首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Significant differences in the antioxidant systems of the roots of two chickpea (Cicer arietinum L.) cultivars differing in tolerance to drought were observed in under toxic boron (B) conditions. Three-week-old chickpea seedlings were subjected to 0.05 mM (control), 1.6 mM or 6.4 mM B in the form of boric acid (H3BO3) for 7 days. At the end of the treatment period, root length, dry weight, boron concentration, malondialdehyde (MDA) content, and the activities of antioxidant enzymes—superoxide dismutase (SOD), peroxidase (POX), catalase (CAT), ascorbate peroxidase (APOX) and glutathione reductase (GR)—were measured. Root length of the drought-tolerant Gökce cultivar did not change under 1.6 mM B but increased under 6.4 mM B. On the contrary, root length decreased in the drought-sensitive Küsmen cultivar under both B concentrations. While root dry weight was unaffected in Gökce, it decreased in Küsmen under both B concentrations. Boron concentration was significantly higher in Küsmen than in Gökce at both B levels. Significant increases in SOD and POX activities were observed in roots of both cultivars under 1.6 and 6.4 mM B. Root extracts exhibited three SOD and three POX activity bands in both cultivars under B stress when compared to control groups. Although CAT activity in Gökce was increased, it decreased in Küsmen at the highest B concentration as compared to control groups. Roots of both cultivars showed no significant change in APOX activity under B toxicity (except in 1.6 mM B treated roots of Küsmen) when compared to control groups. GR activity in the roots of Küsmen decreased significantly with increasing B concentration. However, a significant increase in GR activity was found in Gökce under 1.6 mM B stress. In addition, lipid peroxidation levels of drought-sensitive Küsmen increased, indicating more damage to membrane lipids due to B toxicity. Lipid peroxidation did not change in the drought-tolerant Gökce cultivar at either B concentration. These results suggest that roots of Gökce are better protected from B-stress-induced oxidative stress due to enhanced SOD, CAT and POX activities under high B levels.  相似文献   

2.
Two-month-old healthy seedlings of a true mangrove, Bruguiera parviflora, raised from propagules in normal nursery conditions were subjected to varying concentrations of NaCl for 45 d under hydroponic culture conditions to investigate the defence potentials of antioxidative enzymes against NaCl stress imposed oxidative stress. Changes in the activities of the antioxidative enzymes catalase (CAT), ascorbate peroxidase (APX), guaiacol peroxidase (POX), glutathione reductase (GR) and superoxide dismutase (SOD) were assayed in leaves to monitor the temporal regulation. Among the oxidative stress triggered chemicals, the level of H2O2 was significantly increased while total ascorbate and total glutathione content decreased. The ratio of reduced to oxidized glutathiones, however, increased due to decreased levels of oxidized glutathione in the leaf tissue. Among the five antioxidative enzymes monitored, the APX, POX, GR and SOD specific activities were significantly enhanced at high concentration (400 mM NaCl), while the catalase activities declined, suggesting both up and downregulations of antioxidative enzymes occurred due to NaCl imposed osmotic and ionic stress. Analysis of the stress induced alterations in the isoforms of CAT, APX, POX, GR and SOD revealed differential regulations of the isoforms of these enzymes. In B. parviflora one isoform of each of Mn-SOD and Cu/Zn-SOD while three isoforms of Fe-SOD were observed by activity staining gel. Of these, only Mn-SOD and Fe-SOD2 content was preferentially elevated by NaCl treatment, whereas isoforms of Cu/Zn-SOD, Fe-SOD1 and Fe-SOD3 remained unchanged. Similarly, out of the six isoforms of POX, the POX-1,-2,-3 and -6 were enhanced due to salt stress but the levels of POX-4 and -5 remained same as in control plants suggesting preferential upregulation of selective POX isoforms. Activity staining gel revealed only one prominent band of APX and this band increased with increased salt concentration. Similarly, two isoforms of GR (GR1 and GR2) were visualized on activity staining gel and both these isoforms increased upon salt stress. In this mangrove four CAT-isoforms were identified, among which the prominent CAT-2 isoform level was maximally reduced again suggesting differential downregulation of CAT isoforms by NaCl stress. The results presented in this communication are the first report on the resolutions of isoforms APX, POX and GR out of five antioxidative enzymes studied in the leaf tissue of a true mangrove. The differential changes in the levels of the isoforms due to NaCl stress may be useful as markers for recognizing salt tolerance in mangroves. Further, detailed analysis of the isoforms of these antioxidative enzymes is required for using the various isoforms as salt stress markers. Our results indicate that the overproduction of H2O2 by NaCl treatment functions as a signal of salt stress and causes upregulation of APX, POX, GR and deactivations of CAT in B. parviflora. The concentrations of malondialdehyde, a product of lipid peroxidation and lipoxygenase activity remained unchanged in leaves treated with different concentrations of NaCl, which again suggests that the elevated levels of the antioxidant enzymes protect the plants against the activated oxygen species thus avoiding lipid peroxidation during salt stress.  相似文献   

