首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Constitutively activated MAPK and AKT signaling pathways are often found in solid tumors and leukemias. PTEN is one of the tumor suppressors that are frequently found deficient in patients with late-stage cancers or leukemias. In this study we demonstrate that a MAPK inhibitor, PD98059, inhibits both AKT and ERK phosphorylation in a human myeloid leukemia cell line (TF-1), but not in PTEN-deficient leukemia cells (TF-1a). Ectopic expression of wild-type PTEN in myeloid leukemia cells restored cytokine responsiveness at physiological concentrations of GM-CSF (<0.02 ng/mL) and significantly improved cell sensitivity to MAPK inhibitor. We also found that Early Growth Response 1 (EGR1) was constitutively over-expressed in cytokine-independent TF-1a cells, and ectopic expression of PTEN down-regulated EGR1 expression and restored dynamics of EGR1 expression in response to GM-CSF stimulation. Data from primary bone marrow cells from mice with Pten deletion further supports that PTEN is indispensible for myeloid leukemia cells in response to MAPK inhibitors. Finally, We demonstrate that the absence of EGR1 expression dynamics in response to GM-CSF stimulation is one of the mechanisms underlying drug resistance to MAPK inhibitors in leukemia cells with PTEN deficiency. Our data suggest a novel mechanism of PTEN in regulating expression of EGR1 in hematopoietic cells in response to cytokine stimulation. In conclusion, this study demonstrates that PTEN is dispensable for myeloid leukemia cells in response to MAPK inhibitors, and PTEN regulates EGR1 expression and contributes to the cytokine sensitivity in leukemia cells.  相似文献   

2.
At present, there is no doubt that the signal transduction pathway P13K/Akt/PTEN/mTOR, controlled by phosphatidylinositol-3-kinase, is involved in tumor cell resistance to a number of drugs. Another well-known mechanism determining drug resistance in tumors is associated with the activity of drug transporters of the ABC superfamily (first of all, P-glycoprotein (Pgp), MRP1, BCRP, and LRP). Several mechanisms of cell defense can simultaneously operate in one cell. The interplay of different mechanisms involved in drug resistance is poorly understood. The PC3 and DU145 human prostate cell lines were used to show that the PTEN functional status determined the cell resistance to some drugs and that correlated with the levels of MRP1 and BCRP. Pgp was not involved in drug resistance of these cells. Introduction of PTEN into PTEN-deficient PC3 cells, as well as rapamycin treatment, inhibited Akt and mTOR and sensitized cells to doxorubicin and vinblastine. Exogenous PTEN altered the MRP1 and BCRP expression. The results indicate that at least two mechanisms of drug resistance operate in prostate cancer cells: the PI3K/Akt/PTEN/mTOR pathway and an elevated MRP1 expression. The mechanisms are interconnected: PTEN and mTOR signaling is involved in MRP1 and BCRP expression regulation.  相似文献   

3.
The mechanism of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) resistance in cancer cells is not fully understood. Here, we show that the Akt survival pathway plays an important role in TRAIL resistance in human cancer cells. Specifically, we found that TRAIL treatment activates the Akt survival pathway and that inhibition of this pathway by the PI3K inhibitor LY294002 or knockdown of Akt sensitizes resistant cancer cells to TRAIL. Since Akt is negatively regulated by the tumor suppressor PTEN, we examined the TRAIL sensitivity in PTEN knockdown mouse prostate epithelial cells and found that PTEN−/− cells are more resistant than PTEN+/+ cells while the sensitivity of PTEN+/− cells fell in between. Further, we showed that overexpression of a mutant PTEN confers TRAIL resistance in PTEN+/+ cells, supporting a role of PTEN in TRAIL sensitivity. In TRAIL resistant breast T47D cells, overexpression of the mutant PTEN further increased their resistance to TRAIL. Taken together, our data indicate that inactivation of functional PTEN and the consequent activation of the Akt pathway prevents TRAIL-induced apoptosis, leading to TRAIL resistance. Therefore, our results suggest that TRAIL resistance can be overcome by targeting PTEN or the Akt survival pathway in cancer cells.  相似文献   

