首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In natural as well as in cultural landscapes, disturbance and succession are responsible for the emergence and subsequent disappearance of suitable habitat patches. The dynamics of habitat patches has important consequences for the spatial structure and dynamics of regional populations. However, there are only few studies quantifying both patch dynamics and incidence of insect species in a dynamic landscape over several years. I studied the incidence and population dynamics of the leaf beetle Gonioctena olivacea in a system of dynamic patches of the host plant Scotch broom Cytisus scoparius . The incidence of the beetle was most strongly affected by patch area, whereas connectivity, patch quality, patch age, and landscape context had no or only a minor effect when analysed with logistic regression. The size of local beetle populations was highly fluctuating between the years; however, the population dynamics of the local populations was not synchronous. Adjacent patches did not show higher degrees of synchrony than patches separated by large distances. In the three years of study, local populations became extinct through demographic or environmental stochasticity and patch destruction. Each year >10% of the patches disappeared. The extinction rate of beetles in persistent patches was decreasing with increasing patch area. On the other hand, patches newly emerged and were rapidly colonized by the beetle. The colonization rate depended on patch connectivity. Obviously, Gonioctena olivacea was capable of persisting in this system with high turnover of patches owing to its high dispersal power.  相似文献   

2.
For two consecutive years we registered the presence (or absence) of blue winged grasshoppers (Oedipoda caerulescens; Linnaeus, 1758) on 312 habitat patches of differing size in a region of more than 3000 ha. The data show that presence of grasshoppers on a habitat patch is dependent on patch size as well as on patch isolation. We used an ecological incidence model to describe the metapopulation dynamics of the regional population and derived the parameters for this model from presence-absence data and observations of Oedipoda dispersion. The analysis shows that local extinction of grasshopper populations is influenced by strong fluctuations of environmental conditions and that for a number of small patches in our region recolonization is important for the presence of O. caerulescens. Colonization probability, as derived using the incidence model, is in good agreement with estimates from a population genetical analysis.  相似文献   

3.
The role of local habitat geometry (habitat area and isolation) in predicting species distribution has become an increasingly more important issue, because habitat loss and fragmentation cause species range contraction and extinction. However, it has also become clear that other factors, in particular regional factors (environmental stochasticity and regional population dynamics), should be taken into account when predicting colonisation and extinction. In a live trapping study of a mainland-island metapopulation of the root vole (Microtus oeconomus) we found extensive occupancy dynamics across 15 riparian islands, but yet an overall balance between colonisation and extinction over 4 years. The 54 live trapping surveys conducted over 13 seasons revealed imperfect detection and proxies of population density had to be included in robust design, multi-season occupancy models to achieve unbiased rate estimates. Island colonisation probability was parsimoniously predicted by the multi-annual density fluctuations of the regional mainland population and local island habitat quality, while extinction probability was predicted by island population density and the level of the recent flooding events (the latter being the main regionalized disturbance regime in the study system). Island size and isolation had no additional predictive power and thus such local geometric habitat characteristics may be overrated as predictors of vole habitat occupancy relative to measures of local habitat quality. Our results suggest also that dynamic features of the larger region and/or the metapopulation as a whole, owing to spatially correlated environmental stochasticity and/or biotic interactions, may rule the colonisation – extinction dynamics of boreal vole metapopulations. Due to high capacities for dispersal and habitat tracking voles originating from large source populations can rapidly colonise remote and small high quality habitat patches and re-establish populations that have gone extinct due to demographic (small population size) and environmental stochasticity (e.g. extreme climate events).  相似文献   