3.
4.
Salinity and waterlogging are two stresses which in nature often occur simultaneously. In this work, effects of combined waterlogging and salinity stresses are studied on the anatomical alteration, changes of enzymatic antioxidant system and lipid peroxidation in Mentha aquatica L. plants. Seedlings were cultured in half-strength Hoagland medium 50 days after sowing, and were treated under combination of three waterlogging levels (well drained, moderately drained and waterlogging) and NaCl (0, 50, 100, 150 mM) for 30 days. Moderately drained and waterlogging conditions induced differently aerenchyma formation in roots of M. aquatica salt-treated and untreated plants. Moreover, stele diameter and endodermis layer were also affected by salt stress and waterlogging. Salt stress significantly decreased growth, relative water content (RWC), protein level, catalase (CAT) and polyphenol oxidase (PPO) activities, and increased proline content, MDA content, H2O2 level and activities of superoxide dismutase (SOD), peroxidase (POX), and ascorbate peroxidase (APX). Waterlogging in salt-untreated plants increased significantly growth parameters, RWC, protein content, antioxidant enzyme activity, and decreased proline content, H2O2 and MDA levels. In salt-treated plant, waterlogging caused strong induction of antioxidant enzymes activities especially at severe stress condition. These results suggest M. aquatica is a waterlogging tolerant plant due to significant increase of antioxidant activity, membrane stability and growth under water stress. High antioxidant capacity under waterlogging can be a protective strategy against oxidative damage, and help to salt stress alleviation.  相似文献   

5.
The effects of long-term NaCl and KCl treatment on plant growth and antioxidative responses were investigated in Chenopodium album, a salt-resistant species widely distributed in semi-arid and light-saline areas of Xinjiang, China. Growth parameters [plant height, branch number, leaf morphology and chlorophyll (Chl) content], the level of oxidative stress [superoxide anion radical (O2 ), hydrogen peroxide (H2O2) and malondialdehyde (MDA) concentrations], activity of antioxidant enzymes [superoxide dismutase (SOD), catalase (CAT), peroxidase (POX)], the contents of non-enzymatic antioxidants [carotenoids (Car) and ascorbic acid (AsA)] and expression of selected genes were investigated. Plants were grown in the presence of 0, 50, and 300 mM NaCl or KCl for 2 months. Growth was stimulated by 50 mM NaCl or KCl, maintained stable at 300 mM NaCl, but was inhibited by 300 mM KCl. Three hundred mM NaCl did not affect O2 , H2O2, MDA, Car and AsA, but increased the activities of SOD, CAT and POX compared to the controls. RT-PCR analysis suggested that expression of some genes encoding antioxidant enzymes could be induced during long-term salt stress, which was consistent with the enzyme activities. Treatment with 300 mM KCl was associated with elevated oxidative stress, and significantly decreased Car and AsA contents. These results suggest that an efficient antioxidant machinery is important for overcoming oxidative stress induced by treatment with high NaCl concentrations in C. album. Other strategies of ion regulation may also contribute to the differential tolerance to Na and K at higher concentrations.  相似文献   

