首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Murine CD4(+)CD25(+) T regulatory (Treg) cells were cocultured with CD4(+)CD25(-) Th cells and APCs or purified B cells and stimulated by anti-CD3 mAb. Replacement of APCs by B cells did not significantly affect the suppression of CD4(+)CD25(-) Th cells. When IL-4 was added to separate cell populations, this cytokine promoted CD4(+)CD25(-) Th and CD4(+)CD25(+) Treg cell proliferation, whereas the suppressive competence of CD4(+)CD25(+) Treg cells was preserved. Conversely, IL-4 added to coculture of APCs, CD4(+)CD25(-) Th cells, and CD4(+)CD25(+) Treg cells inhibited the suppression of CD4(+)CD25(-) Th cells by favoring their survival through the induction of Bcl-2 expression. At variance, suppression was not affected by addition of IL-13, although this cytokine shares with IL-4 a receptor chain. When naive CD4(+)CD25(-) Th cells were replaced by Th1 and Th2 cells, cell proliferation of both subsets was equally suppressed, but suppression was less pronounced compared with that of CD4(+)CD25(-) Th cells. IL-4 production by Th2 cells was also inhibited. These results indicate that although CD4(+)CD25(+) Treg cells inhibit IL-4 production, the addition of IL-4 counteracts CD4(+)CD25(+) Treg cell-mediated suppression by promoting CD4(+)CD25(-) Th cell survival and proliferation.  相似文献   

2.
Cutting edge: direct suppression of B cells by CD4+ CD25+ regulatory T cells   总被引:27,自引:0,他引:27  
Regulatory T cells (Tregs) can potentially migrate to the B cell areas of secondary lymphoid tissues and suppress T cell-dependent B cell Ig response. T cell-dependent Ig response requires B cell stimulation by Th cells. It has been unknown whether Tregs can directly suppress B cells or whether they must suppress Th cells to suppress B cell response. We report here that Foxp3+ Tregs are found in T-B area borders and within germinal centers of human lymphoid tissues and can directly suppress B cell Ig response. Although Tregs can effectively suppress T cells, they can also directly suppress B cell response without the need to first suppress Th cells. The direct suppression of B cell Ig production by Tregs is accompanied by inhibition of Ig class switch recombination.  相似文献   

3.
IL-12p40 cytokines have been implicated in the development of organ-specific autoimmune diseases as well as pathogen-specific adaptive immunity. In addition to inducing IFN-gamma, IL-12 stimulates effector CD4(+) T cells to express adhesion molecules and homing receptors that facilitate their migration to sites of inflammation. In this study, we expand upon those observations by demonstrating an alternative pathway by which IL-12 could promote Th1 inflammatory responses in mice, namely, by restoring proliferation and cytokine expression by effector T cells in the presence of CD4(+)CD25(+) regulatory T cells (Treg). This effect of IL-12 was not replicated by IL-23 or IFN-gamma and was dependent on signaling through the IL-12R expressed on CD25(-) responder cells, but not on Treg. Our studies suggest that IL-12 could act in concert with other proinflammatory factors to stimulate CD4(+)CD25(-) T cell activation in the presence of Treg.  相似文献   

4.
Cutting edge: cure of colitis by CD4+CD25+ regulatory T cells   总被引:36,自引:0,他引:36  
CD4(+)CD25(+) regulatory T cells have been shown to prevent T cell-mediated immune pathology; however, their ability to ameliorate established inflammation has not been tested. Using the CD4(+)CD45RB(high) T cell transfer model of inflammatory bowel disease, we show that CD4(+)CD25(+) but not CD4(+)CD25(-)CD45RB(low) T cells are able to cure intestinal inflammation. Transfer of CD4(+)CD25(+) T cells into mice with colitis led to resolution of the lamina propria infiltrate in the intestine and reappearance of normal intestinal architecture. CD4(+)CD25(+) T cells were found to proliferate in the mesenteric lymph nodes and inflamed colon. They were located between clusters of CD11c(+) cells and pathogenic T cells and found to be in contact with both cell types. These studies suggest that manipulation of CD4(+)CD25(+) T cells may be beneficial in the treatment of chronic inflammatory diseases.  相似文献   

