首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 7 毫秒
1.
The transport of alpha-methylglucoside (MG) in the wild type cells of Escherichia coli K12 and the isogenic mutant strains, defective in the activity of phosphoenolpyruvate: sugar phosphotransferase system components was studied. It was shown that the enzyme IIB' in the absence of enzyme I and HPr is able to transport MG into the cells by a "facilitated" diffusion mechanism. Compounds which dissipate the energy of membrane protone potential such as NaN3, carbonylcyanide-m-chlorophenylhydrasone, dicyclohexylcarbodiimide, enhance the utilization of MG by the wild-type cells. However, the cells retaining intact enzyme IIB' but deficient in the phospho approximately HPr-generating system, were not sensitive to the action of poisons. The cells possessing the intact phospho HPr-generating system and inactive enzyme IIB' are also unaffected by the poisons. It seems that these results do not confirm the hypothesis of the direct delta mu H+ involvement in the regulation of transmembrane phosphorylation. The hypothesis is postulated that the energy metabolism inhibitors influence the phosphatase activity of factor III of the phosphotransferase system. The present data are well explained by this hypothesis.  相似文献   

2.
3.
4.
Triethyllead and tripropyllead cations affected growth, energy metabolism and ion transport in Escherichia coli K12. The tripropyllead compound was more liposoluble than the triethyl analogue and was also more effective in inhibiting cell growth and the oxygen uptake of both intact cells and membrane particles. Triethyllead acetate (5 microM) inhibited growth on non-fermentable carbon sources, such as glycerol and succinate, more markedly than on glucose. At higher concentrations, triethyllead caused significant inhibition of respiration rates of intact cells; the concentration giving 50% inhibition was 60 microM for glycerol-grown cells and 150 microM for glucose-grown cells. Oxidation of succinate by membrane particles was less sensitive to inhibition by the tripropyl- or triethyllead compounds than were the oxidations of DL-lactate or NADH. Triethyllead acetate [1.9 mumol (mg membrane protein)-1] inhibited the reduction by NADH of cytochromes; evidence for more than one site of inhibition in the respiratory chain was obtained. Membrane-bound ATPase activity was strongly inhibited by triethyllead acetate in the absence or presence of Cl-. The concentration of inhibitor giving 50% inhibition [0.02 mumol (mg membrane protein)-1] was about two orders of magnitude lower than that required for 50% inhibition of substrate oxidation rates in membranes. Triethyllead acetate (1 microM) induced swelling of spheroplasts in iso-osmotic solutions of either NH4Cl or NH4Br, presumably as a result of the mediation by the organolead compound of Cl-/OH- and Br-/OH- antiports across the cytoplasmic membrane. Similar exchanges of OH- for F-, NO3- or SO4(2)- or the uniport of H+ could not be demonstrated. Comparisons are drawn between the effects of trialkyllead compounds and those of the more widely studied trialkyltin compounds.  相似文献   

5.
Amino-sugar transport systems of Escherichia coli K12   总被引:7,自引:0,他引:7  
Glucosamine, mannose and 2-deoxyglucose enter Escherichia coli by the phosphotransferase system coded for by the gene ptsM. The glucosamine- and mannose-negative, deoxyglucose-resistant phenotype of ptsM mutants can be suppressed by a mutation mapping near ptsG that allows constitutive expression of the glucose phosphotransferase coded for by the gene ptsG. N-Acetylglucosamine enters E. coli by two distinct phosphotransferase systems (White, 1970). One of these is the PtsM system, the other is coded for by a gene which maps near the nagA,B genes at about min 15 on the E. coli chromosome. We propose that this gene be designated ptsN. Strains with either of these components of the phosphotransferase system will utilize N-acetylglucosamine as sole carbon source.  相似文献   

6.
Ferrous iron transport mutants in Escherichia coli K12   总被引:2,自引:0,他引:2  
A ferrous iron transport system in Escherichia coli is described. Mutants in this transport system were isolated using the antibiotic streptonigrin. The gene locus feo (for ferrous iron transport) was mapped near pncA at 38.5 min on the genetic map of E. coli K12. The transport of ferrous iron was regulated by fur as the siderophore transport systems.  相似文献   

7.
The fes mutation in Escherichia coli K12, which inactivates enterochelin esterase, allows the cell to accumulate ferric enterochelin. The ferric complex of enterochelin was released in significant quantities from a fes mutant after osmotic shock. Analysis of the effects of the individual stages of the shock procedure in wild-type cells showed that prior exposure of cells to sucrose and EDTA was not required, careful dilution of cells into a hypo-osmolar medium being sufficient to induce efflux of Fe3+. Prior treatment with EDTA or exposure to shearing forces served either to enhance efflux or to induce efflux in isotonic media. Neither vitamin B12 nor 5'-nucleotidase was released from the periplasm by these procedures. The release observed under mild conditions was stimulated specifically by Co2+, did not occur at 0 degree C, and was inhibited by 2,4-dinitrophenol at 37 degrees C. From these observations, it was concluded that the efflux of Fe3+ represents a physiological response of the cell to exposure to a hypo-osmolar medium. Such changes may enhance survival following physicochemical stressing of the bacterial outer membrane.  相似文献   

