首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The objective of this work is to compare the three‐dimensional structures of “humanized” and mouse–human chimeric forms of a murine monoclonal antibody elicited against human γ‐interferon. It is also to provide structural explanations for the small differences in the affinities and biological interactions of the two molecules for this antigen. Antigen‐binding fragments (Fabs) were produced by papain hydrolysis of the antibodies and crystallized with polyethylene glycol (PEG) 8000 by nearly identical microseeding procedures. Their structures were solved by X‐ray analyses at 2.9 Å resolution, using molecular replacement methods and crystallographic refinement. Comparison of these structures revealed marked similarities in the light (L) chains and near identities of the constant (C) domains of the heavy (H) chains. However, the variable (V) domains of the heavy chains exhibited substantial differences in the conformations of all three complementarity‐determining regions (CDRs), and in their first framework segments (FR1). In FR1 of the humanized VH, the substitution of serine for proline in position 7 allowed the N‐terminal segment (designated strand 4‐1) to be closely juxtaposed to an adjacent strand (4‐2) and form hydrogen bonds typical of an antiparallel β‐pleated sheet. The tightening of the humanized structure was relayed in such a way as to decrease the space available for the last portion of HFR1 and the first part of HCDR1. This compression led to the formation of an α‐helix involving residues 25–32. With fewer steric constraints, the corresponding segment in the chimeric Fab lengthened by at least 1 Å to a random coil which terminated in a single turn of 310 helix. In the humanized Fab, HCDR1, which is sandwiched between HCDR2 and HCDR3, significantly influenced the structures of both regions. HCDR2 was forced into a bent and twisted orientation different from that in the chimeric Fab, both at the crown of the loop (around proline H52a) and at its base. As in HCDR1, the last few residues of HCDR2 in the humanized Fab were compressed into a space‐saving α‐helix, contrasting with a more extended 310 helix in the chimeric form. HCDR3 in the humanized Fab was also adjusted in shape and topography. The observed similarities in the functional binding activities of the two molecules can be rationalized by limited induced fit adjustments in their structures on antigen binding. While not perfect replicas, the two structures are testimonials to the progress in making high affinity monoclonal antibodies safe for human use. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

2.
Synthetic site-directed ligands   总被引:1,自引:0,他引:1  
Complexes of nucleotides, peptides and aromatic hapten-like compounds with immunoglobulin fragments were studied by X-ray analysis. After tri- or hexanucleotides of deoxythymidylate were diffused into triclinic crystals of a Fab (BV04-01) with specificity for single-stranded DNA, extensive changes were detected throughout the structure of the protein. The Fab co-crystallized with a tri- or pentanucleotide in a different space group (monoclinic), an observation sometimes correlated with alterations in the structure of the 'native' protein. Structural analyses of the co-crystals are in progress for direct comparisons with the unliganded Fab. In crystals of a human (Mcg) Bence-Jones dimer, synthetic opioid peptides, chemotactic peptides or dinitrophenyl (DNP) derivatives could be diffused into a large conical binding cavity. The conformations of both the ligand and the protein were usually altered during the binding process. At the base of the cavity tyrosine residues could be displaced like trap-doors to permit entry of some opioid peptides and DNP compounds into a deep binding pocket. In co-crystals of the dimer and bis(DNP)lysine, two ligand molecules were bound in tandem, one in the main cavity and the second in the deep pocket. One ligand adopted an extended conformation, with the epsilon-DNP ring near the floor of the main cavity and the alpha-DNP group in solvent outside the binding site. There were no significant conformational changes in the protein. In contrast, the second ligand was very compact, with DNP rings immersed in the deep pocket, and the binding site was expanded to accommodate the oversized ligand. Peptides designed to be specific for the main cavity were incrementally constructed from minimal binding units by M. Geysen, G. Trippick, S. Rodda and their colleagues. A pentapeptide optimized for binding by this method was diffused into a crystal of the dimer and found by Fourier difference analysis to lodge exclusively in the main cavity as predicted. Binding regions in the BV04-01 Fab and the Mcg dimer were markedly different in size and shape. The Fab had a groove-type site, in which a layer of sidechains acted like a false floor over regions analogous to the cavity and deep pocket of the Bence-Jones dimer.  相似文献   