5.
CD28/B7 blockade leads to exacerbated autoimmune disease in the nonobese diabetic mouse strain as a result of a marked reduction in the number of CD4(+)CD25(+) regulatory T cells (Tregs). Herein, we demonstrate that CD28 controls both thymic development and peripheral homeostasis of Tregs. CD28 maintains a stable pool of peripheral Tregs by both supporting their survival and promoting their self-renewal. CD28 engagement promotes survival by regulating IL-2 production by conventional T cells and CD25 expression on Tregs.  相似文献   

6.
7.
CD4(+)CD25(+) regulatory T cell selection is initiated by high-specificity interactions with self-peptides in the thymus, although how these cells respond to cytokine-derived signals and to re-exposure to self-peptide:MHC complexes in the periphery is not well understood. We have used a transgenic mouse system, in which the peptide that induces thymic selection of a clonal population of CD4(+)CD25(+) regulatory T cells is known, to show that CD4(+)CD25(+) T cells proliferate in response to their selecting self-peptide in vivo. Moreover, they do not proliferate in response to lymphopenia in the absence of the selecting self-peptide, reflecting a low level of expression of the high affinity receptor for IL-7 (CD127) relative to conventional CD4(+) T cells. That their selecting self-peptide is both required for and promotes the peripheral expansion of CD4(+)CD25(+) regulatory T cells may direct their accumulation in sites where the self-peptide is expressed.  相似文献   

8.
Transfer of CD4(+)CD45RB(high) T cells into RAG(-/-) mice causes colitis, which can be prevented by CD4(+)CD25(+) regulatory T cells (Treg). Colitis induction by CD4(+)CD45RB(high) T cells requires beta(7) integrin-dependent intestinal localization, but the importance of beta(7) integrins for Treg function is unknown. In this study, we show that beta(7)(-/-) Treg were effective in preventing colitis. Treg expanded in vivo to the same extent as CD4(+)CD45RB(high) T cells after transfer and they did not inhibit CD4(+)CD45RB(high) T cell expansion in lymphoid tissues, although they prevented the accumulation of Th1 effector cells in the intestine. beta(7)(-/-) Treg were significantly reduced in the large intestine, however, compared with wild-type Treg, and regulatory activity could not be recovered from the intestine of recipients of beta(7)(-/-) Treg. These data demonstrate that Treg can prevent colitis by inhibiting the accumulation of tissue-seeking effector cells and that Treg accumulation in the intestine is dispensable for colitis suppression.  相似文献   

9.
CD4+CD25+ regulatory T cells (Treg) are potent immunosuppressive cells that are pivotal in the regulation of peripheral tolerance. In this report, we identify granzyme B (GZ-B) as one of the key components of Treg-mediated suppression. Induction of regulatory activity is correlated with the up-regulation of GZ-B expression. Proof of a functional involvement of GZ-B in contact-mediated suppression by Treg is shown by the reduced ability of Treg from GZ-B-/- mice to suppress as efficiently as Treg from WT mice. GZ-B-mediated suppression is perforin independent, because suppression by Treg from perforin-/- and WT is indistinguishable. Additionally, suppression mediated by Treg appears to be mediated, in part, by the induction of apoptosis in the CD4+CD25- effector cell. In summary, GZ-B is one of the key mechanisms through which CD4+CD25+ Treg induce cell contact-mediated suppression.  相似文献   

10.
CD4+CD25+ regulatory T (Treg) cells play an essential role in maintaining tolerance to self and nonself. In several models of T cell-mediated (auto) immunity, Treg cells exert protective effects by the inhibition of pathogenic T cell responses. In addition, Treg cells can modulate T cell-independent inflammation. We now show that CD4+CD25+ Treg cells are able to shed large amounts of TNFRII. This is paralleled by their ability to inhibit the action of TNF-alpha both in vitro and in vivo. In vivo, Treg cells suppressed IL-6 production in response to LPS injection in mice. In contrast, Treg cells from TNFRII-deficient mice were unable to do so despite their unhampered capacity to suppress T cell proliferation in a conventional in vitro suppression assay. Thus, shedding of TNFRII represents a novel mechanism by which Treg cells can inhibit the action of TNF, a pivotal cytokine driving inflammation.  相似文献   

