of autophagy sensitizes C. elegans and its cells to hypoxic injury and that this sensitization is blocked or circumvented when either of the two major cell-death mechanisms is inhibited.  相似文献   

8.
《Autophagy》2013,9(8):1034-1041
Macroautophagy has been implicated in a variety of pathological processes. Hypoxic/ischemic cellular injury is one such process in which autophagy has emerged as an important regulator. In general, autophagy is induced after an hypoxic/ischemic insult; however, whether the induction of autophagy promotes cell death or recovery is controversial and appears to be context dependent. We have developed C. elegans as a genetically tractable model for the study of hypoxic cell injury. Both necrosis and apoptosis are mechanisms of cell death following hypoxia in C. elegans. However, the role of autophagy in hypoxic injury in C. elegans has not been examined. Here, we found that RNAi knockdown of the C. elegans homologs of beclin 1/Atg6 (bec-1) and LC3/Atg8 (lgg-1, lgg-2), and mutation of Atg1 (unc-51) decreased animal survival after a severe hypoxic insult. Acute inhibition of autophagy by the type III phosphatidylinositol 3-kinase inhibitors, 3-methyladenine and Wortmannin, also sensitized animals to hypoxic death. Hypoxia-induced neuronal and myocyte injury as well as necrotic cellular morphology were increased by RNAi knockdown of BEC-1. Hypoxia increased the expression of a marker of autophagosomes in a bec-1-dependent manner. Finally, we found that the hypoxia hypersensitive phenotype of bec-1(RNAi) animals could be blocked by loss-of-function mutations in either the apoptosis or necrosis pathway. These results argue that inhibition of autophagy sensitizes C. elegans and its cells to hypoxic injury and that this sensitization is blocked or circumvented when either of the two major cell death mechanisms is inhibited.  相似文献   

9.
Sepsis is a serious condition with a high mortality rate worldwide. Granisetron is an anti-nausea drug for patients undergoing chemotherapy. Here we aimed to identify the novel effect of granisetron on sepsis-induced acute lung injury (ALI). Our results showed that mice treated with granisetron displayed less severe lung damage than controls. Granisetron administration reduced pulmonary neutrophil recruitment after CLP. Moreover, the expressions of Cxcl1 and Cxcl2 were diminished in the presence of granisetron in THP-1 macrophages after lipopolysaccharide exposure. Additionally, granisetron could inhibit the activation of p38 MAPK and NLRP3 inflammasome both in vivo and in vitro. Collectively, granisetron protects against sepsis-induced ALI by suppressing macrophage Cxcl1/Cxcl2 expression and neutrophil recruitment in the lung.  相似文献   

10.
11.
The protective effects of interleukin-22 (IL-22) on acute alcohol-induced liver injury were investigated. Mice were gavaged with 7 doses of alcohol (56% wt/vol, 15.2 mL/kg of body weight for each dose) over the 24 h, and IL-22 (0.5 mg/kg BW) was given to the mice by injection into the tail vein 1 h after alcohol administration. The results indicated that acute alcohol administration caused prominent hepatic microvesicular steatosis and an elevation of serum transaminase activities, induced a significant decrease in hepatic glutathione in conjunction with enhanced lipid peroxidation, and increased hepatocyte apoptosis as well as hepatic TNF-alpha production. IL-22 treatment attenuated these adverse changes induced by acute alcohol administration. The protective effects of IL-22 on alcohol-induced hepatotoxicity were due mainly to its anti-inflammatory, anti-oxidant, and anti-apoptotic features.  相似文献   