3.
Monoclonal antibodies can acquire the property of engagement of a second antigen via fusion methods or modification of their CDR loops, but also by modification of their constant domains, such as in the mAb2 format where a set of mutated amino acid residues in the CH3 domains enables a high-affinity specific interaction with the second antigen. We tested the possibility of introducing multiple binding sites for the second antigen by replacing the Fab CH1/CL domain pair with a pair of antigen-binding CH3 domains in a model scaffold with trastuzumab variable domains and VEGF-binding CH3 domains. Such bispecific molecules were produced in a “Fab-like” format and in a full-length antibody format. Novel constructs were of expected molecular composition using mass spectrometry. They were expressed at a high level in standard laboratory conditions, purified as monomers with Protein A and gel filtration and were of high thermostability. Their high-affinity binding to both target antigens was retained. Finally, the Her2/VEGF binding domain-exchanged bispecific antibody was able to mediate a potentiated surface Her2-internalization effect on the Her2-overexpressing cell line SK-BR-3 due to improved level of cross-linking with the endogenously secreted cytokine. To conclude, bispecific antibodies with Fabs featuring exchanged antigen-binding CH3 domains offer an alternative solution in positioning and valency of antigen binding sites.  相似文献   

4.
《Gene》1996,168(1):9-14
The display of antibody (Ab) fragments (Fab) on the surface of filamentous bacteriophage (phage) and selection of phage that interact with a particular antigen (Ag) has enabled the isolation of Fab that bind nucleic acids. Nucleic acid (NA) binding Ab occur in vivo in connective tissue disease patients and certain inbred strains of mice and are thought to be pathogenic. Although there is ample data concerning the amino acid (aa) sequence of murine monoclonal Ab (mAb) reactive with DNA, significantly less is known about how autoAb interact with NA. The complementarity-determining regions (CDR) contained in the Fab contribute the most to Ag binding, especially through heavy (H)-chain CDR 3. We have examined the role of individual H-chain CDR of a previously isolated recombinant single-stranded DNA-binding Fab (DNA-1) in nucleic acid interaction using a combination of H-chain CDR switching and solution-binding experiments. The three H-chain CDR of DNA-1 Fab were independently switched with the H-chain CDR of a Fab (D5) with very similar sequence and framework (FR) that binds DNA poorly in order to create all possible H-chain CDR combinations. The chimeric Fab genes were bacterially expressed, and their products were purified and analyzed. Results indicated that the H-chain CDR 3 of DNA-1 Fab, in the context of the remainder of the H-chain of D5 Fab, restored binding to oligo(dT)15 to 60% of DNA-1 levels, whereas H-chain CDR 1 and 3 of DNA-1 with CDR 2 of D5 Fab restored binding to 100%. A combination of H-chain CDR 2 and 3 of DNA-1 Fab with H-chain CDR 1 of D5, unexpectedly resulted in the ability of the chimeric Fab to bind RNA preferentially over DNA. These studies demonstrate the importance of both H-chain CDR 1 and 3 in DNA recognition and further suggest that the specificity of the type of NA recognized by a particular Fab can be drastically altered by exchanging CDR.  相似文献   

5.
Single-chain variable fragment (scFv) antibodies are widely used as diagnostic and therapeutic agents or biosensors for a majority of human disease. However, the limitations of the present scFv antibody in terms of stability, solubility, and affinity are challenging to produce by traditional antibody screening and expression formats. We describe here a feasible strategy for creating the green fluorescent protein (GFP)-based antibody. Complementarity-determining region 3 (CDR3), which retains the antigen binding activity, was introduced into the structural loops of superfolder GFP, and the result showed that CDR3-inserted GFP displayed almost the same fluorescence intensity as wild-type GFP, and the purified proteins of CDR3 insertion showed the similar binding activity to antigen as the corresponding scFv. Among of all of the CDRs, CDR3s are responsible for antigen recognition, and only the CDR3a insertion is the best format for producing GFP-based antibody binding to specific antigen. The wide versatility of this system was further verified by introducing CDR3 from other scFvs into loop 9 of GFP. We developed a feasible method for rapidly and effectively producing a high-affinity GFP-based antibody by inserting CDR3s into GFP loops. Further, the affinity can be enhanced by specific amino acids scanning and site-directed mutagenesis. Notably, this method had better versatility for creating antibodies to various antigens using GFP as the scaffold, suggesting that a GFP-based antibody with high affinity and specificity may be useful for disease diagnosis and therapy.  相似文献   