11.
High expression of IL-21 and/or IL-21R has been described in T cell-mediated inflammatory diseases characterized by defects of counterregulatory mechanisms. CD4(+)CD25(+) regulatory T cells (Treg) are a T cell subset involved in the control of the immune responses. A diminished ability of these cells to inhibit T cell activation has been documented in immune-inflammatory diseases, raising the possibility that inflammatory stimuli can block the regulatory properties of Treg. We therefore examined whether IL-21 controls CD4(+)CD25(+) T cell function. We demonstrate in this study that IL-21 markedly enhances the proliferation of human CD4(+)CD25(-) T cells and counteracts the suppressive activities of CD4(+)CD25(+) T cells on CD4(+)CD25(-) T cells without affecting the percentage of Foxp3(+) cells or survival of Treg. Additionally, CD4(+)CD25(+) T cells induced in the presence of IL-21 maintain the ability to suppress alloresponses. Notably, IL-21 enhances the growth of CD8(+)CD25(-) T cells but does not revert the CD4(+)CD25(+) T cell-mediated suppression of this cell type, indicating that IL-21 makes CD4(+) T cells resistant to suppression rather than inhibiting CD4(+)CD25(+) T cell activity. Finally, we show that IL-2, IL-7, and IL-15, but not IL-21, reverse the anergic phenotype of CD4(+)CD25(+) T cells. Data indicate that IL-21 renders human CD4(+)CD25(-) T cells resistant to Treg-mediated suppression and suggest a novel mechanism by which IL-21 could augment T cell-activated responses in human immune-inflammatory diseases.  相似文献   

12.
Recent studies have shown that TGF-beta together with IL-6 induce the differentiation of IL-17-producing T cells (Th17) T cells. We therefore examined whether CD4(+)CD25(+)Foxp3(+) regulatory T cells, i.e., cells previously shown to produce TGF-beta, serve as Th17 inducers. We found that upon activation purified CD25(+) T cells (or sorted GFP(+) T cells obtained from Foxp3-GFP knockin mice) produce high amounts of soluble TGF-beta and when cultured with CD4(+)CD25(-)Foxp3(-) T cells in the presence of IL-6 induce the latter to differentiate into Th17 cells. Perhaps more importantly, upon activation, CD4(+)CD25(+)Foxp3(+)(GFP(+)) T cells themselves differentiate into Th17 cells in the presence of IL-6 (and in the absence of exogenous TGF-beta). These results indicate that CD4(+)CD25(+)Foxp3(+) regulatory T cells can function as inducers of Th17 cells and can differentiate into Th17 cells. They thus have important implications to our understanding of regulatory T cell function and their possible therapeutic use.  相似文献   

13.
CD4+CD25+ T regulatory cells suppress NK cell-mediated immunotherapy of cancer   总被引:12,自引:0,他引:12  
CD4+CD25+ regulatory T cells (Treg) that suppress T cell-mediated immune responses may also regulate other arms of an effective immune response. In particular, in this study we show that Treg directly inhibit NKG2D-mediated NK cell cytotoxicity in vitro and in vivo, effectively suppressing NK cell-mediated tumor rejection. In vitro, Treg were shown to inhibit NKG2D-mediated cytolysis largely by a TGF-beta-dependent mechanism and independently of IL-10. Adoptively transferred Treg suppressed NK cell antimetastatic function in RAG-1-deficient mice. Depletion of Treg before NK cell activation via NKG2D and the activating IL-12 cytokine, dramatically enhanced NK cell-mediated suppression of tumor growth and metastases. Our data illustrate at least one mechanism by which Treg can suppress NK cell antitumor activity and highlight the effectiveness of combining Treg inhibition with subsequent NK cell activation to promote strong innate antitumor immunity.  相似文献   

14.
CD4(+)CD25(+) regulatory T cells are crucial to the maintenance of tolerance in normal individuals. However, the factors regulating this cell population and its function are largely unknown. Estrogen has been shown to protect against the development of autoimmune disease, yet the mechanism is not known. We demonstrate that estrogen (17-beta-estradiol, E2) is capable of augmenting FoxP3 expression in vitro and in vivo. Treatment of naive mice with E2 increased both CD25(+) cell number and FoxP3 expression level. Further, the ability of E2 to protect against autoimmune disease (experimental autoimmune encephalomyelitis) correlated with its ability to up-regulate FoxP3, as both were reduced in estrogen receptor alpha-deficient animals. Finally, E2 treatment and pregnancy induced FoxP3 protein expression to a similar degree, suggesting that high estrogen levels during pregnancy may help to maintain fetal tolerance. In summary, our data suggest E2 promotes tolerance by expanding the regulatory T cell compartment.  相似文献   