6.
Barley seedlings were pre-treated with 1 and 5 μM H2O2 for 2 d and then supplied with water or 150 mM NaCl for 4 and 7 d. Exogenous H2O2 alone had no effect on the proline, malondialdehyde (MDA) and H2O2 contents, decreased catalase (CAT) activity and had no effect on peroxidase (POX) activity. Three new superoxide dismutase (SOD) isoenzymes appeared in the leaves as a result of 1 μM H2O2 treatment. NaCl enhanced CAT and POX activity. SOD activity and isoenzyme patterns were changed due to H2O2 pre-treatment, NaCl stress and leaf ageing. In pre-treated seedlings the rate of 14CO2 fixation was higher and MDA, H2O2 and proline contents were lower in comparison to the seedlings subjected directly to NaCl stress. Cl content in the leaves 4 and 7 d after NaCl supply increased considerably, but less in pre-treated plants. It was suggested that H2O2 metabolism is involved as a signal in the processes of barley salt tolerance.  相似文献   

7.
Salt-induced changes in the activities of antioxidant enzymes such as superoxide dismutase (SOD), catalase (CAT), peroxidase (POX), and lipid peroxidation in terms of malondialdehyde (MDA), level of H2O2, and some key metabolites such as soluble proteins, free proline and phenolics in the leaves of six radish cultivars (Radish Red Neck, Radish Lal Pari, Radish Mino Japani, Radish 40 Days, Mannu Early and Desi) were investigated. Varying levels of NaCl (0, 80 and 160 mM) applied for 40 days adversely affected the shoot fresh weight, chlorophyll contents and soluble proteins, while increased the levels of proline, and the activities of SOD, POD and CAT. However, leaf H2O2 and total phenolic contents were not affected by salt stress. Cultivars Mannu Early, Radish 40 Days and Desi were relatively higher in shoot fresh weight (percent of control) while cvs. Radish Mino Japani and Mannu Early in proline, and cvs. Radish 40 Days and Desi in total soluble proteins at 160 mM of NaCl. However, levels of H2O2 and phenolics were higher in cvs. Desi, Radish Lal Pari and Mannu Early and SOD, POD and CAT activities only in Radish Lal Pari and Mannu Early than the other cultivars under saline conditions. Overall, the differential salt tolerance of radish cultivars observed in the present study was not found to be associated with higher antioxidant enzyme activities and other key metabolites analyzed, so these attributes cannot be considered as selection criteria for salt tolerance in radish.  相似文献   

8.
Suaeda fruticosa Forssk is a leaf succulent obligate halophyte that produces numerous seeds under saline conditions. Seeds are a good source of high quality edible oil and leaves are capable of removing substantial amount of salt from the saline soil besides many other economic usages. Little is known about the biochemical basis of salt tolerance in this species. We studied some biochemical responses of S. fruticosa to different exogenous treatments under non-saline (0 mM), moderate (300 mM) or high (600 mM) NaCl levels. Eight-week-old seedlings were sprayed twice a week with distilled water, hydrogen peroxide (H2O2, 100 μM), glycine betaine (GB, 10 mM), or ascorbic acid (AsA, 20 mM) for 30 days. At moderate (300 mM) NaCl, leaf Na+, Ca2+ and osmolality increased, along with unchanged ROS and antioxidant enzyme activities, possibly causing a better plant growth. Plants grew slowly at 600 mM NaCl to avoid leaf Na+ buildup relative to those at 300 mM NaCl. Exogenous application of distilled water and H2O2 improved ROS scavenging mechanisms, although growth was unaffected. ASA and GB alleviated salt-induced growth inhibition at 600 mM NaCl through enhancing the antioxidant defense system and osmotic and ion homeostasis, respectively.  相似文献   