4.
Aim The mechanisms of initial dispersal and habitat occupancy by invasive alien species are fundamental ecological problems. Most tests of metapopulation theory are performed on local population systems that are stable or in decline. In the current study we were interested in the usefulness of metapopulation theory to study patch occupancy, local colonization, extinction and the abundance of the invasive Caspian gull (Larus cachinnans) in its initial invasion stages. Location Waterbodies in Poland. Methods Characteristics of the habitat patches (waterbodies, 35 in total) occupied by breeding pairs of Caspian gulls and an equal sample of randomly selected unoccupied patches were compared with t‐tests. Based on presence–absence data from 1989 to 2006 we analysed factors affecting the probability of local colonization, extinction and the size of local populations using generalized linear models. Results Occupied habitat patches were significantly larger and less isolated (from other habitat patches and other local populations) and were located closer to rivers than empty patches. The proximity of local food resources (fish ponds, refuse dumps) positively affected the occurrence of breeding pairs. The probability of colonization was positively affected by patch area, and negatively by distances to fish ponds, nearest habitat patch, nearest breeding colony and to a river, and by higher forest cover around the patch boundaries. The probability of extinction was lower in patches with a higher number of breeding pairs and with a greater area of islets. The extinction probability increased with distances to other local populations, other habitat patches, fish ponds and to refuse dumps and with a higher cover of forest around the patch boundaries. The size of the local population decreased with distances to the nearest habitat patch, local population, river, fish pond and refuse dump. Local abundance was also positively affected by the area of islets in the patch. Main conclusions During the initial stages of the invasion of Caspian gulls in Poland the species underwent metapopulation‐like dynamics with frequent extinctions from colonized habitat patches. The results prove that metapopulation theory may be a useful conceptual framework for predicting which habitats are more vulnerable to invasion.  相似文献   

5.
We describe a habitat selection model that predicts the distribution of size-structured groups of fish in a habitat where food availability and water temperature vary spatially. This model is formed by combining a physiological model of fish growth with the logic of ideal free distribution (IFD) theory. In this model we assume that individuals scramble compete for resources, that relative competitive abilities of fish vary with body size, and that individuals select patches that maximize their growth rate. This model overcomes limitations in currently existing physiological and IFD-based models of habitat selection. This is because existing physiological models do not take into account the fact that the amount of food consumed by a fish in a patch will depend on the number of competitors there (something that IFD theory addresses), while traditional IFD models do not take into account the fact that fish are likely to choose patches based on potential growth rate rather than gross food intake (something that physiological models address). Our model takes advantage of the complementary strengths of these two approaches to overcome these weaknesses. Reassuringly, our model reproduces the predictions of its two constituent models under the simple conditions where they apply. When there is no competition for resources it mimics the physiological model of habitat selection, and when there is competition but no temperature variation between patches it mimics either the simple IFD model or the IFD model for unequal competitors. However, when there are both competition and temperature differences between patches our model makes different predictions. It predicts that input-matching between the resource renewal rate and the number of fish (or competitive units) in a patch, the hallmark of IFD models, will be the exception rather than the rule. It also makes the novel prediction that temperature based size-segregation will be common, and that the strength and direction of this segregation will depend on per capita resource renewal rates and the manner in which competitive weight scales with body size. Size-segregation should become more pronounced as per capita resource abundance falls. A larger fish/cooler water pattern is predicted when competitive ability increases more slowly than maximum ration with body size, and a smaller fish/cooler water pattern is predicted when competitive ability increases more rapidly than maximum ration with body size.  相似文献   

6.
7.
Theoretical studies indicate that a single population under an Allee effect will decline to extinction if reduced below a particular threshold, but the existence of multiple local populations connected by random dispersal improves persistence of the global population. An additional process that can facilitate persistence is the existence of habitat selection by dispersers. Using analytic and simulation models of population change, I found that when habitat patches exhibiting Allee effects are connected by dispersing individuals, habitat selection by these dispersers increases the likelihood that patches persist at high densities, relative to results expected by random settlement. Populations exhibiting habitat selection also attain equilibrium more quickly than randomly dispersing populations. These effects are particularly important when Allee effects are large and more than two patches exist. Integrating habitat selection into population dynamics may help address why some studies have failed to find extinction thresholds in populations, despite well-known Allee effects in many species.  相似文献   

8.
Kenneth A. Schmidt 《Oikos》2017,126(5):651-659
The combination of spatial structure and non‐linear population dynamics can promote the persistence of coupled populations, even when the average population growth rate of the patches seen in isolation would predict otherwise. This phenomenon has generally been conceptualized and investigated through the movement of individuals among patches that each holds many individuals, as in metapopulation models. However, population persistence can likewise increase as the result of individuals moving among sites (e.g. breeding territories) within in a single patch. Here I examine the latter: individuals making small‐scale informed decisions with respect to where to breed can promote population persistence in poor environments. Based on a simple algebraic model, I demonstrate information thresholds, and predict that greater information use is required for population persistence under lower spatial heterogeneity in habitat quality, all else equal. Second, I implement an individual‐based model to explore prior experience and prospecting on conspecific success within a more complex, and spatially heterogeneous environment. Uniquely, I jointly examine the effects of simulated habitat loss, spatial heterogeneity prior to habitat, and variation in information gathering on population persistence. I find that habitat loss accelerates population quasi‐extinction risk; however, information use reduces extinction probabilities in proportion to the level of information gathering. Per capita reproductive success declines with number of breeding sites, suggesting that information‐mediated Allee effects may contribute to extinction risk. In conclusion, my study suggests that populations in a changing world may be increasingly vulnerable to extinction where patch size and spatial heterogeneity constrain the effectiveness of information‐use strategies.  相似文献   