6.
The crystal structure of a mouse T-cell antigen receptor (TCR) Fv fragment complexed to the Fab fragment of a specific anti-clonotypic antibody has been determined to 2.6 A resolution. The polypeptide backbone of the TCR V alpha domain is very similar to those of other crystallographically determined V alphas, whereas the V beta structure is so far unique among TCR V beta domains in that it displays a switch of the c" strand from the inner to the outer beta-sheet. The beta chain variable region of this TCR antigen-binding site is characterized by a rather elongated third complementarity-determining region (CDR3beta) that packs tightly against the CDR3 loop of the alpha chain, without leaving any intervening hydrophobic pocket. Thus, the conformation of the CDR loops with the highest potential diversity distinguishes the structure of this TCR antigen-binding site from those for which crystallographic data are available. On the basis of all these results, we infer that a significant conformational change of the CDR3beta loop found in our TCR is required for binding to its cognate peptide-MHC ligand.  相似文献   

7.
Multi-disciplinary studies of fluorescein-protein conjugates have led to the generation of a family of antibodies with common idiotypes and affinities for fluorescein ranging over five orders of magnitude. The high affinity 4-4-20 prototype traps the ligand in a highly complementary binding slot, which is lined by multiple aromatic side-chains. An antibody (9-40) of intermediate affinity belongs to the same idiotypic family as 4-4-20 and shares substantial amino acid identities within the VL and VH domains. To establish the structural basis for the affinity differences, we solved the crystal structure of the 9-40 Fab-fluorescein complex at a resolution of 2.3A. Similar to 4-4-20, 9-40 binds fluorescein in a tight aromatic slot with its xanthenonyl ring system accommodated by end-on insertion. However, the combined effects of the amino acid substitutions have resulted in reorganization of the binding site, with the HCDR3 loops showing the greatest differences in conformations. Access to the binding site of 9-40 is substantially more open, leaving the fluorescein's phenylcarboxylate moiety partially exposed to solvent. In addition to the usage of a different D (diversity) mini-gene encoding the HCDR3 loop, the decrease in fluorescein affinity in the 9-40 antibody family appears to be correlated with the substitution of histidine (9-40) for arginine (4-4-20) in position 34 of the antibody light chains.  相似文献   

8.
Light (L) chain dimers expressed by multiple myeloma cells and collected as Bence-Jones proteins from the urine of human subjects were tested for their ability to form deposits in fibroblast monolayer cell cultures. Bence-Jones proteins from subjects with primary amyloidosis associated with L chains were shown to form fibrillar deposits by the in vitro assay introduced in this report. Filaments interspersed with nascent collagen could be detected after only 48 h. Deposition of L chains continued over a period of 72 h culminating in the appearance of dense fibrils with widths of 80-100 A and a variety of lengths. Formation of amyloid-like fibrils was accompanied by interference with the maturation of the collagen produced by the fibroblast cells. Fibrils composed of the Mcg lambda-type L chain were deposited between collagen fibers, thus expanding them laterally and leading to their partial disintegration. Mature collagen was completely missing from fibroblast monolayers exposed to the Sea lambda chain and the Jen kappa chain. Collagen with the characteristic striped pattern matured normally in control samples, such as those not dosed with amyloid precursors or those treated with a non-amyloidogenic Bence-Jones protein (e.g., the Hud lambda chain dimer). By immunochemical techniques using fluorescein- and gold-labeled anti-L chain antibodies, amyloidogenic L chains were shown to decorate the strands of nascent collagen. This observation suggests that amyloidogenic L chains are concentrated in the extracellular matrix by monovalent antigen-antibody type reactions. The capacity of the Mcg L chain dimer to bind collagen-derived sequences was tested by soaking crystals with a collagenase substrate, PZ-Pro-Leu-Gly-Pro-D-Arg. Difference Fourier analysis at 2.7 A resolution indicated that the PZ-peptide is a site-filling ligand. It could not be removed from the active site by perfusion of the crystal with ammonium sulfate crystallizing media. Similar experiments with the collagen-derived peptide (Pro-Pro-Gly)(5) showed substantial hysteresis effects extending from one end of the Mcg dimer to the other. After the ligand was withdrawn, the active site of the Mcg dimer could no longer bind the PZ-peptide. However, if the active site was first blocked by the PZ-peptide and subsequently exposed to the (Pro-Pro-Gly)(5) peptide, the difference Fourier map was indistinguishable from that obtained with the PZ-peptide alone. We concluded that amyloidogenic L chains such as the Mcg dimer could be concentrated in the perivascular space by binding to normal tissue constituents. These components include nascent collagen, which can be deterred from maturing as a result of this binding. Participation in such pathological activity is also self-destructive to the amyloidogenic L chains, which lose their binding capabilities for collagen-derived peptides and also become susceptible to irreversible conversion to amyloid fibrils. All of these events may be prevented by prior treatment of the amyloidogenic L chains with site-filling ligands. (c) 2000 John Wiley & Sons, Ltd.  相似文献   