9.
10.
The toxicity caused by high concentrations of manganese (Mn) could be due to a production of free radicals. Minocycline is an effective antioxidant with a high potential to capture free radicals. We investigated the effect of minocycline in the activities of superoxide dismutase (SOD) and catalase, and in the concentrations of nitric oxide (NO), hydrogen peroxide (H2O2) and mitochondrial malondialdehyde (MDA) in manganese-treated Drosophila melanogaster. Five groups of flies were used: (1) control: not treated; (2) continuously treated with minocycline (0.05 mM); (3) treated with 30 mM Mn for 6 days and then no additional treatment; (4) continuously treated with Mn; (5) treated only with Mn for 6 days and then treated with minocycline; (6) simultaneously treated with Mn and minocycline. On the 6th day, Mn treatment caused 50 % mortality; in the surviving flies increased levels of MDA (67.93 %), NO (11.04 %), H2O2 (14.62 %) and SOD and catalase activity (165.34 and 71.43 %, respectively) were detected. All the flies continuously treated with Mn died by the 21st day. On day 40, MDA levels were decreased in groups two, three and five (43.04, 29.67, and 34.72 % respectively), as well as NO in group two (29.21 %) and H2O2 in groups two and five (53.94 % and 78.69 %, respectively), while in group three the concentration of H2O2 was increased (408.25 %). In conclusion, Mn exerted a pro-oxidant effect on the 6th day as shown by the increased levels of oxidative markers. Minocycline extended the lifespan, increased the activity of SOD and reduced the levels of NO, H2O2 and mitochondrial MDA.  相似文献   

11.
In order to assess the role of the antioxidant defense system against salt treatment, the activities of some antioxidative enzymes and levels of some nonenzymatic antioxidants were estimated in Azolla caroliniana subjected to NaCl treatment (50 mM) for 10 days in absence or presence of nitrate. In A. caroliniana, salt treatment in absence of nitrate preferentially enhanced electrolyte leakage, lipid peroxidation, and H2O2 content. Also, the specific activitiy of guaiacol peroxidase (POX), glutathione reductase (GR), catalase (CAT), ascorbate peroxidase (APX), and superoxide dismutase (SOD) increased. In addition, reduced glutathione level increased and consequently, glutathione/oxidized glutathione (GSH/GSSG) ratio increased. Accumulation of Na+ increased significantly by salinity stress which resulted in a significant decrease in K+ accumulation, accordingly, K+/Na+ ratio decreased. Replacement of potassium chloride by potassium nitrate in nutrient solution under salt stress (50 mM NaCl) exhibited a reduction in electrolyte leakage, lipid peroxidation, and H2O2 contents. Conversely, the specific activity of APX, POX, GR, CAT, and SOD increased. The content of total ascorbate decreased, in contrast, reduced and GSSG increased and the ratio of GSH/GSSG increased 2.3-fold compared to the control value. Sodium ion accumulation was minimized in the presence of nitrate, potassium ion accumulation increased and as a result, K+/Na+ ratio increased when compared with the corresponding salinized plants. The differential changes in the specific activity of antioxidant enzymes due to NaCl treatment and nitrate may be useful as markers for recognizing salt tolerance in A. caroliniana.  相似文献   

12.
The effect of 0.5–1.5 mM salicylic acid (SA) on modulating reactive oxygen species metabolism and ascorbate–glutathione cycle in NaCl-stressed Nitraria tangutorum seedlings was investigated. The individual plant fresh weight (PFW) and plant dry weight (PDW) significantly increased under 100 mM NaCl while remained unchanged or decreased under 200–400 mM NaCl compared to the control. Superoxide anion (O 2 ·? ), hydrogen peroxide (H2O2), thiobarbituric acid reactive substances (TBARS), reduced ascorbate (AsA), dehydroascorbate (DHA), reduced glutathione (GSH) and oxidized glutathione (GSSG) increased whereas the ratios of AsA/DHA and GSH/GSSG decreased under varied NaCl treatments. Ascorbate peroxidase (APX) and glutathione reductase (GR) activities were enhanced while dehydroascorbate reductase (DHAR) and monodehydroascorbate reductase (MDHAR) activities remained unvaried under 100–400 mM NaCl stresses. In addition, exogenous SA further increased PFW, PDW and root/shoot ratio. SA effectively diminished O 2 ·? accumulation. H2O2 and TBARS decreased under 0.5 and 1.0 mM SA treatments compared to those without SA. 0.5 mM of SA increased while 1.0 and 1.5 mM SA decreased APX activities. DHAR activities were elevated by 0.5 and 1.0 mM SA but not by 1.5 mM SA. MDHAR and GR activities kept constant or significantly increased at varying SA concentrations. Under SA treatments, AsA and GSH contents further increased, DHA and GSSG levels remained unaltered, while the decreases in AsA/DHA and GSH/GSSG ratios were inhibited. The above results demonstrated that the enhanced tolerance of N. tangutorum seedlings conferred by SA could be attributed mainly to the elevated GR and DHAR activities as well as the increased AsA/DHA and GSH/GSSG ratios.  相似文献   