4.
BACKGROUND: Signaling through stromal cell-derived factor-1α (SDF-1α), strongly secreted by bone marrow stromal cells and the CXC chemokine receptor 4 (CXCR4) exposed on tumor cells has pivotal roles in proliferation, metastasis, and tumor cell “dormancy.” Dormancy is associated with cytostatic drug resistance and is probably a property of tumor stem cells and minimal residual disease. Thus, hampering the SDF-1α/CXCR4 cross talk by a CXCR4 antagonist like Plerixafor (AMD3100) should overcome tumor cell dormancy bymobilization of tumor cells from “sanctuary” niches. Our aim was to elucidate the direct effects exerted by SDF-1α and Plerixafor on proliferation, chemosensitivity, and apoptosis of CXCR4-expressing tumor cells. METHODS: The ability of SDF-1α and Plerixafor to regulate intracellular signaling, proliferation, and invasion was investigated using two colon cancer cell lines (HT-29 and SW480) with either high endogenous or lentiviral expression of CXCR4 compared to their respective low CXCR4-expressing counterparts as a model system. Efficacy of Plerixafor on sensitivity of these cell lines against 5-fluorouracil, irinotecan, or oxaliplatin was determined in a cell viability assay as well as stroma-dependent cytotoxicity and apoptosis assays. RESULTS: SDF-1α increased proliferation, invasion, and ERK signaling of endogenously and lentivirally CXCR4-expressing cells. Exposure to Plerixafor reduced proliferation, invasion, and extracellular signal-regulated kinase 1/2 (ERK1/2) signaling. Combination of chemotherapy with Plerixafor showed an additive effect on chemosensitivity and apoptosis in CXCR4-overexpressing cells. An SDF-1-secreting feeder layer provideda“protective niche” for CXCR4-overexpressing cells resulting in decreased chemosensitivity. CONCLUSION: CXCR4-antagonistic therapy mobilizes and additionally sensitizes tumor cells toward cytoreductive chemotherapy.  相似文献   

5.
SAR405838 is a potent and specific MDM2 inhibitor currently being evaluated in Phase I clinical trials for the treatment of human cancer. Using the SJSA-1 osteosarcoma cell line which harbors an amplified MDM2 gene and wild-type p53, we have investigated the acquired resistance mechanisms both in vitro and in vivo to SAR405838. Treatment of SJSA-1 cells with SAR405838 in vitro leads to dose-dependent cell growth inhibition, cell cycle arrest and robust apoptosis. However, prolonged treatment of SJSA-1 cells in vitro with SAR405838 results in profound acquired resistance to the drug. Analysis of in vitro-derived resistant cell lines showed that p53 is mutated in the DNA binding domain and can no longer be activated by SAR405838. Treatment of the parental SJSA-1 xenograft tumors with SAR405838 in mice yields rapid tumor regression but the tumors eventually regrow. Culturing the regrown tumors established a number of sublines, which showed only modest (3–5 times) loss of sensitivity to SAR405838 in vitro. Sequencing of the p53 showed that it retains its wild-type status in these in vivo sublines, with the exception of one subline, which harbors a single heterozygous C176F p53 mutation. Using xenograft models of two in vivo derived sublines, which has either wild-type p53 or p53 containing a single heterozygous C176F mutation, we showed that while SAR405838 effectively achieves partial tumor regression in these models, it no longer induces complete tumor regression and tumors resume growth once the treatment is stopped. Harvesting and culturing tumors obtained from a prolonged treatment with SAR405838 in mice established additional in vivo sublines, which all contain a single heterozygous C176F mutation with no additional p53 mutation detected. Interestingly, SAR405838 can still effectively activate p53 in all sublines containing a single heterozygous C176F mutation, with a moderately reduced potency as compared to that in the parental cell line. Consistently, SAR405838 is 3–5 times less effective in all the in vivo derived sublines containing a single heterozygous C176F p53 mutation than in the SJSA-1 parental cell line in assays of cell growth and apoptosis. Computational modeling suggested that a p53 tetramer containing two wild-type p53 molecules and two C176F mutated molecules can maintain the structural stability and interactions with DNA by formation of additional hydrophobic and cation-π interactions which compensate for the loss of sulphur-zinc coordination. Our data thus show that SJSA-1 tumor cells acquire very different levels of resistance in vitro and in vivo to the MDM2 inhibitor SAR405838. Our present study may have a significant implication for the investigation of resistant mechanisms for other classes of anticancer drugs.  相似文献   