9.
To understand better how selection processes balance the benefits of Ig repertoire diversity with the risks of autoreactivity and nonfunctionality of highly variable IgH CDR3s, we collected millions of rearranged germline IgH CDR3 sequences by deep sequencing of DNA from mature human naive B cells purified from four individuals and analyzed the data with computational methods. Long HCDR3 regions, often components of HIV-neutralizing Abs, appear to derive not only from incorporation of long D genes and insertion of large N regions but also by usage of multiple D gene segments in tandem. However, comparison of productive and out-of-frame IgH rearrangements revealed a selection bias against long HCDR3 loops, suggesting these may be disproportionately either poorly functional or autoreactive. Our data suggest that developmental selection removes HCDR3 loops containing patches of hydrophobicity, which are commonly found in some auto-antibodies, and at least 69% of the initial productive IgH rearrangements are removed from the repertoire during B cell development. Additionally, we have demonstrated the potential utility of this new technology for vaccine development with the identification in all four individuals of related candidate germline IgH precursors of the HIV-neutralizing Ab 4E10.  相似文献   

10.
The new antigen receptor (IgNAR) is an antibody unique to sharks and consists of a disulphide-bonded dimer of two protein chains, each containing a single variable and five constant domains. The individual variable (V(NAR)) domains bind antigen independently, and are candidates for the smallest antibody-based immune recognition units. We have previously produced a library of V(NAR) domains with extensive variability in the CDR1 and CDR3 loops displayed on the surface of bacteriophage. Now, to test the efficacy of this library, and further explore the dynamics of V(NAR) antigen binding we have performed selection experiments against an infectious disease target, the malarial Apical Membrane Antigen-1 (AMA1) from Plasmodium falciparum. Two related V(NAR) clones were selected, characterized by long (16- and 18-residue) CDR3 loops. These recombinant V(NAR)s could be harvested at yields approaching 5mg/L of monomeric protein from the E. coli periplasm, and bound AMA1 with nanomolar affinities (K(D)= approximately 2 x 10(-7) M). One clone, designated 12Y-2, was affinity-matured by error prone PCR, resulting in several variants with mutations mapping to the CDR1 and CDR3 loops. The best of these variants showed approximately 10-fold enhanced affinity over 12Y-2 and was Plasmodium falciparum strain-specific. Importantly, we demonstrated that this monovalent V(NAR) co-localized with rabbit anti-AMA1 antisera on the surface of malarial parasites and thus may have utility in diagnostic applications.  相似文献   

11.
Anti-DNA antibodies play important roles in the pathogenesis of autoimmune diseases. They also represent a unique and relatively unexplored class of DNA-binding protein. Here, we present a study of conformational changes induced by DNA binding to an anti-ssDNA Fab known as DNA-1. Three crystal structures are reported: a complex of DNA-1 bound to dT3, and two structures of the ligand-free Fab. One of the ligand-free structures was determined from crystals exhibiting perfect hemihedral twinning, and the details of structure determination are provided. Unexpectedly, five residues (H97-H100A) in the apex of heavy chain complementarity-determining region 3 (HCDR3) are disordered in both ligand-free structures. Ligand binding also caused a 2-4A shift of the backbone of Tyr L92 and ordering of the L92 side-chain. In contrast, these residues are highly ordered in the Fab/dT3 complex, where Tyr H100 and Tyr H100A form intimate stacking interactions with DNA bases, and L92 forms the 5' end of the binding site. The structures suggest that HCDR3 is very flexible and adopts multiple conformations in the ligand-free state. These results are discussed in terms of induced fit and pre-existing equilibrium theories of ligand binding. Our results allow new interpretations of existing thermodynamic and mutagenesis data in terms of conformational entropy and the volume of conformational space accessible to HCDR3 in the ligand-free state. In the context of autoimmune disease, plasticity of the ligand-free antibody could provide a mechanism by which anti-DNA antibodies bind diverse host ligands, and thereby contribute to pathogenicity.  相似文献   