13.
Abiotic stresses, such as high temperature and drought, are major limiting factors of crop production and growth. Coronatine (COR), a structural and functional analog of jasmonates, is suggested to have a role in abiotic stress tolerance. The aim of our study was to examine whether pretreatment with COR enhances the tolerance of chickpea (Cicer arietinum L. cv ICC 4958) roots to PEG-induced osmotic stress, heat stress, and their combination. Therefore, seedlings raised hydroponically in a growth chamber for 15 days were pretreated with or without COR at 0.01 μM for 24 h and then exposed to 6 % PEG 6000-induced osmotic stress or heat (starting at 35 °C and then gradually increased 1 °C every 15 min and kept at 44 °C for 1 h) stress for 3 days. After different treatment periods, the changes in relative growth rate (RGR); malondialdehyde (MDA), proline (Pro), and hydrogen peroxide (H2O2) contents; and the activities of antioxidant enzymes/isoenzymes in roots of chickpea seedlings with or without 0.01 μM COR application were studied. RGR in roots was increased by COR application. Under all stress conditions, H2O2, MDA, and Pro levels increased sharply, but pretreatment with COR significantly reduced them. Moreover, COR increased the activities of H2O2 scavenger enzymes such as catalase (CAT) under heat stress, ascorbate peroxidase (POX) under PEG stress, and CAT and POX under combined stresses. Therefore, COR might alleviate adverse effects of PEG stress and heat stress and combined stresses on roots of chickpea by reduction of H2O2 production, enhancing or keeping the existent activity of antioxidant enzymes, thereby preventing membrane peroxidation.  相似文献   

14.
The effect of proline on the antioxidant system in the leaves of eight species of wild almond (Prunus spp.) exposed to H2O2-mediated oxidative stress was studied. The levels of endogenous proline (Pro) and hydrogen peroxide, and the activities of total superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX), glutathione reductase (GR), and guaiacol peroxidase (POD) were measured. The degradation of chlorophyll but not carotenoids occurred in leaves in the solution of 5 mM H2O2. An increase in membrane lipid peroxidation was observed in H2O2 treatment, as assessed by MDA level and percentage of membrane electrolyte leakage (EL). Significant increases in total SOD and CAT activities, as well as decreases in APX and POD activities, were detected in H2O2-treated leaves. The three SOD isoforms showed different behavior, as Mn-SOD activity was enhanced by H2O2, whereas Fe-SOD and Cu/Zn-SOD activities were inhibited. In addition, Pro accumulation up to 0.1 ??mol/g fr wt, accompanied by significant decreases in ascorbate and glutathione levels, was observed in H2O2-treated leaves. After two different treatments with 10 mM Pro + 5 mM H2O2, total SOD and CAT activities were similar to the levels in control plants, while POD and APX activities were higher if compared to the leaves exposed only to H2O2. Pro + H2O2 treatments also caused a strong reduction in the cellular H2O2 and MDA contents and EL. The results showed that Pro could have a key role in protecting against oxidative stress injury of wild almond species by decreasing membrane oxidative damage.  相似文献   

