首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Benzoate catabolism is thought to play a key role in aerobic bacterial degradation of biphenyl and polychlorinated biphenyls (PCBs). Benzoate catabolic genes were cloned from a PCB degrader, Rhodococcus sp. strain RHA1, by using PCR amplification and temporal temperature gradient electrophoresis separation. A nucleotide sequence determination revealed that the deduced amino acid sequences encoded by the RHA1 benzoate catabolic genes, benABCDK, exhibit 33 to 65% identity with those of Acinetobacter sp. strain ADP1. The gene organization of the RHA1 benABCDK genes differs from that of ADP1. The RHA1 benABCDK region was localized on the chromosome, in contrast to the biphenyl catabolic genes, which are located on linear plasmids. Escherichia coli cells containing RHA1 benABCD transformed benzoate to catechol via 2-hydro-1,2-dihydroxybenzoate. They transformed neither 2- nor 4-chlorobenzoates but did transform 3-chlorobenzoate. The RHA1 benA gene was inactivated by insertion of a thiostrepton resistance gene. The resultant mutant strain, RBD169, neither grew on benzoate nor transformed benzoate, and it did not transform 3-chlorobenzoate. It did, however, exhibit diminished growth on biphenyl and growth repression in the presence of a high concentration of biphenyl (13 mM). These results indicate that the cloned benABCD genes could play an essential role not only in benzoate catabolism but also in biphenyl catabolism in RHA1. Six rhodococcal benzoate degraders were found to have homologs of RHA1 benABC. In contrast, two rhodococcal strains that cannot transform benzoate were found not to have RHA1 benABC homologs, suggesting that many Rhodococcus strains contain benzoate catabolic genes similar to RHA1 benABC.  相似文献   

3.
Bacterial metabolism of polychlorinated biphenyls   总被引:2,自引:0,他引:2  
Microbial metabolism is responsible for the removal of persistent organic pollutants including PCBs from the environment. Anaerobic dehalogenation of highly chlorinated congeners in aquatic sediments is an important process, and recent evidence has indicated that Dehalococcoides and related organisms are predominantly responsible for this process. Such anaerobic dehalogenation generates lower chlorinated congeners which are easily degraded aerobically by enzymes of the biphenyl upper pathway (bph). Initial biphenyl 2,3-dioxygenases are generally considered the key enzymes of this pathway which determine substrate range and extent of PCB degradation. These enzymes have been subject to different protein evolution strategies, and subsequent enzymes have been considered as crucial for metabolism. Significant advances have been made regarding the mechanistic understanding of these enzymes, which has also included elucidation of the function of BphK glutathione transferase. So far, the genomes of two important PCB-metabolizing organisms, namely Burkholderia xenovorans strain LB400 and Rhodococcus sp. strain RHA1, have been sequenced, with the rational to better understand their overall physiology and evolution. Genomic and proteomic analysis also allowed a better evaluation of PCB toxicity. Like all bph gene clusters which have been characterized in detail, particularly in strains LB400 and RHA1, these genes were localized on mobile genetic elements endowing single strains and microbial communities with a high flexibility and adaptability. However, studies show that our knowledge on enzymes and genes involved in PCB metabolism is still rather fragmentary and that the diversity of bacterial strategies is highly underestimated. Overall, metabolism of biphenyl and PCBs should not be regarded as a simple linear pathway, but as a complex interplay between different catabolic gene modules.  相似文献   

4.
Proteomics and targeted gene disruption were used to investigate the catabolism of benzene, styrene, biphenyl, and ethylbenzene in Rhodococcus jostii RHA1, a well-studied soil bacterium whose potent polychlorinated biphenyl (PCB)-transforming properties are partly due to the presence of the related Bph and Etb pathways. Of 151 identified proteins, 22 Bph/Etb proteins were among the most abundant in biphenyl-, ethylbenzene-, benzene-, and styrene-grown cells. Cells grown on biphenyl, ethylbenzene, or benzene contained both Bph and Etb enzymes and at least two sets of lower Bph pathway enzymes. By contrast, styrene-grown cells contained no Etb enzymes and only one set of lower Bph pathway enzymes. Gene disruption established that biphenyl dioxygenase (BPDO) was essential for growth of RHA1 on benzene or styrene but that ethylbenzene dioxygenase (EBDO) was not required for growth on any of the tested substrates. Moreover, whole-cell assays of the ΔbphAa and etbAa1::cmrA etbAa2::aphII mutants demonstrated that while both dioxygenases preferentially transformed biphenyl, only BPDO transformed styrene. Deletion of pcaL of the β-ketoadipate pathway disrupted growth on benzene but not other substrates. Thus, styrene and benzene are degraded via meta- and ortho-cleavage, respectively. Finally, catalases were more abundant during growth on nonpolar aromatic compounds than on aromatic acids. This suggests that the relaxed specificities of BPDO and EBDO that enable RHA1 to grow on a range of compounds come at the cost of increased uncoupling during the latter's initial transformation. The stress response may augment RHA1's ability to degrade PCBs and other pollutants that induce similar uncoupling.  相似文献   