12.
A A Komissarov  S L Deutscher 《Biochemistry》1999,38(44):14631-14637
The recombinant anti-ssDNA Fab, DNA-1, and 16 heavy chain complementarity determining region 3 (HCDR3) mutant variants were selected for thermodynamic characterization of ssDNA binding. The affinity of Fab to (dT)(15) under different temperatures and cation concentrations was measured by equilibrium fluorescence quenching titration. Changes in the standard Gibbs free binding energy (DeltaG degrees ), enthalpy (DeltaH degrees ), entropy (DeltaS degrees ), and the number of ionic pairs (Z) formed upon interaction were determined. All Fab possessed an enthalpic nature of interaction with ssDNA, that was opposite to the previously reported entropically driven binding to dsDNA [Tanha, J., and Lee, J. S. (1997) Nucleic Acids Res. 25, 1442-1449]. The contribution of separate residues of HCDR3 to ssDNA interaction was investigated. Analysis of the changes in DeltaH degrees and TDeltaS degrees, induced by substitutions in HCDR3, revealed a complete entropy/enthalpy compensation. Mutations R98A and D108A at the ends of the HCDR3 loop produced increases in TDeltaS degrees ( )()by 10.4 and 15.9 kcal/mol, respectively. Substitution of proline for arginine at the top of HCDR3 resulted in a new electrostatic contact with (dT)(15). The observed linear correlation of Z and DeltaG degrees ( )()of nonelectrostatic interactions (DeltaG degrees (nonel)) at the anti-ssDNA combining site was used for the estimation of the specific DeltaG degrees (nonel) [-20 to -25 cal/(mol.A(2))], the average contact area (450-550 A(2)), the maximal Z (6-7), and the limit in affinity under standard cation concentrations [(0.5-1) x 10(8) M(-)(1)] for this family of Fab. Results suggested that rational engineering of HCDR3 could be utilized to control the affinity and likely the specificity of Ab-DNA interactions.  相似文献   

13.
Several gene fusion technologies have been successfully applied to label particular subunits or domains within macromolecular complexes to enable positional mapping of electron microscopy (EM) density maps, but exogenous fusion of a protein domain into the target polypeptide can cause unwanted structural and functional outcomes. Fab fragments from antibodies can be used as labeling reagents during EM visualization without gene manipulation of the target protein, but this method requires a panel of high-affinity antibodies that recognize a wide variety of epitopes. Linear peptide tags and their anti-tag antibodies can be used but they have a limited mapping ability as their placement is usually limited to the terminal regions of a protein. The PA dodecapeptide epitope tag (GVAMPGAEDDVV), forms a tight β-turn in the antigen binding pocket of its antibody (NZ-1). This capability allows for insertion of the PA tag into various surface-exposed loops within a multi-domain cell adhesion receptor, αIIbβ3 integrin. We confirmed that the purified PA-tagged integrin ectodomain fragments can form a stable complex with NZ-1 Fab. Negative stain EM of the various integrin-NZ-1 complexes revealed that a majority of the particles exhibited a clear density corresponding to the NZ-1 Fab; and the positions of the bound Fab were in good agreement with the predicted location of the inserted PA tag. The high-affinity and insertion-compatibility of the PA tag system allowed us to develop a new EM labeling methodology applicable to proteins for which good antibodies are not available.  相似文献   