15.
Effect of salinity on antioxidant responses of chickpea seedlings   总被引:1,自引:0,他引:1  
The changes in the activity of antioxidant enzymes, like superoxide dismutase, ascorbate peroxidase, catalase and glutathione reductase, and growth parameters such as length, fresh and dry weight, proline and H2O2 contents, chlorophyll fluorescence (Fv/Fm), quantum yield of PSII and the rate of lipid peroxidation in terms of malondialdehyde in leaf and root tissues of a chickpea cultivar (Cicer arietinum L. cv. Gökçe) under salt treatment were investigated. Plants were subjected to 0.1, 0.2 and 0.5 M NaCl treatments for 2 and 4 days. Compared to controls, salinity resulted in the reduction of length and of the fresh and dry weights of shoot and root tissues. Salinity caused significant (< 0.05) changes in proline and MDA levels in leaf tissue. In general, a dose-dependent decrease was observed in H2O2 content, Fv/Fm and quantum yield of photosynthesis under salt stress. Leaf tissue extracts exhibited three activity bands, of which the higher band was identified as MnSOD and the others as FeSOD and Cu/ZnSOD. A significant enhancement was detected in the activities of Cu/ZnSOD and MnSOD isozymes in both tissues. APX and GR activities exhibited significant increases (< 0.05) in leaf tissue under all stress treatments, whereas no significant change was observed in root tissue. The activity of CAT was significantly increased under 0.5 M NaCl stress in root tissue, while its activity was decreased in leaf tissue under 0.5 M NaCl stress for 4 days. These results suggest that CAT and SOD activities play an essential protective role against salt stress in chickpea seedlings.  相似文献   

16.
The present study evaluates the beneficial effects of the hydrogen sulfide (H2S) donor, sodium hydrosulfide (0 and 0.3 mM), on the growth of oilseed rape (Brassica napus L. cv. ZS 758) seedlings under aluminum (Al) stress (0, 0.1, and 0.3 mM). Results showed that Al stress decreased the seedling growth by reducing the shoot and root length, biomass, and antioxidant enzymes, which could be illustrated by increased levels of malondialdehyde (MDA), production of hydrogen peroxide (H2O2), and accumulation of Al in the shoots. Pretreatment with H2S reduced MDA and H2O2 levels in the leaves and roots of B. napus seedlings. Moreover, activities of antioxidant enzymes (APX, CAT, APX, SOD, POD, and GR) were elevated significantly with the application of H2S under Al stress. The microscopic examination confirmed that higher levels of Al completely impaired leaf mesophyll and root tip cells. Chloroplasts were spongy shaped with dissolved thylakoid membranes and more starch grains. Root tip cells showed visible symptoms under Al toxicity such as deposition of Al in vacuoles and disruption of whole cell organelles. Under pretreatment with exogenous H2S, cell structures were improved and presented a clean mesophyll cell and chloroplast possessing well-developed thylakoid membranes as well as fewer starch grains. A number of modifications could be observed in root tip cells, that is, mature mitochondria, long endoplasmic reticulum as well as golgi bodies, under the combined application of H2S and Al. On the basis of our results, we can conclude that H2S has a promotive effect which could improve plant survival under Al stress.  相似文献   

17.
Chickpea plants were subjected to salt stress for 48 h with 100 mM NaCl, after 50 days of growth. Other batches of plants were simultaneously treated with 0.2 mM sodium nitroprusside (NO donor) or 0.5 mM putrescine (polyamine) to examine their antioxidant effects. Sodium chloride stress adversely affected the relative water content (RWC), electrolyte leakage and lipid peroxidation in leaves. Sodium nitroprusside and putrescine could completely ameliorate the toxic effects of salt stress on electrolyte leakage and lipid peroxidation and partially on RWC. No significant decline in chlorophyll content under salt stress as well as with other treatments was observed. Sodium chloride stress activated the antioxidant defense system by increasing the activities of peroxidase (POX), catalase (CAT) superoxide dismutase (SOD) and ascorbate peroxidase (APX). However no significant effect was observed on glutathione reductase (GR) and dehydro ascorbate reductase (DHAR) activities. Both putrescine and NO had a positive effect on antioxidant enzymes under salt stress. Putrescine was more effective in scavenging superoxide radical as it increased the SOD activity under salt stress whereas nitric oxide was effective in hydrolyzing H2O2 by increasing the activities of CAT, POX and APX under salt stress.  相似文献   