5.
6.
Genomic and proteomic approaches were used to investigate phthalate and benzoate catabolism in Rhodococcus sp. strain RHA1, a polychlorinated biphenyl-degrading actinomycete. Sequence analyses identified genes involved in the catabolism of benzoate (ben) and phthalate (pad), the uptake of phthalate (pat), and two branches of the beta-ketoadipate pathway (catRABC and pcaJIHGBLFR). The regulatory and structural ben genes are separated by genes encoding a cytochrome P450. The pad and pat genes are contained on a catabolic island that is duplicated on plasmids pRHL1 and pRHL2 and includes predicted terephthalate catabolic genes (tpa). Proteomic analyses demonstrated that the beta-ketoadipate pathway is functionally convergent. Specifically, the pad and pat gene products were only detected in phthalate-grown cells. Similarly, the ben and cat gene products were only detected in benzoate-grown cells. However, pca-encoded enzymes were present under both growth conditions. Activity assays for key enzymes confirmed these results. Disruption of pcaL, which encodes a fusion enzyme, abolished growth on phthalate. In contrast, after a lag phase, growth of the mutant on benzoate was similar to that of the wild type. Proteomic analyses revealed 20 proteins in the mutant that were not detected in wild-type cells during growth on benzoate, including a CatD homolog that apparently compensated for loss of PcaL. Analysis of completed bacterial genomes indicates that the convergent beta-ketoadipate pathway and some aspects of its genetic organization are characteristic of rhodococci and related actinomycetes. In contrast, the high redundancy of catabolic pathways and enzymes appears to be unique to RHA1 and may increase its potential to adapt to new carbon sources.  相似文献   

7.
8.
Polychlorinated biphenyl (PCB) tolerant derivatives of a strong PCB degrader, Rhodococcus strain RHA1, were selected after growth in the presence of 100 g/ml PCBs. Some of the derivatives did not grow on biphenyl but accumulated a yellow coloured metabolite suggesting a defect in the meta-ring-cleavage compound hydrolase step encoded by the bphD gene. Other derivatives failed to grow on biphenyl and exhibited little PCB transformation activity suggesting a defect in the initial ring-hydroxylation dioxygenase step encoded by the bphA gene. These organisms had a structural alteration in the linear plasmids coding for the bph genes in RHA1, which included the bph gene deletion. When a bphD containing plasmid was introduced into a tolerant derivative, RCD1, which was shown to have a bphD deletion, the defect in the growth on biphenyl of RCD1 was overcome. The bph gene deletion seems to play a key role in these tolerant derivatives thereby suggesting that the toxic metabolic intermediate would be a main cause of the growth inhibition of RHA1 in the presence of high concentration PCBs.  相似文献   

