首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 64 毫秒
1.
以重组海洋细菌漆酶Lac15(rLac15)为生物催化剂,对蒽醌类和偶氮类染料进行脱色,考察了rLac15对人工合成纺织染料的脱色潜能。通过研究催化的介体、酶量、pH、染料浓度以及温度对脱色效率的影响,进一步优化了rLac15对部分蒽醌类和偶氮类人工合成纺织染料的脱色条件。以丁香酸甲酯为介体,在pH 8.5、45℃条件下反应1 h,20 U/L rLac15对100μmol/L偶氮染料类Acid Red 6B(AR-6B),Reactive Blue 194(M-2GE),Reactive Brilliant Orange(K-7R)和Reactive Blue 171(KE-R)具有较好的脱色效果,脱色率分别达到95%、93%、76%和61%。随着染料浓度的增加,脱色率呈下降趋势,但当染料浓度达到200μmol/L时,M-2GE和AR-6B仍可保持80%以上脱色率。在常温下,rLac15对AR-6B、M-2GE、K-7R和KE-R显示较高脱色率,25℃反应24 h,分别达到96%、86%、66%和66%。rLac15是具有常温以及偏碱性环境脱色能力的细菌漆酶,具有潜在工业应用价值。  相似文献   

2.
细菌漆酶的生物信息学分析   总被引:1,自引:0,他引:1  
漆酶是一种含铜的多酚氧化酶。本研究利用生物信息学分析工具对细菌的漆酶蛋白序列的基本性质、保守结构域、系统发育树以及结构等进行了分析。所分析细菌主要分布在变形菌门、放线菌和厚壁菌门。细菌漆酶的物理化学性质相似,但不同细菌来源的漆酶之间序列相似性较低,但其仍然具有容易识别的保守结构域特征。二级结构及三级结构具有明显的相似性。细菌漆酶的生物信息分析为其功能研究及在其他微生物中研究该类酶提供了基础。  相似文献   

3.
漆酶作为一种绿色环保的多酚氧化酶类,目前被广泛地应用于染料降解、造纸等领域。细菌漆酶与真菌漆酶相比,有更好的热稳定性和更宽的最适pH范围。因此,在工业应用方面更具优势与潜力。综述细菌漆酶的来源、分布、分子结构等基本信息,以及目前细菌漆酶发酵生产水平,并对固定化细菌漆酶进行总结。此外,对细菌漆酶在染料废水、电化学应用及造纸等工业生产方面的应用作简要的介绍。  相似文献   

4.
产漆酶细菌研究方法进展   总被引:2,自引:0,他引:2  
该文结合作者实验室Bacillus.subtilis WD23的研究情况,综述了产漆酶细菌的筛选方法、细菌菌种鉴定方法、细菌漆酶酶学性质研究方法及细菌漆酶应用的研究方法进展。  相似文献   

5.
肌酐水平是指示肾脏功能的重要临床指标。肌酸酶(creatinase,CRE)是肌酐的酶促检测体系中的关键酶之一,也是整个体系的限速酶,较差的活性限制了它在临床检测和工业上的应用。针对此问题,采用半理性设计策略对产碱杆菌属(Alcaligenessp.)KS-85来源肌酸酶Al-CRE的活性进行了改造,通过对挑选出的突变热点进行饱和突变筛选和组合,最终获得多个活性提升的突变酶,活性最高的五点突变酶I304L/F395V/K351V/Y63S/Q88A比活力相较于野生型提升了2.18倍。同时对相关突变位点进行了结构分析,为肌酸酶的实际应用及对其机理的进一步解析提供了基础。  相似文献   

6.
CPC乙酰化酶是一步酶法制备7-ACA的关键酶,针对它的研究具有重大的经济价值。为了获得对CPC具有更高催化活性的CPC乙酰化酶,以Pseudomonas sp SE 83来源的Ⅲ型CPC乙酰化酶CA Ⅲ为亲本,借助分子对接的手段确定了它与CPC结合的关键氨基酸残基,并确定将这些关键氨基酸残基突变为侧链基团更小的氨基酸残基,对CA Ⅲ的编码基因利用多点定点突变试剂盒完成定点突变后借助p ET32a质粒在E.coli BL21(DE3)中实现了可溶性表达,获得了对CPC催化活性更高的重组突变体reCA Ⅲ~M,其比酶活为26.7 IU/mg,较原酶提高了3.44倍。此外,初步研究了利用reCA Ⅲ~M进行一步酶法生产7-ACA的工艺,40 IU/g CPC的加酶量、25℃的条件下反应12 h,CPC的转化率和7-ACA的得率分别可达96.3%和63.4%,表明该酶具有良好的应用前景。CPC乙酰化酶的分子改造上取得的较为理想的结果,为该酶进一步的分子改造及应用奠定了坚实的基础,也为其它酶的分子改造提供了可资借鉴的经验。  相似文献   