6.
Molecular mechanisms of the influence of PI3K/Akt/PTEN/mTOR-signaling pathway on survival of tumor cells treated with cytotoxic drugs was studied using rapamycin (Rapa), mTOR specific inhibitor, and 9 human tumor cell lines of different origin and with different Akt kinase activity. Three of these cell lines were selected for drug resistance due to P-glycoprotein (Pgp or ABCB1) overexpression. Rapa inhibited phosphorylation of mTOR downstream effectors. Rapa sensitivity of the cells was Akt-dependent but did not correlate with ABCB1 overexpression. Suppression of mTOR function increased drug resistance in 8 out of 9 cell lines studied. The influence of Rapa on the ABC-transporter gene expression was examined. It was shown that in half of the cell lines studied Rapa exerted differential effects on the amount of ABC-transporter proteins: in some cases the protein amount decreased and in others, increased. The amount of mRNA remained unchanged. These data suggest that mTOR can regulate ABC transporters at the level of translation.  相似文献   

7.
We aimed to determine the functional role of the miRNA, which affects drug sensitivity to 5-FU in oral squamous cell carcinoma (OSCC), using two types of 5-FU-resistant and parental OSCC cell lines. MiRNA microarray data showed that miR-30a was significantly upregulated in two resistant cell lines. Therefore, we investigated the effects and molecular mechanism of miR-30a on 5-FU sensitivity. Stable overexpression of miR-30a in parental OSCC cells decreased cell proliferation and attenuated drug sensitivity to 5-FU. Cell cycle analysis indicated that miR-30a overexpression increased the proportion of G1 phase cells and decreased the proportion of S phase cells. MiR-30a knockdown using siRNA reversed the effects of miR-30a overexpression. DNA microarray analysis using miR-30a-overexpressing cell lines and a TargetScan database search showed that cyclin E2 (CCNE2) is a target of miR-30a. A luciferase reporter assay confirmed that a miR-30a mimic interacted with the specific binding site in the 3' UTR of CCNE2. CCNE2 knockdown with siRNA in OSCC cells yielded decreased drug sensitivity to 5-FU, similar to miR-30a overexpressing cells. These findings suggest that miR-30a in OSCC may be a novel biomarker of 5-FU-resistant tumors, as well as a therapeutic target for combating resistance.  相似文献   

8.
9.
In a past decade became evident that phosphatidylinositol-3-kinase controlled signal transduction cascade (PI3K/Akt/PTEN/mTOR) is implicated in resistance of tumor cells to anticancer drugs. Another well studied mechanism of multidrug resistance is associated with the activity of drug transporters of ABC superfamily (first of all P-glycoprotein (Pgp), MRP1, BCRP). Several mechanisms of cell defense can be turned on in one cell. The interconnections between different mechanisms involved in drug resistance are poorly studied. In the present study we used PC3 and DU145 human prostate cell lines to show that PTEN functional status determines level of cell resistance to some drugs, it correlates with expression level of MRP1 and BCRP proteins. We showed that Pgp is not involved in development of drug resistance in these cells. Transfection of PTEN into PTEN-deficient PC3 as well as rapamycin treatment caused the inhibition of PI3K/Akt/mTOR signaling and resulted in cell sensitization to the action of doxorubicin and vinblastine. We showed that PTEN transfection leads to the change in expression of MRP1 and BCRP. Our results show that in prostate cancer cells at least two mechanisms of drug resistance are interconnected. PTEN and mTOR signaling were shown: to be involved into regulation of MRP1 and BCRP.  相似文献   

10.
为了研究抑癌基因PTEN过表达对HEK293细胞凋亡和细胞周期停滞的作用,以野生型PTEN和PTEN突变子(T910G)表达质粒分别转染无PTEN表达的人胚肾293细胞,采用细胞质梯度DNA方法检测细胞凋亡,以流式细胞仪分析细胞周期.发现PTEN过表达能够诱导人胚肾293细胞质中出现梯度DNA,293细胞发生凋亡,PTEN过表达改变细胞周期分布,G0/G1期细胞增加13%,S期细胞下降15%.PTEN突变子对细胞凋亡和G1细胞停滞的影响略弱于野生型PTEN.PTEN基因过表达明显下调血小板衍生生长因子(PDGF)诱导的蛋白激酶B(PKB)和p42,p44-促分裂原活化蛋白激酶(MAPK)磷酸化水平,PTEN突变子对p42,p44-MAPK磷酸化水平的调节作用略弱于野生型PTEN.PTEN通过抑制细胞增殖,诱导细胞凋亡而影响细胞生长.  相似文献   

11.
Phosphatase and tensin homolog (PTEN) is a tumor suppressor gene located at human chromosome 10q23, might play an important role in cell proliferation, cell cycle and apoptosis of cancer cells. In this study, the eukaryotic expression vectors pBP-wt-PTEN (containing a wild-type PTEN gene) and pBP-G129R-PTEN (containing a mutant PTEN gene) were used to transfect breast cancer ZR-75-1 cells. After transfection, ZR-75-1 cells expressing PTEN were obtained and tested. The blue exclusion assay showed the growth rate of the cells transfected with pBP-wt-PTEN was significantly lower than that of the control cells transfected with pBP-G129R-PTEN. Analysis of the cell cycle by flow cytometry showed that the progression from the G1 to the S phase was arrested in cells expressing wild-type PTEN. Some typical morphological changes of apoptosis were also observed in cells transfected with pBP-wt-PTEN, but not in those transfected with pBP-G 129R-PTEN. This study shows that overexpression of PTEN in ZR-75-1 cells leads to cell growth arrest and apoptosis.  相似文献   

12.