9.
10.
11.
There is evidence that many plant secondary metabolites may act as signal molecules to trigger the bacterial ability to metabolize polychlorinated biphenyls (PCBs) during the rhizoremediation process. However, the bases for the PCB rhizoremediation process are still largely unknown. The rhizobacterium Rhodococcus erythropolis U23A is unable to use flavanone as a growth substrate. However, on the basis of an assay that monitors the amount of 4-chlorobenzoate produced from 4-chlorobiphenyl by cells grown co-metabolically on flavanone plus sodium acetate, this flavonoid was previously found to be a potential inducer of the U23A biphenyl catabolic pathway. In this work, and using the same assay, we identified ten other flavonoids that did not support growth, but that acted as inducers of the U23A biphenyl pathway, and we confirmed flavonoid induction of the biphenyl catabolic pathway using quantitative real-time polymerase chain reaction (RT-qPCR) on the bphA gene. We also examined the effect of the growth co-substrate on flavonoid induction. Sodium acetate was replaced by glucose, mannose, sucrose, or mannitol, which are sugars found in plant root exudates. The data showed that the level of induction of strain U23A biphenyl-degrading enzymes was significantly influenced by the nature and concentration of the flavonoid in the growth medium, as well as by the substrate used for growth. Sucrose allowed for an optimal induction response for most flavonoids. Some flavonoids, such as flavone and isoflavone, were better inducers of the biphenyl catabolic enzymes than biphenyl itself. We also found that all flavonoids tested in this work were metabolized by strain U23A during co-metabolic growth, but that the metabolite profiles, as well as the level of efficiency of degradation, differed for each flavonoid. To obtain insight into how flavonoids interact with strain U23A to promote polychlorinated biphenyl (PCB) degradation, we determined the concentration of flavanone at which optimal PCB-degrading performance of strain U23A was achieved. We showed that it corresponded to the concentration required to fully induce the biphenyl catabolic pathway of the strain. Together, our data demonstrate that optimal PCB degradation during the rhizoremediation process will require the adjustment of several parameters, including the presence of the appropriate flavonoids at the proper concentrations and the presence of proper growth substrates that positively influence the ability of flavonoids to induce the pathway.  相似文献   

12.
Recent microarray experiments suggested that Burkholderia xenovorans LB400, a potent polychlorinated biphenyl (PCB)-degrading bacterium, utilizes up to three apparently redundant benzoate pathways and a C(1) metabolic pathway during biphenyl and benzoate metabolism. To better characterize the roles of these pathways, we performed quantitative proteome profiling of cells grown on succinate, benzoate, or biphenyl and harvested during either mid-logarithmic growth or the transition between the logarithmic and stationary growth phases. The Bph enzymes, catabolizing biphenyl, were approximately 16-fold more abundant in biphenyl- versus succinate-grown cells. Moreover, the upper and lower bph pathways were independently regulated. Expression of each benzoate pathway depended on growth substrate and phase. Proteins specifying catabolism via benzoate dihydroxylation and catechol ortho-cleavage (ben-cat pathway) were approximately an order of magnitude more abundant in benzoate- versus biphenyl-grown cells at the same growth phase. The chromosomal copy of the benzoyl-coenzyme A (CoA) (box(C)) pathway was also expressed during growth on biphenyl: Box(C) proteins were approximately twice as abundant as Ben and Cat proteins under these conditions. By contrast, proteins of the megaplasmid copy of the benzoyl-CoA (box(M)) pathway were only detected in transition-phase benzoate-grown cells. Other proteins detected at increased levels in benzoate- and biphenyl-grown cells included general stress response proteins potentially induced by reactive oxygen species formed during aerobic aromatic catabolism. Finally, C(1) metabolic enzymes were present in biphenyl-grown cells during transition phase. This study provides insights into the physiological roles and integration of apparently redundant catabolic pathways in large-genome bacteria and establishes a basis for investigating the PCB-degrading abilities of this strain.  相似文献   

13.
Genetic construction of PCB degraders   总被引:12,自引:0,他引:12  
Genetic construction of recombinant strains with expanded degradative abilities may be useful for bioremedation of recalcitrant compounds, such as polychlorinated biphenyls (PCBs). Some degradative genes have been found either on conjugative plasmids or on transposons, which would facilitate their genetic transfer. The catabolic pathway for the total degradation of PCBs is encoded by two different sets of genes that are not normally found in the same organism. ThebphABCD genes normally reside on the chromosome and encode for the four enzymes involved in the production of benzoate and chlorobenzoates from the respective catabolism of biphenyl and chlorobiphenyls. The genes encoding for chlorobenzoate catabolism have been found on both plasmids and the chromosome, often in association with transposable elements. Ring fission of chlorobiphenyls and chlorobenzoates involves themeta-fission pathway (3-phenylcatechol 2,3-dioxygenase) and theortho-fission pathway (chlorocatechol 1,2-dioxygenase), respectively. As the catecholic intermediates of both pathways are frequently inhibitory to each other, incompatibilities result. Presently, all hybrid strains constructed by in vivo matings metabolize simple chlorobiphenyls through complementary pathways by comprising thebph, benzoate, and chlorocatechol genes of parental strains. No strains have yet been verified which are able to utilize PCBs having at least one chlorine on each ring as growth substrates. The possible incompatibilities of hybrid pathways are evaluated with respect to product toxicity, and the efficiency of both in vivo and in vitro genetic methods for the construction of recombinant strains able to degrade PCBs is discussed.  相似文献   