7.
漆酶是一种应用广泛的绿色环保的多酚氧化酶。漆酶过去被认为广泛存在于植物、昆虫和真菌中,而近年来,越来越多的细菌中也发现了漆酶的存在。黏细菌是一类重要的资源菌,但与一般细菌相比,较难分离和纯化。文中利用生物信息学的方法,综合应用Blast和隐马尔可夫模型方法对黏细菌蛋白质组数据库进行搜索,并根据多铜氧化酶的保守铜离子结合位点进行进一步筛选,获得30个候选黏细菌漆酶序列。挑选其中9个,在大肠杆菌中进行重组表达。利用2,6-甲氧基苯酚(DMP)等常用漆酶底物检测重组酶的催化氧化活性,其中7个重组蛋白具有漆酶催化活性。选择1个对2,6-甲氧基苯酚(DMP)具有较高氧化活性的重组酶(命名为rSC-2),通过Ni-NTA亲和层析柱纯化rSC-2,测试其酶学性质。纯化的rSC-2蛋白分子量约57 kDa,在最适反应条件下,rSC-2催化DMP反应的比酶活为0.27 U/mg。催化DMP反应的最适温度为60℃,最适pH为7.0。rSC-2在pH 7.0-8.0有较高酶活,在60℃孵育1 h保留50%以上剩余酶活。低浓度的Ca~(2+)对酶活有一定的促进作用,而较高浓度的Fe~(3+)、Co~(2+)、Ba~(2+)对酶活的抑制作用较明显。这是首次对黏细菌漆酶序列进行系统性的生物信息学分析,并实现纤维堆囊菌Sorangium cellulosum序列来源的漆酶活性蛋白在大肠杆菌细胞中重组表达。  相似文献   

8.
赵丹  谷惠琦  崔岱宗  范晓旭  张曦  赵敏 《生态学报》2012,32(13):4062-4070
在凉水国家级自然保护区3种主要林型红松(Pinus koraiensis)、白桦(Betula platyphylla)及云杉(Picea dietrich)林采集林下土壤样品,以铜离子作为筛选剂处理后,结合平板分离法与基于16S rDNA V3区片段的变性梯度凝胶电泳(DenaturingGradient Gel Electrophoresis,DGGE)技术,调查了土壤样品中产类漆酶-多铜氧化酶(laccase-like multicopper oxidase,LMCO)细菌的群落结构。这是研究产类漆酶-多铜氧化酶细菌在环境中存在的种、属及分布的新尝试。平板分离获得10株细菌均为芽孢杆菌属(Bacillus sp.),其中梭状芽孢杆菌(Bacillus fusiformis)未见相关报道。通过DGGE图谱分析可知,产类漆酶-多铜氧化酶细菌在研究地不同林型土壤中的群落结构无明显差异,在红松林土壤中多样性最为丰富。DGGE条带测序结果表明,取样地土壤中产类漆酶细菌主要为罗尔斯顿菌属(Ralstonia sp.)、肠杆菌属(Enterobacter sp.)、芽孢杆菌属和一些未培养细菌。  相似文献   

9.
Fe(Ⅱ)对漆酶催化活性的影响   总被引:4,自引:0,他引:4  
以2,2-连氮-双(3-乙基苯并噻唑-6-磺酸)(ABTS)为底物,在pH4.5的条件下,用分光光度法考察了Fe^2 离子存在下的漆酶催化氧化反应,发现Fe^2 离子对漆酶的催化活性显示出抑制作用,并进一步探讨了其抑制特征,抑制位点和作用方式。结果表明,Fe^2 离子对漆酶催化活性抑制属竞争性抑制过程,抑制作用是通过还原ABTS来实现的。  相似文献   

10.
邵杨  晁菲  魏朔南  胡正海 《广西植物》2012,32(6):774-780
采用分光光度法、SDS-PAGE电泳及等电聚焦电泳法分析了陕西平利县高八尺和大红袍2个品种漆树漆酶的活性变化规律及同工酶组成.结果表明:漆酶的活性在割漆季节中呈现6~7月下降,7~9月上升,并且高八尺漆酶的活性高于大红袍漆酶活性;确定漆酶的分子量为110 kDa;分离得到4种漆酶同工酶组成,而这4种同工酶组成在两个品种中存在差异,可以作为漆树品种鉴定的生化指标.  相似文献   

11.
漆酶是一种含铜的多酚氧化酶,与植物病原菌致病性、黑色素合成及降解木质素等方面相关。为明确漆酶在新月旋孢腔菌的催化作用及其催化活性,以2,2′-连氮-双(3-乙基苯并噻唑-6-磺酸)(简称ABTS)为底物,利用分光光度计在420nm下测定胞内漆酶活力,结果表明酶活测定最佳反应条件为缓冲液pH2.8、Cu2+浓度500μmol/L和0.6mmol/L ABTS。根据漆酶Cu2+结合保守结构域设计了1条引物,对新月旋孢腔菌漆酶基因进行克隆,并通过RACE技术克隆了其全长cDNA序列。开放阅读框长1,803bp,  相似文献   