14.
Isolator piglets infected with porcine reproductive and respiratory syndrome virus (PRRSV), which is related to the lactate dehydrogenase-elevating virus of mice, develop severe hypergammaglobulinemia, lymph node adenopathy, and autoimmune disease. Many of the polyclonally activated B cell clones bear hydrophobic H chain CDR3s (HCDR3s) and are disseminated to most lymphoid tissues. We show in this study that B cells with identical hydrophobic HCDR3s are expressed with all major isotypes in PRRSV-infected piglets (PIPs), explaining why PRRSV-induced hypergammaglobulinemia is seen in all major isotypes. Up to one-third of randomly selected VDJ clones from the respiratory tract of PIPs have hydrophobic HCDR3s exclusively bearing VDJ rearrangements with CDR1, CDR2, and nearly intact DH segments in germline configuration. These HCDR3s are long and D(H)A and D(H)B are exclusively used in reading frame 3. A minimal tripeptide motif containing three hydrophobic amino acids (Leu, Val, and Ile) or any two plus alanine is common to this hydrophobic patch. We propose that PRRSV infection causes generalized Ag-independent B cell activation and hypergammaglobulinemia with biased expansion of a subpopulation of the preimmune repertoire with hydrophobic binding sites that normally disappears during Ag-driven repertoire diversification. Elevated Ig levels in PIP cannot be explained as antiviral Abs; some Igs can account for autoantibodies to dsDNA and Golgi, whereas those with hydrophobic binding sites may account for the Ig aggregates seen in PIPs and lactate dehydrogenase-elevating virus-infected mice. This diversion from normal repertoire development may explain the delayed immune response to PRRSV.  相似文献   

15.
Allergies are caused by the immune reaction to commonly harmless proteins, allergens. This reaction is typified by immunoglobulin E (IgE) antibodies. We report the crystal structure of an IgE Fab fragment in complex with beta-lactoglobulin (BLG), one of the major allergens of bovine milk. The solved structure shows how two IgE/Fab molecules bind the dimeric BLG. The epitope of BLG consists of six different short fragments of the polypeptide chain, which are located especially in the beta strands, covering a flat area on the allergen surface. All six CDR (complementary-determining region) loops of the IgE Fab participate in the binding of BLG. The light chain CDR loops are responsible for the binding of the flat beta sheet region of BLG. The IgE epitope is different from common IgG epitopes that are normally located in the exposed loop regions of antigens and observed also in the two recently determined allergen-IgG complexes.  相似文献   

16.
We have characterized and crystallized a human lambda I light-chain dimer, Bence-Jones protein Loc, which has variable (V) region antigenic determinants characteristic for the lambda I subgroup and constant (C) region determinants of the C lambda I gene Mcg. The crystal structure was determined to 3-A resolution; the R factor is 0.27. The angle formed by the twofold axes of the V and C domains, the "elbow bend", is 97 degrees, the smallest found so far for an antibody fragment. The antigen-binding site formed by the two V domains of the Loc light chain differs significantly from those of other immunoglobulin molecules (light-chain dimers and Fab fragments) for which X-ray crystallographic data are available. Whereas, in other antibody fragments, the V domains are related by a local twofold axis, a local twofold screw axis with a translational component of 3.5 A relates the V domains in protein Loc. In contrast to the classic antigen binding "pocket" formed by V domain interactions in the previously characterized antibody structures, the V region associations in protein Loc result in a central protrusion in the binding site, with grooves on two sides of the protrusion. The structure of protein Loc indicates that immunoglobulins are physically capable of forming a more diverse spectrum of antigen-binding sites than has been heretofore apparent. Moreover, the unusual protruding nature of the binding site may be analogous to structures required for some anti-idiotypic antibodies. Further, the complementarity-determining residues form parts of two independent grooves.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
IL-17A is a pro-inflammatory cytokine produced by the newly identified Th17 subset of T-cells. We have isolated a human monoclonal antibody to IL-17A (CAT-2200) that can potently neutralize the effects of recombinant and native human IL-17A. We determined the crystal structure of IL-17A in complex with the CAT-2200 Fab at 2.6 Å resolution in order to provide a definitive characterization of the epitope and paratope regions. Approximately a third of the IL-17A dimer is disordered in this crystal structure. The disorder occurs in both independent copies of the complex in the asymmetric unit and does not appear to be influenced by crystal packing. The complex contains one IL-17A dimer sandwiched between two CAT-2200 Fab fragments. The IL-17A is a disulfide-linked homodimer that is similar in structure to IL-17F, adopting a cystine-knot fold. The structure is not inconsistent with the previous prediction of a receptor binding cavity on IL-17 family members. The epitope recognized by CAT-2200 is shown to involve 12 amino acid residues from the quaternary structure of IL-17A, with each Fab contacting both monomers in the dimer. All complementarity-determining regions (CDRs) in the Fab contribute to a total of 16 amino acid residues in the antibody paratope. In vitro affinity optimization was used to generate CAT-2200 from a parental lead antibody using random mutagenesis of CDR3 loops. This resulted in seven amino acid changes (three in VL-CDR3 and four in VH-CDR3) and gave an approximate 30-fold increase in potency in a cell-based neutralization assay. Two of the seven amino acids form part of the CAT-2200 paratope. The observed interaction site between CAT-2200 and IL-17A is consistent with data from hydrogen/deuterium exchange mass spectrometry and mutagenesis approaches.  相似文献   