12.
Mitogen-activated protein kinases (MAPKs) play a critical role in inflammation. Although activation of MAPK in inflammatory cells has been studied extensively, much less is known about the inactivation of these kinases. MAPK phosphatase 5 (MKP5) is a member of the dual-specificity phosphatase family that dephosphorylates activated MAPKs. Here we report that MKP5 protects sepsis-induced acute lung injury. Mice lacking MKP5 displayed severe lung tissue damage following LPS challenge, characterized with increased neutrophil infiltration and edema compared with wild-type (WT) controls. In response to LPS, MKP5-deficient macrophages produced significantly more inflammatory factors including inflammatory cytokines, nitric oxide, and superoxide. Phosphorylation of p38 MAPK, JNK, and ERK were enhanced in MKP5-deficient macrophages upon LPS stimulation. Adoptive transfer of MKP5-deficient macrophages led to more severe lung inflammation than transfer of WT macrophages, suggesting that MKP5-deficient macrophages directly contribute to acute lung injury. Taken together, these results suggest that MKP5 is crucial to homeostatic regulation of MAPK activation in inflammatory responses.  相似文献   

13.
The Acute respiratory distress syndrome (ARDS) is a highly lethal inflammatory lung disorder. Apoptosis plays a key role in its pathogenesis. We showed that an adenovirus expressing the 70 kDa heat shock protein Hsp70 (AdHSP) protected against sepsis-induced lung injury. In this study we tested the hypothesis that AdHSP attenuates apoptosis in sepsis-induced lung injury. Sepsis was induced in rats via cecal ligation and double puncture (2CLP). At the time of 2CLP PBS, AdHSP or AdGFP (an adenoviral vector expressing green fluorescent protein) were injected into the tracheas of septic rats. 48 hours later, lungs were isolated. One lung was fixed for TUNEL staining and immunohistochemistry. The other was homogenized to isolate cytosolic and nuclear protein. Immunoblotting, gel filtration and co-immunoprecipitation were performed in these extracts. In separate experiments MLE-12 cells were incubated with medium, AdHSP or AdGFP. Cells were stimulated with TNFα. Cytosolic and nuclear proteins were isolated. These were subjected to immunoblotting, co-immunoprecipitation and a caspase-3 activity assay. TUNEL assay demonstrated that AdHSP reduced alveolar cell apoptosis. This was confirmed by immunohistochemical detection of caspase 3 abundance. In lung isolated from septic animals, immunoblotting, co-immunoprecipitation and gel filtration studies revealed an increase in cytoplasmic complexes containing caspases 3, 8 and 9. AdHSP disrupted these complexes. We propose that Hsp70 impairs apoptotic cellular pathways via interactions with caspases. Disruption of large complexes resulted in stabilization of lower molecular weight complexes, thereby, reducing nuclear caspase-3. Prevention of apoptosis in lung injury may preserve alveolar cells and aid in recovery.  相似文献   

14.
Given the high morbidity and mortality rates associated with pulmonary inflammation in sepsis, there is a pressing need for new therapeutic modalities to prevent acute respiratory distress. The enzyme heme oxygenase-1 (HO-1) provides potent cytoprotection against lung injury; however, the mechanism by which it does so is unclear. HO-1 catabolizes heme into biliverdin (BV), which is rapidly converted to bilirubin by BV reductase. We tested the hypothesis that BV administration could substitute for the effects observed with HO-1. Using the well-described rat model of LPS-induced shock, we demonstrate that exposure to BV imparts a potent defense against lethal endotoxemia systemically, as well as in the lungs, and effectively abrogates the inflammatory response. BV administration before a lethal dose of LPS leads to a significant improvement in long-term survival: 87% vs. 20% in sham-treated controls. BV treatment suppressed LPS-induced increases in lung permeability and lung alveolitis and significantly reduced serum levels of the LPS-induced proinflammatory cytokine IL-6. Moreover, bilirubin administered just after LPS also abrogated lung inflammation. BV treatment also augmented expression of the anti-inflammatory cytokine IL-10. Similar effects on production were observed with BV treatment in vitro in mouse lung endothelial cells and RAW 264.7 macrophages treated with LPS. In conclusion, these data demonstrate that BV can modulate the inflammatory response and suppress pathophysiological changes in the lung and may therefore have therapeutic application in inflammatory disease states of the lung.  相似文献   