Background

The majority of chordomas show activation of the platelet-derived growth factor receptor (PDGFR). Based on in vitro intertumoral variation in response to recombinant PDGF protein and PDGFR inhibition, and variable tumor response to imatinib, we hypothesized that chordomas resistant to PDGFR inhibition may possess downstream activation of the pathway.

Methods

Molecular profiling was performed on 23 consecutive chordoma primary tissue specimens. Primary cultures established from 20 of the 23 specimens, and chordoma cell lines, UCH-1 and UCH-2, were used for in vitro experiments.

Results

Loss of heterozygosity (LOH) at the phosphatase and tensin homolog (PTEN) locus was observed in 6 specimens (26%). PTEN disruption statistically correlated with increased Ki-67 proliferation index, an established marker of poor outcome for chordoma. Compared to wild type, PTEN deficient chordomas displayed increased proliferative rate, and responded less favorably to PDGFR inhibition. PTEN gene restoration abrogated this growth advantage. Chordomas are characterized by intratumoral hypoxia and local invasion, and histone deacetylase (HDAC) inhibitors are capable of attenuating both hypoxic signaling and cell migration. The combination of PDGFR and HDAC inhibition effectively disrupted growth and invasion of PTEN deficient chordoma cells.

Conclusions

Loss of heterozygosity of the PTEN gene seen in a subset of chordomas is associated with aggressive in vitro behavior and strongly correlates with increased Ki-67 proliferative index. Combined inhibition of PDGFR and HDAC attenuates proliferation and invasion in chordoma cells deficient for PTEN.  相似文献   

13.
PTEN is involved in the regulation of normal cellular functions in addition to its well–known role as a tumor suppressor. In the present study, we have shown that stable transfection of the PTEN gene into PTEN–mutated endometrial carcinoma cells leads to contact inhibition accompanied by a decreased level of phosphorylated–Akt (p–Akt) expression, an increase in p27Kip1, and a decrease in β–catenin. PTEN–induced cells with contact inhibition exhibit G0–G1 cell-cycle arrest, and the Ki–67 labeling index is reduced. These changes are canceled by transfection of a double–stranded short–interfering RNA against the PTEN gene. Normal endometrial stromal cells increase their PTEN expression when reaching confluence; this is followed by changes in the expression of Akt–related proteins in the same way as in tumor cells. These results indicate that PTEN, p–Akt, p27, and β–catenin are involved in the signal transduction of contact inhibition and suggest that PTEN may, in part, control the proliferation of endometrial carcinoma cells through the induction of contact inhibition.  相似文献   

14.
PTEN is one of the most frequently mutated genes in malignancies and acts as a powerful tumor suppressor. Tumorigenesis is involved in multiple and complex processes including initiation, invasion, and metastasis. The complexity of PTEN function is partially attributed to PTEN family members such as PTENα and PTENβ. Here, we report the identification of PTENε (also named as PTEN5), a novel N‐terminal‐extended PTEN isoform that suppresses tumor invasion and metastasis. We show that the translation of PTENε/PTEN5 is initiated from the CUG816 codon within the 5′UTR region of PTEN mRNA. PTENε/PTEN5 mainly localizes in the cell membrane and physically associates with and dephosphorylates VASP and ACTR2, which govern filopodia formation and cell motility. We found that endogenous depletion of PTENε/PTEN5 promotes filopodia formation and enhances the metastasis capacity of tumor cells. Overall, we identify a new isoform of PTEN with distinct subcellular localization and molecular function compared to the known members of the PTEN family. These findings advance our current understanding of the importance and diversity of PTEN functions.  相似文献   

15.
Expression of a Rhodococcus-derived oxygenase gene in Escherichia coli yielded indigo metabolites with cytotoxic activity against cancer cells. Bioactivity-guided fractionation of these indigo metabolites led to the isolation of trisindoline as the agent responsible for the observed in vitro cytotoxic activity against cancer cells. While the cytotoxicity of etoposide, a common anticancer drug, was dramatically decreased in multidrug-resistant (MDR) cancer cells compared with treatment of parental cells, trisindoline was found to have similar cytotoxicity effects on both parental and MDR cell lines. In addition, the cytotoxic effects of trisindoline were resistant to P-glycoprotein overexpression, one of the most common mechanisms of drug resistance in cancer cells, supporting its use to kill MDR cancer cells.  相似文献   

16.
17.