12.
真菌漆酶的酶活测定方法评价   总被引:6,自引:0,他引:6  
目前真菌漆酶酶活的测定方法多样,没有统一的标准,致使不同研究之间的漆酶酶活无法进行比较分析,也造成漆酶产品在酶活质量意义上的混乱。因此,对测定真菌漆酶酶活的各种不同的分光光度法进行了综述和比较分析,认为采用ABTS法作为测定漆酶酶活的方法较具合理性和科学性,建议作为漆酶酶活测定的统一方法。  相似文献   

13.
Laccases (benzenediol: oxygen oxidoreductases, EC1.10.3.2) can oxidize various substrates, and those which are tolerant to and even activated by salts have attracted a lot of attention due to their application potential in certain industries. The mechanism of the salt activation of laccases is awaiting to be elucidated yet. Our previous study (Li, Xie et al. 2018) supposed that the salt activation of marine laccase Lac15 might be attributed to Cl- ion specifically binding to some local sites to interfere substrate binding and/or electron transfer. In this study, we found two sites whose mutations resulted in elimination of the salt activation of Lac15’s activity towards catechol and dopamine respectively, and revealed that the mutations affected the activity by altering both Em and kcat, demonstrating the supposed mechanism. A model for the salt activation of laccases was accordingly proposed, albeit some details are to be elucidated.  相似文献   

14.
土壤微生物总活性研究方法进展   总被引:3,自引:1,他引:3  
微生物总活性是指在某一时段内微生物所有生命活动的总和,它直接决定着微生物行使生理、生态功能的能力,是微生物学研究的热点,也是难点。迄今为止,还没有建立直接测定微生物总活性的方法,只能用一些相关指标来间接反映它。目前常用的指标主要包括微生物的呼吸速率、生长速率以及胞内RNA含量等。与其它一些基质和环境相比,测定土壤中的微生物总活性更为困难。通过总结研究土壤微生物总活性常用的3种方法,在简略概括传统的土壤微生物呼吸测定法的基础上,详细介绍了放射性同位素标记法和RNA直接表征法的原理和操作流程,整理归纳了一些重要应用案例,比较分析了不同方法的优缺点,以期为选择研究土壤微生物总活性的适宜方法提供依据。  相似文献   

15.
This review is devoted to the problems of the physiology and cell biology of microorganisms in relation to metabolic engineering. The latter is considered as a branch of fundamental and applied biotechnology aimed at controlling microbial metabolism by methods of genetic engineering and classical genetics and based on intimate knowledge of cell metabolism. Attention is also given to the problems associated with the metabolic limitation of microbial biosyntheses, analysis and control of metabolic fluxes, rigidity of metabolic pathways, the role of pleiotropic (global) regulatory systems in the control of metabolic fluxes, and prospects of physiological and evolutionary approaches in metabolic engineering.  相似文献   

16.
Laccases and other four-copper oxidases are usually constructed of three domains: Domains one and three house the copper sites, and the second domain often helps form a substrate-binding cleft. In contrast to this arrangement, the genome of Streptomyces coelicolor was found to encode a small, four-copper oxidase that lacks the second domain. This protein is representative of a new family of enzymes--the two-domain laccases. Disruption of the corresponding gene abrogates laccase activity in the growth media. We have recombinantly expressed this enzyme, called SLAC, in Escherichia coli and characterized it. The enzyme binds four copper ions/monomer, and UV-visible absorption and EPR measurements confirm that the conserved type 1 copper site and trinuclear cluster are intact. We also report the first known paramagnetic NMR spectrum for the trinuclear copper cluster of a protein from the laccase family. The enzyme is highly stable, retaining activity as a dimer in denaturing gels after boiling and SDS treatment. The activity of the enzyme against 2,6-dimethoxyphenol (DMP) peaks at an unprecedentedly high pH (9.4), whereas the activity against ferrocyanide decreases with pH. SLAC binds negatively charged substrates more tightly than positively charged or uncharged molecules.  相似文献   

17.
Spectrophotometric determination of laccase activity with ABTS acting as chromogen yields exceedingly low values whenever conducted in a water-organic mixed solvent. Nevertheless, there is firm evidence that laccase is able to oxidize substrates such as phenols and amines quantitatively in these mixed solvents. We show that the apparently small rate of ABTS oxidation by laccase in a mixed solvent, such as buffered water-dioxane 1:1, is not amenable to the denaturation of laccase but rather to the decreased stability of ABTS(.+). We propose HAA as a more reliable chromogen for the determination of laccase activity in mixed solvents.  相似文献   

18.
微生物细胞工厂的生产效率是由菌株生长性能、产品合成能力和胁迫抗性共同决定的,其中增强微生物细胞工厂的胁迫抗性是关键.耐受性工程基于微生物细胞工厂抵御胁迫压力的应激反应机制,通过巩固壁膜屏障增强胁迫防御能力,加快应激反应提高损伤修复能力,创制耐受进化工具筛选鲁棒性增强的工业微生物.文中分析归纳了耐受性工程的调控策略,并展...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号