15.
Ischemic preconditioning (IP) conferred by brief ischemia-reperfusion induces resistance to cell injury due to the following lethal ischemia. This study aimed to elucidate whether 78-kDa glucose-regulated protein (GRP78), a main ER molecular chaperone, contributes to IP-mediated protection against ischemic myocardial injury. In a rat coronary artery occlusion model, the GRP78 protein level increased to 210% of the sham level by early IP with three cycles of 4-min ischemia and 4-min reperfusion. The IP reduced infarct size in subsequent lethal ischemia. In primary cardiomyocytes, the simulated IP procedure, incubation in oxygen-glucose deprivation (OGD) medium, also increased the GRP78 expression and suppressed the cell death caused by lethal ischemia. Transfection of grp78 antisense oligonucleotide attenuated the IP-mediated resistance to ischemia. This study showed for the first time that early IP up-regulates myocardial GRP78. It was suggested that GRP78 induced by early IP contributes to protect cardiomyocytes against ischemic injury.  相似文献   

16.
Cardamonin, a flavone compound isolated from Alpinia katsumadai Heyata seeds, has been reported to possess anti-inflammatory and anticoagulative activities, and it might be beneficial for management of sepsis. This study was conducted to examine the protective effects of cardamonin on experimental sepsis and resultant acute lung injury (ALI). Cardamonin (30 and 100 mg/kg) significantly elevated the survival rate of septic mice, alleviated ALI and lung microvascular leak, and lowered the serum levels of proinflammatory cytokines TNF-α, IL-1β, and IL-6. In vitro, it (25 and 50 μM) concentration dependently inhibited endothelium permeability and downregulated phosphorylation of P38 in rat lung microvascular endothelial cells induced by lipopolysaccharide (LPS). P38 inhibitor inhibited the endothelium permeability. In RAW 264.7 macrophage cells, cardamonin also showed selective inhibition of P38 phosphorylation induced by LPS. These results indicate that cardamonin can protect septic mice from ALI by preventing endothelium barrier dysfunction via selectively inhibiting P38 activation.  相似文献   

17.
目的:研究低氧预适应对体外培养的星形胶质细胞低氧耐受性的影响。方法:体外培养的鼠脑星形胶质细胞,随机分为对照组(control,C组),低氧损伤组(hypoxia,H组),低氧预适应组(hypoxic preconditioning,HP组),通过检测细胞MTT代谢变化、凋亡发生和形态学观察探讨低氧预适应对星型胶质细胞低氧损伤的保护作用;免疫细胞化学方法分析Bcl-2和Bax的表达差异。结果:与低氧组相比,HP48、HP72组MTT代谢活性较高。免疫细胞化学结果提示低氧预适应组Bcl-2表达高于低氧损伤组,低氧预适应组Bax表达低于低氧损伤组。结论:低氧预适应对大鼠星形胶质细胞低氧损伤有保护作用,可能与Bax表达受抑,维持Bcl-2表达有关,通过对抗凋亡程序的发展产生保护作用。  相似文献   

18.
The present experiments were designed to evaluate the effects of pifithrin-alpha (PFT-alpha), which is a p53 inhibitor, on doxorubicin (DOX)-induced apoptosis and cardiac injury. Administration of DOX (22.5 mg/kg ip) in mice upregulated the mRNA levels of Bax and MDM2, whereas PFT-alpha attenuated those levels when administered at a total dose of 4.4 mg/kg at 30 min before and 3 h after DOX challenge. DOX treatment led to an upregulation of p53 protein levels, which was preceded by elevated levels of phosphorylated p53 at Ser15. PFT-alpha had no effect on the level of p53 or its phosphorylated form. The protein levels of Bax and MDM2 were elevated by DOX and attenuated by PFT-alpha. DOX gave rise to increased apoptosis-positive nuclei in cardiac cells, elevated serum creatine phosphokinase, ultrastructural alterations, and cardiac dysfunction. PFT-alpha offered protection against all of the aforementioned changes. Finally, PFT-alpha did not interfere with the antitumor potency of DOX. This study demonstrates that PFT-alpha effectively inhibits DOX-induced cardiomyocyte apoptosis, which suggests that PFT-alpha has the potential to protect cancer patients against DOX-induced cardiac injury.  相似文献   