14.
Burkholderia xenovorans LB400是一株多氯联苯(polychlorinated biphenyls,PCBs)降解菌,可以氧化含有1?6个氯取代基的多氯联苯。近年来,由于其广泛的底物谱和优异的降解性能,菌株LB400已成为研究原核生物降解多氯联苯的生物化学和分子生物学方面的模式生物。目前关于PCBs的微生物降解研究已不再局限于对微生物资源的挖掘,而是更多地聚焦在LB400等降解菌的PCBs降解基因、降解酶的酶学特性以及酶的人工分子进化等方面。同时,LB400作为早期发现的降解菌,其对多氯联苯的降解途径、底物范围及相关机制也被广泛探讨;但是对于PCBs降解相关基因的调控研究较少。因此,本文以Burkholderia xenovorans LB400对多氯联苯降解为核心,通过综述其代谢途径、代谢相关基因和酶系以及降解应用等方面的研究进展,以期为深入探讨Burkholderia xenovorans LB400的应用以及进一步在遗传、分子和生化水平研究其他多氯联苯降解菌株提供借鉴。  相似文献   

15.
In this work, we have compared the ability of Pandoraea pnomenusa B356 and of Burkholderia xenovorans LB400 to metabolize diphenylmethane and benzophenone, two biphenyl analogs in which the phenyl rings are bonded to a single carbon. Both chemicals are of environmental concern. P. pnomenusa B356 grew well on diphenylmethane. On the basis of growth kinetics analyses, diphenylmethane and biphenyl were shown to induce the same catabolic pathway. The profile of metabolites produced during growth of strain B356 on diphenylmethane was the same as the one produced by isolated enzymes of the biphenyl catabolic pathway acting individually or in coupled reactions. The biphenyl dioxygenase oxidizes diphenylmethane to 3-benzylcyclohexa-3,5-diene-1,2-diol very efficiently, and ultimately this metabolite is transformed to phenylacetic acid, which is further metabolized by a lower pathway. Strain B356 was also able to cometabolize benzophenone through its biphenyl pathway, although in this case, this substrate was unable to induce the biphenyl catabolic pathway and the degradation was incomplete, with accumulation of 2-hydroxy-6,7-dioxo-7-phenylheptanoic acid. Unlike strain B356, B. xenovorans LB400 did not grow on diphenylmethane. Its biphenyl pathway enzymes metabolized diphenylmethane, but they poorly metabolize benzophenone. The fact that the biphenyl catabolic pathway of strain B356 metabolized diphenylmethane and benzophenone more efficiently than that of strain LB400 brings us to postulate that in strain B356, this pathway evolved divergently to serve other functions not related to biphenyl degradation.  相似文献   

16.
The biodegradation of polychlorinated biphenyls (PCBs) relies on the ability of aerobic microorganisms such as Burkholderia xenovorans sp. LB400 to tolerate two potential modes of toxicity presented by PCB degradation: passive toxicity, as hydrophobic PCBs potentially disrupt membrane and protein function, and degradation-dependent toxicity from intermediates of incomplete degradation. We monitored the physiological characteristics and genome-wide expression patterns of LB400 in response to the presence of Aroclor 1242 (500 ppm) under low expression of the structural biphenyl pathway (succinate and benzoate growth) and under induction by biphenyl. We found no inhibition of growth or change in fatty acid profile due to PCBs under nondegrading conditions. Moreover, we observed no differential gene expression due to PCBs themselves. However, PCBs did have a slight effect on the biosurface area of LB400 cells and caused slight membrane separation. Upon activation of the biphenyl pathway, we found growth inhibition from PCBs beginning after exponential-phase growth suggestive of the accumulation of toxic compounds. Genome-wide expression profiling revealed 47 differentially expressed genes (0.56% of all genes) under these conditions. The biphenyl and catechol pathways were induced as expected, but the quinoprotein methanol metabolic pathway and a putative chloroacetaldehyde dehydrogenase were also highly expressed. As the latter protein is essential to conversion of toxic metabolites in dichloroethane degradation, it may play a similar role in the degradation of chlorinated aliphatic compounds resulting from PCB degradation.  相似文献   