8.
Two variants of Escherichia coli heat-stable enterotoxin Ip, in which the amino acid residue at position 11 was substituted with lysine or arginine, were purified to near homogeneity from the culture supernatants of toxin-producing mutant strains. Neither the purified heat-stable enterotoxin Ip(Lys-11) nor the purified heat-stable enterotoxin Ip(Arg-11) showed a positive response in the suckling mouse assay or in the mouse intestinal loop assay. Furthermore, live bacteria producing these mutant heat-stable Ip enterotoxins did not cause fluid accumulation in mouse intestinal loops, in contrast to bacteria producing native heat-stable enterotoxin Ip. Nevertheless, antisera raised against both heat-stable enterotoxin Ip(Lys-11) and heat-stable enterotoxin Ip(Arg-11) neutralized the enterotoxic activity of native heat-stable enterotoxin Ip. These results demonstrate that heat-stable enterotoxin Ip(Lys-11) and heat-stable enterotoxin Ip(Arg-11) lose enterotoxicity but retain epitopes which are common to native heat-stable enterotoxin Ip.  相似文献   

9.
10.
Ferrichrome-promoted iron uptake in Escherichia coli K12 is strictly dependent upon the tonA gene product, a 'minor' outer membrane protein. By selection for mutants of E. coli resistant to phages which require 'major' outer membrane proteins as receptors, strains with pronounced protein deficiencies were constructed. Such strains were tested for anomalous behaviour of ferrichrome transport. No significant differences in iron uptake were detected in E. coli K12 strains with markedly reduced amounts of protein I. However, a reduction in the initial velocity (up to 40%) was observed in E. coli deficient in outer membrane protein II. This difference was only evident when cells were grown under iron-starvation conditions; it was abolished when cells were grown in rich medium. Kinetic parameters for ferrichrome transport were determined for maximum velocity but for Km; double reciprocal plots showed a biphasic nature, probably attributable to a limited number of outer membrane binding sites and to the multi-component nature of the ferrichrome-iron transport system.  相似文献   

11.
12.
Two nucleoside transport systems have been verified and separated by mating and recombination experiments. The recipient strain was a mutant which is negative for transport of all nucleosides. The two systems differ in specificity and in regulation. One system transports pyrimidine and adenine in specificity and in regulation. One system transports pyrimidine and adenine nucleosides, but not guanine nucleosides. It is regulated by the cytR gene. The other system transports all nucleosides and is regulated by the cytR as well as by the deoR genes. Enzyme assays performed on whole cells of strains, able or unable to transport nucleosides, indicate that the nucleoside catabolizing enzymes are located inside the permeability barrier of the cell.  相似文献   

13.
14.
15.
16.
17.
18.
Plasma membranes of acriflavine-sensitive mutant (acrA) and acriflavine-resistant (acrA+, wild-type and true revertant) Escherichia coli K12 strains treated with acriflavine were observed under the electron microscope by means of the freeze-fracture technique. The plasma membrane of the acrA mutant exhibited a complex lamellar structure at the end of the cell when treated with 20 micrograms acriflavine ml-1. However, the membrane of the acrA+ cells also gave the lamellar complex when treated with a very high concentration of acriflavine (100 micrograms ml-1). The size of the intramembranous particles was not affected by the acriflavine treatments.  相似文献   

19.
Osmotic shock treatment of cells of Escherichia coli K12 caused a reduction in the transport of nucleosides into the cells. The strains used carried mutations in the nucleoside catabolizing enzymes. This indicated that the decrease in transport capacity was not due to loss of these enzymes during the shock treatment. Membrane vesicles, prepared from the same strains, showed a limited transport of cytidine, deoxycytidine, and uridine. Transport of purine nucleosides and of thymidine was very low in vesicles lacking the appropriate nucleoside phosphorylases and no significant stimulation was observed if the nucleoside phosphorylases were present in the membrane vesicles. These results all indicate that components outside the cytoplasmic membrane are important for nucleoside transport. Selection for resistance to fluorodeoxycytidine yielded mutants which were unable to transport any nucleoside, even when the nucleoside phosphorylases were present in high amounts. This finding is consistent with a requirement for a specific transport process prior to the initial enzymatic attack on the incoming nucleoside.  相似文献   

20.
Thiolutin was found to inhibit the utilization of glucose and other growth substrates in Escherichia coli. The inhibition was detected by a sharp drop of the respiration rate after addition of the antibiotic. The actual function affected was allocated to the cytoplasmic membrane of the bacterial cells by the following evidence:
–  - spheroplasts were affected like intact cells,
–  - individual reactions of either the electron transport chain or the glycolytic pathway were not inhibited,
–  - glucose consumption in the culture stopped and the cells accumulated guanosine tetraphosphate as under starvation conditions,
–  - activation of the cell's apo-glucose dehydrogenase restored respiration via bypassing the glucose phosphotransferase system.
It was concluded that the transport of certain substrates across the membrane was inhibited.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号