Background

We examined the association of tumor-derived hepatocyte growth factor (HGF) with the clinicopathological features of gliomas and investigated the effect of HGF inhibition on the biological behavior of tumor cells in vitro in order to determine whether HGF is a valuable prognostic predictor for glioma patients.

Methods

Seventy-six cases of glioma were collected. The tumor-derived HGF expression, cell proliferation index (PI) and intratumoral microvessels were evaluated by immunohistochemistry. Correlation between immunostaining and clinicopathological parameters, as well as the follow-up data of patients, was analyzed statistically. U87MG glioma cells were transfected with short interference (si)-RNA for HGF, and the cell viability, migratory ability and chemosensitivity to cisplatin were evaluated in vitro.

Results

Both high HGF expression in tumor cells (59.2%, 45/76) and high PI were significantly associated with high-grade glioma and increased microvessels in tumors (P?<?0.05). However, only histological grading (P?=?0.004) and high-expression of HGF (P?=?0.008) emerged as independent prognostic factors for the overall survival of glioma patients. The tumor-derived HGF mRNA and protein expressions were significantly decreased in vitro after transfection of HGF siRNA. HGF siRNA inhibited the cell growth and reduced cell migratory ability. Moreover, HGF siRNA transfection enhanced the chemosensitivity of U87MG glioma cells to cisplatin.

Conclusion

This study indicated that there was significant correlation among tumor cell-derived HGF, cell proliferation and microvessel proliferation in gliomas. HGF might influence tumor progression by modulating the cell growth, migration and chemoresistance to drugs. Increased expression of HGF may be a valuable predictor for prognostic evaluation of glioma patients.  相似文献   

18.
19.
The tumor suppressor PTEN is a lipid phosphatase that is found mutated in different types of human cancers. PTEN suppresses cell proliferation by inhibiting the PI3K-Akt signaling pathway at the cell membrane. However, PTEN is also demonstrated to localize in the cell nucleus where it exhibits tumor suppressive activity via a different, unknown mechanism. In this study we report that PTEN also localizes to the nucleolus and that nucleolar PTEN plays an important role in regulating nucleolar homeostasis and maintaining nucleolar morphology. Overexpression of nuclear PTEN in PTEN null cells inhibits Akt phosphorylation and reduces cell size. Knockdown of PTEN in PTEN positive cells leads to nucleolar morphologic changes and an increase in the proportion of cells with a greater number of nucleoli. In addition, knockdown of PTEN in PTEN positive cells increased ribosome biogenesis. These findings expand current understanding of function and relevance of nuclear localized PTEN and provide a foundation for the development of novel therapies targeting PTEN.  相似文献   

20.
Effective cancer chemotherapy treatment requires both therapy delivery and retention by malignant cells. Cancer cell overexpression of the multidrug transmembrane transporter gene ABCB1 (MDR1, multi-drug resistance protein 1) thwarts therapy retention, leading to a drug-resistant phenotype. We explored the phenotypic impact of ABCB1 overexpression in normal human mammary epithelial cells (HMECs) via acute adenoviral delivery and in breast cancer cell lines with stable integration of inducible ABCB1 expression. One hundred sixty-two genes were differentially expressed between ABCB1-expressing and GFP-expressing HMECs, including the gene encoding the cyclooxygenase-2 protein, PTGS2. Several breast cancer cell lines with inducible ABCB1 expression demonstrated sensitivity to the 5-lipoxygenase, cyclooxygenase-1/2 inhibitor tepoxalin in two-dimensional drug response assays, and combination treatment of tepoxalin either with chemotherapies or with histone deacetylase (HDAC) inhibitors improved therapeutic efficacy in these lines. Moreover, selection for the ABCB1-expressing cell population was reduced in three-dimensional co-cultures of ABCB1-expressing and GFP-expressing cells when chemotherapy was given in combination with tepoxalin. Further study is warranted to ascertain the clinical potential of tepoxalin, an FDA-approved therapeutic for use in domesticated mammals, to restore chemosensitivity and improve drug response in patients with ABCB1-overexpressing drug-resistant breast cancers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号