18.
The effects of foliar spraying with spermidine (Spd) on antioxidant system in tomato (Lycopersicon esculentum Mill.) seedlings were investigated under high temperature stress. The high temperature stress significantly inhibited plant growth and reduced chlorophyll (Chl) content. Application of exogenous 1 mM Spd alleviated the inhibition of growth induced by the high temperature stress. Malondialdehyde (MDA), hydrogen peroxide (H2O2) content and superoxide anion (O2) generation rate were significantly increased by the high temperature stress, but Spd significantly reduced the accumulation of reactive oxygen species (ROS) and MDA content under the stress. The high temperature stress significantly decreased glutathione (GSH) content and activities of superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), ascorbate peroxidase (APX), glutathione reductase (GR), monodehydroascorbate reductase (MDHAR) and dehydroascorbate reductase (DHAR), but increased contents of dehydroascorbic acid (DHA), ascorbic acid (AsA), and oxidized glutathione (GSSG) in tomato leaves. However, Spd significantly increased the activities of antioxidant enzymes, levels of antioxidants and endogenous polyamines in tomato leaves under the high temperature stress. In addition, to varying degrees, Spd regulated expression of MnSOD, POD, APX2, APX6, GR, MDHAR, DHAR1, and DHAR2 genes in tomato leaves exposed to the high temperature stress. These results suggest that Spd could change endogenous polyamine levels and alleviate the damage by oxidative stress enhancing the non-enzymatic and enzymatic antioxidant system and the related gene expression.  相似文献   

19.
This study was undertaken to investigate the possible involvement of the antioxidant defense and glyoxalase systems in protecting rice seedlings from heat-induced damage in the presence of spermidine (Spd). Hydroponically grown 14-day-old seedlings were subjected to foliar spray with Spd (1 mM, 24 h) prior to heat stress (42 °C, 48 h) followed by subsequent recovery (27 °C, 48 h). Lipoxygenase activity, malondialdehyde (MDA), hydrogen peroxide (H2O2) and proline (Pro) content increased significantly whereas fresh weight (FW) and chlorophyll (Chl) content decreased during heat stress and after recovery, indicating unrecoverable damage to rice seedlings. Heat-induced damage was also evident in decreased levels of ascorbate (AsA), glutathione (GSH), and AsA and GSH redox ratios. Superoxide dismutase (SOD) and catalase (CAT) activities increased during heat stress but declined after recovery. Activities of glutathione peroxidase (GPX), ascorbate peroxidase (APX), monodehydroascorbate reductase, dehydroascorbate reductase (DHAR) and glutathione reductase (GR) decreased during heat stress but an opposite trend for most of these enzymes was observed after recovery. Heat stress also resulted in significant increases in the activities of glyoxalase enzymes (Gly I and Gly II). In contrast, exogenous Spd protected rice seedlings from heat-induced damage as marked by lower levels of MDA, H2O2, and Pro content coupled with increased levels of AsA, GSH, FW, Chl, and AsA and GSH redox status. After recovery, Spd-pretreated heat-exposed seedlings displayed higher activities of SOD, CAT, GPX, GST APX, DHAR and GR as well as of Gly I and Gly II. In addition, polyamine analysis revealed that exogenously applied Spd significantly elevated the levels of free and soluble conjugated Spd. Therefore, we conclude from our results that heat exposure provoked an oxidative burden while enhancement of the antioxidative and glyoxalase systems by Spd rendered rice seedlings more tolerant to heat stress. Further, co-induction of the antioxidative and glyoxalase systems was closely associated with Spd mediated enhanced level of GSH.  相似文献   

20.
Recent findings have suggested that H2O2 is an important signaling molecule for regulating plant responses to abiotic stress. H2O2 plays a critical role in NaCl stress. Heme oxygenase (HO) is known to play a protective role against oxidative stress. In this study, we examined the possible involvement of H2O2 in regulating NaCl-promoted HO activity in rice roots. Treatment with NaCl increased HO activity and H2O2 content in rice roots. As well, NaCl could induce OsHO1 mRNA expression. NaCl (150 mM) and NaNO3 (150 mM) were equally effective in inducing HO activity. However, mannitol at the concentration (276 mM) iso-osmotic with 150 mM NaCl had no effect on HO activity. NaCl-promoted HO activity and OsHO1 expression in rice roots was reduced by NADPH oxidase inhibitors i.e. dipehnyleneiodonium and imidazole. Moreover, exogenous application of H2O2 enhanced the activity of HO and the mRNA level of OsHO1. Our data suggest that H2O2 production plays a positive role in NaCl- induced HO activity by enhancing its mRNA level in rice roots.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号