17.
《Gene》1997,187(1):141-149
The bphACB genes responsible for the initial oxidation of the aromatic ring of biphenyl/polychlorinated biphenyls (PCB) to meta-cleavage product in Rhodococcus sp. RHA1 have been characterized. We cloned the 6.1 kb EcoRI fragment containing another extradiol dioxygenase gene (etbC) which was induced during the growth on ethylbenzene. The bphD, bphE and bphF encoding 2-hydroxy-6-oxo-6-phenylhexa-2,4-dienoate (HOPD) hydrolase, 2-hydroxypenta-2,4-dienoate hydratase and 4-hydroxy-2-oxovalerate aldolase, respectively, were found downstream of etbC. The deduced amino acid (aa) sequence of RHA1 bphD and bphE had 27–33% and 32–38% identity, respectively, with those of the corresponding genes in Pseudomonas. BphE and BphF are closely related to the corresponding homoprotocatechuate meta-cleavage pathway enzymes of Escherichia coli C. The bphD and bphF were expressed in E. coli and the BphD activity was detected. The etbCbphDEF genes were transcribed in biphenyl and ethylbenzene growing cells. Pulsed field gel electrophoresis (PFGE) analysis indicated that RHA1 contains three large linear plasmids. Southern blot analysis indicated that the meta-cleavage pathway for biphenyl/PCB catabolism in RHA1 is directed by the 390 kb plasmid borne bphDEF genes located separately from bphACB gene cluster on the 1100 kb plasmid.  相似文献   

18.
19.
Rhodococcus is a genus of mycolic-acid-containing actinomycetes that utilize a remarkable variety of organic compounds as growth substrates. This degradation helps maintain the global carbon cycle and has increasing applications ranging from the biodegradation of pollutants to the biocatalytic production of drugs and hormones. We have been using Rhodococcus jostii RHA1 as a model organism to understand the catabolic versatility of Rhodococcus and related bacteria. Our approach is exemplified by the discovery of a cluster of genes specifying the catabolism of cholesterol. This degradation proceeds via β-oxidative degradation of the side chain and O2-dependent cleavage of steroid ring A in a process similar to bacterial degradation of aromatic compounds. The pathway is widespread in Actinobacteria and is critical to the pathogenesis of Mycobacterium tuberculosis, arguably the world's most successful pathogen. The close similarity of some of these enzymes with biphenyl- and polychlorinated-biphenyl-degrading enzymes that we have characterized is facilitating inhibitor design. Our studies in RHA1 have also provided important insights into a number of novel metalloenzymes and their biosynthesis, such as acetonitrile hydratase (ANHase), a cobalt-containing enzyme with no significant sequence identity with characterized nitrile hydratases. Molecular genetic and biochemical studies have identified AnhE as a dimeric metallochaperone that delivers cobalt to ANHase, enabling its maturation in vivo. Other metalloenzymes we are characterizing include N-acetylmuramic acid hydroxylase, which catalyzes an unusual hydroxylation of the rhodococcal and mycobacterial peptidoglycan, and 2 RHA1 dye-decolorizing peroxidases. Using molecular genetic and biochemical approaches, we have demonstrated that one of these enzymes is involved in the degradation of lignin. Overall, our studies are providing fundamental insights into a range of catabolic processes that have a wide variety of applications.  相似文献   

20.
The biodegradation of polychlorinated biphenyls (PCBs) relies on the ability of aerobic microorganisms such as Burkholderia xenovorans sp. LB400 to tolerate two potential modes of toxicity presented by PCB degradation: passive toxicity, as hydrophobic PCBs potentially disrupt membrane and protein function, and degradation-dependent toxicity from intermediates of incomplete degradation. We monitored the physiological characteristics and genome-wide expression patterns of LB400 in response to the presence of Aroclor 1242 (500 ppm) under low expression of the structural biphenyl pathway (succinate and benzoate growth) and under induction by biphenyl. We found no inhibition of growth or change in fatty acid profile due to PCBs under nondegrading conditions. Moreover, we observed no differential gene expression due to PCBs themselves. However, PCBs did have a slight effect on the biosurface area of LB400 cells and caused slight membrane separation. Upon activation of the biphenyl pathway, we found growth inhibition from PCBs beginning after exponential-phase growth suggestive of the accumulation of toxic compounds. Genome-wide expression profiling revealed 47 differentially expressed genes (0.56% of all genes) under these conditions. The biphenyl and catechol pathways were induced as expected, but the quinoprotein methanol metabolic pathway and a putative chloroacetaldehyde dehydrogenase were also highly expressed. As the latter protein is essential to conversion of toxic metabolites in dichloroethane degradation, it may play a similar role in the degradation of chlorinated aliphatic compounds resulting from PCB degradation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号