15.
16.
TLR ligands are potent activators of dendritic cells and therefore function as adjuvants for the induction of immune responses. We analyzed the capacity of TLR ligands to enhance CD8+ T cell responses toward soluble protein Ag. Immunization with OVA together with LPS or poly(I:C) elicited weak CD8+ T cell responses in wild-type C57BL/6 mice. Surprisingly, these responses were greatly increased in mice lacking CD4+ T cells indicating the induction of regulatory CD4+ T cells. In vivo, neutralization of IL-10 completely restored CD8+ T cell responses in wild-type mice and OVA-specific IL-10 producing CD4+ T cells were detected after immunization with OVA plus LPS. Our study shows that TLR ligands not only activate the immune system but simultaneously induce Ag specific, IL-10-producing regulatory Tr1 cells that strongly suppress CD8+ T cell responses. In this way, excessive activation of the immune system may be prevented.  相似文献   

17.
An important unresolved question with regard to T regulatory (Treg) cell specificity and suppressive activity is whether allogeneic Treg cells inhibit self-reactive T cells. In the present study, this issue was addressed using IL-2Rbeta-deficient mice that develop rapid lethal autoimmunity due to impaired production of Treg cells. We show that adoptive transfer of completely MHC-mismatched Treg cells into IL-2Rbeta(-/-) mice resulted in life-long engraftment of the donor cells, which exhibited skewed reactivity toward host alloantigens, and prevented autoimmunity. Thus, Treg cells that underwent thymic selection by peptide/MHC class II complexes distinct from those recognized by autoreactive T cells, still effectively suppress autoimmunity. Remarkably, when such animals were skin grafted, they exhibited dominant tolerance to those grafts bearing MHC molecules that were shared with donor Treg cells. Collectively, these data demonstrate that effective engraftment by allogeneic Treg cells controls autoimmunity and results in permissive conditions for long-term acceptance of allografts.  相似文献   

18.
Female B10.S mice are highly resistant to proteolipid protein (PLP) 139-151-induced experimental autoimmune encephalomyelitis (EAE) and depletion of PLP 139-151-reactive CD4+CD25+ regulatory T (Treg) cells can slightly increase their EAE susceptibility. Although male B10.S mice are moderately susceptible to EAE, we report that depletion of Treg cells in male B10.S mice before immunization with PLP 139-151 renders them highly susceptible to severe EAE with more CNS neutrophil infiltrates than nondepleted controls. Increased susceptibility is associated with an enhanced PLP 139-151-specific T cell response and greater production of IFN-gamma, IL-6, and IL-17. Male CD4+CD25- effector cells depleted of Treg cells proliferate to a greater degree than those from females in response to either anti-CD3 or PLP 139-151. These data suggest that because of their capacity to regulate potent autoaggressive effector cells, Treg cells partly contribute to the resistance to autoimmunity in the male mice.  相似文献   

19.
CD11c(+) dendritic cells (DCs) are a prominent component of CNS infiltrates in mice with experimental autoimmune encephalomyelitis. However, their role in immunopathogenesis is controversial. In this study, we report that they originate from peripheral hemopoietic cells and exhibit diverse functions that change during the course of acute disease. CNS DCs stimulate naive T cells to proliferate and polarize Th(17) responses when harvested shortly following disease onset but are relatively inefficient APC by the time of peak disability. Conversely, they can support CD4(+)CD25(+) T cell-mediated immunosuppression early during experimental autoimmune encephalomyelitis. Such paradoxical functions might reflect dual roles of CNS DCs in promoting local inflammation while setting the stage for remission.  相似文献   

20.
Both differentiation and function of CD4+CD25(high) naturally arising regulatory T cells (Treg), which play a key role in the control of autoimmunity, are thought to depend on TCR specificity. In the present study, we comparatively measured the alphabetaTCR repertoire sizes of human peripheral blood Treg and CD4+CD25- T cells by using a methodology based on PCR amplification and sequencing analysis. We show that Treg use a large unrestricted alphabeta TCR repertoire, the size and diversity of which are closely similar to those of CD4+CD25- T cells, with a mean estimated size of 3.5 x 10(6) distinct alphabeta TCR vs 4.7 x 10(6) distinct alphabetaTCR for CD4+CD25- T cells. In addition, a 24% overlap between the repertoires of these two CD4+ subsets in the periphery is found. These data emphasize the intersection between naturally occurring Treg and effector T cell peripheral repertoires and provide new insights into the ontogeny of Treg in humans.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号