18.
It was reported previously that radiation-induced cytotoxicity in V79A03 (V79) cells was attenuated by pretreatment of cells with leukotriene C4 (LTC4), leading us to determine that V79 cells possessed specific binding sites, with characteristics of receptors, for LTC4 (see the preceding, companion communication). Additional studies were conducted to determine the subcellular distribution and the chemical nature of the LTC4 binding site in V79 cells. Trypsin treatment of cells before LTC, binding assays resulted in a 74% reduction in high-affinity binding. In tests to examine the subcellular location of LTC4 binding, plasma membrane and nuclear fractions were obtained from V79 cells. In contrast to Scatchard analyses of LTC4 binding to intact cells which were curvilinear, Scatchard analyses of nuclear and plasma membrane fractions were linear, indicative of the presence in these cellular substituents of low and high-affinity binding, respectively. To examine the nature of the high-affinity LTC4 binding sites, intact V79 cells were photolyzed with [3H]-LTC4 rendered photoactive by preincubation with N-hydroxysuccinimidyl-4-azidobenzoate. The cell-bound radioactivity migrated during sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) with an apparent molecular weight of approaximately 40 kdal. Five different commercial preparations of glutathione-S-transferase (GST), which has been implicated as a source of LTC4 “specific binding” in other cells, migrated in the same SDS_PAGE system with an apparent molecular weigth of 20–24 kdal. Furthermore, preincubations of V79 cells with three antisera generated against GST had minimal effects upon subsequent LTC4 binding to intact cells. These data, suggest that the radioprotective effect of LTC4 upon V79 cells may be attributable to a receptor-mediated phenomenon which appears distinct from leukotriene binding to GST.  相似文献   

19.
The X-ray structure of the Fab fragment from the anti-c-myc antibody 9E10 was determined both as complex with its epitope peptide and for the free Fab. In the complex, two Fab molecules adopt an unusual head to head orientation with the epitope peptide arranged between them. In contrast, the free Fab forms a dimer with different orientation. In the Fab/peptide complex the peptide is bound to one of the two Fabs at the "back" of its extended CDR H3, in a cleft with CDR H1, thus forming a short, three-stranded antiparallel beta-sheet. The N- and C-terminal parts of the peptide are also in contact with the neighboring Fab fragment. Comparison between the CDR H3s of the two Fab molecules in complex with the peptide and those from the free Fab reveals high flexibility of this loop. This structural feature is in line with thermodynamic data from isothermic titration calorimetry.  相似文献   

20.
An IgM(kappa) immunoglobulin from a patient (Pot) with Waldenstrom's macroglobulinemia was hydrolyzed with pepsin to release a fragment consisting of the 'variable' (V) domains of the light and heavy chains plus eight residue 'tails' from the 'constant' (C) domains. The crystal structure of this fragment was determined at 2.3 A resolution by molecular replacement and crystallographic refinement methods. When examined separately, the light chain component closely resembles another human kappa chain (Rei) in both the beta-pleated sheet regions and the 'hypervariable' loops. The conserved pleated sheets in the heavy chain are similar to those in the human Kol IgG1 protein, but the third hypervariable loop in particular is different from that in any immunoglobulin structure described to date. As in the Kol protein, this loop blocks the access to any internal active site along the light-heavy chain interface. Unlike the Kol protein, however, the loop does not protrude beyond the boundaries of a conventional antigen combining site. Instead, it forms a very compact structure, which fills almost all residual space between the domains. This is an example of one dominant complementarity-determining region (CDR) essentially negating the diversity possible with five other CDRs in the two chains. Ordered water molecules are associated with light chain constituents along the interface, but not with CDR3 of the heavy chain. In screening exercises the Pot IgM failed to bind a wide variety of peptides. Together, the results suggest that ligand binding can only occur on external surfaces of the protein. These surfaces carry a limited number of side chains usually assigned to CDRs in more typical antibodies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号