19.
Ischemic cardiac injury can be substantially alleviated by exposing the heart to pharmacological agents such as volatile anesthetics before occurrence of ischemia-reperfusion. A hallmark of this preconditioning phenomenon is its memory, when cardioprotective effects persist even after removal of preconditioning stimulus. Since numerous studies pinpoint mitochondria as crucial players in protective pathways of preconditioning, the aim of this study was to investigate the effects of preconditioning agent isoflurane on the mitochondrial bioenergetic phenotype. Endogenous flavoprotein fluorescence, an indicator of mitochondrial redox state, was elevated to 195 ± 16% of baseline upon isoflurane application in intact cardiomyocytes, indicating more oxidized state of mitochondria. Isoflurane treatment also elicited partial dissipation of mitochondrial transmembrane potential, which remained depolarized even after anesthetic withdrawal (tetramethylrhodamine fluorescence intensity declined to 83 ± 3 and 81 ± 7% of baseline during isoflurane exposure and washout, respectively). Mild uncoupling, with preserved ATP synthesis, was also detected in mitochondria that were isolated from animals that had been previously preconditioned by isoflurane in vivo, revealing its memory nature. These mitochondria, after exposure to hypoxia and reoxygenation, exhibited better preserved respiration and ATP synthesis compared with mitochondria from nonpreconditioned animals. Partial mitochondrial depolarization was paralleled by a diminished Ca2+ uptake into isoflurane-treated mitochondria, as indicated by the reduced increment in rhod-2 fluorescence when mitochondria were challenged with increased Ca2+ (180 ± 24 vs. 258 ± 14% for the control). In conclusion, isoflurane preconditioning elicits partial mitochondrial uncoupling and reduces mitochondrial Ca2+ uptake. These effects are likely to reduce the extent of the mitochondrial damage after the hypoxic stress. cardioprotection; uncoupling  相似文献   

20.
《Phytomedicine》2014,21(12):1638-1644
Cigarette smoking is the primary cause of chronic obstructive pulmonary disease (COPD), which is mediated by lung infiltration with inflammatory cells, enhanced oxidative stress, and tissue destruction. Anti-malarial drug artesunate has been shown to possess anti-inflammatory and anti-oxidative actions in mouse asthma models. We hypothesized that artesunate can protect against cigarette smoke-induced acute lung injury via its anti-inflammatory and anti-oxidative properties. Artesunate was given by oral gavage to BALB/c mice daily 2 h before 4% cigarette smoke exposure for 1 h over five consecutive days. Bronchoalveolar lavage (BAL) fluid and lungs were collected for analyses of cytokines, oxidative damage and antioxidant activities. Bronchial epithelial cell BEAS-2B was exposed to cigarette smoke extract (CSE) and used to study the mechanisms of action of artesunate. Artesunate suppressed cigarette smoke-induced increases in BAL fluid total and differential cell counts; levels of IL-1β, MCP-1, IP-10 and KC; and levels of oxidative biomarkers 8-isoprostane, 8-OHdG and 3-nitrotyrosine in a dose-dependent manner. Artesunate promoted anti-oxidant catalase activity and reduced NADPH oxidase 2 (NOX2) protein level in the lungs from cigarette smoke-exposed mice. In BEAS-2B cells, artesunate suppressed pro-inflammatory PI3 K/Akt and p44/42 MAPK signaling pathways, and increased nuclear Nrf2 accumulation in response to CSE. Artesunate possesses anti-inflammatory and anti-oxidative properties against cigarette smoke-induced lung injury, probably via inhibition of PI3K and p42/22 MAPK signaling pathways, augmentation of Nrf2 and catalase activities, and reduction of NOX2 level. Our data suggest that artesunate may have therapeutic potential for treating COPD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号