9.
Anthropogenic landscape changes have greatly reduced the population size, range and migration rates of many terrestrial species. The small local effective population size of remnant populations favours loss of genetic diversity leading to reduced fitness and adaptive potential, and thus ultimately greater extinction risk. Accurately quantifying genetic diversity is therefore crucial to assessing the viability of small populations. Diversity indices are typically calculated from the multilocus genotypes of all individuals sampled within discretely defined habitat patches or larger regional extents. Importantly, discrete population approaches do not capture the clinal nature of populations genetically isolated by distance or landscape resistance. Here, we introduce spatial Genetic Diversity (sGD), a new spatially explicit tool to estimate genetic diversity based on grouping individuals into potentially overlapping genetic neighbourhoods that match the population structure, whether discrete or clinal. We compared the estimates and patterns of genetic diversity using patch or regional sampling and sGD on both simulated and empirical populations. When the population did not meet the assumptions of an island model, we found that patch and regional sampling generally overestimated local heterozygosity, inbreeding and allelic diversity. Moreover, sGD revealed fine-scale spatial heterogeneity in genetic diversity that was not evident with patch or regional sampling. These advantages should provide a more robust means to evaluate the potential for genetic factors to influence the viability of clinal populations and guide appropriate conservation plans.  相似文献   

10.
1. Local extinctions in habitat patches and asymmetric dispersal between patches are key processes structuring animal populations in heterogeneous environments. Effective landscape conservation requires an understanding of how habitat loss and fragmentation influence demographic processes within populations and movement between populations. 2. We used patch occupancy surveys and molecular data for a rainforest bird, the logrunner (Orthonyx temminckii), to determine (i) the effects of landscape change and patch structure on local extinction; (ii) the asymmetry of emigration and immigration rates; (iii) the relative influence of local and between-population landscapes on asymmetric emigration and immigration; and (iv) the relative contributions of habitat loss and habitat fragmentation to asymmetric emigration and immigration. 3. Whether or not a patch was occupied by logrunners was primarily determined by the isolation of that patch. After controlling for patch isolation, patch occupancy declined in landscapes experiencing high levels of rainforest loss over the last 100 years. Habitat loss and fragmentation over the last century was more important than the current pattern of patch isolation alone, which suggested that immigration from neighbouring patches was unable to prevent local extinction in highly modified landscapes. 4. We discovered that dispersal between logrunner populations is highly asymmetric. Emigration rates were 39% lower when local landscapes were fragmented, but emigration was not limited by the structure of the between-population landscapes. In contrast, immigration was 37% greater when local landscapes were fragmented and was lower when the between-population landscapes were fragmented. Rainforest fragmentation influenced asymmetric dispersal to a greater extent than did rainforest loss, and a 60% reduction in mean patch area was capable of switching a population from being a net exporter to a net importer of dispersing logrunners. 5. The synergistic effects of landscape change on species occurrence and asymmetric dispersal have important implications for conservation. Conservation measures that maintain large patch sizes in the landscape may promote asymmetric dispersal from intact to fragmented landscapes and allow rainforest bird populations to persist in fragmented and degraded landscapes. These sink populations could form the kernel of source populations given sufficient habitat restoration. However, the success of this rescue effect will depend on the quality of the between-population landscapes.  相似文献   

11.
The ideal free distribution (IFD) requires that individuals can accurately perceive density‐dependent habitat quality, while failure to discern quality differences below a given perception threshold results in distributions approaching spatial uniformity. Here, we investigate the role of population growth in restoring a nonideal population to the IFD. We place a simple model of discrete patch choice under limits to the resolution by which patch quality is perceived and include population growth driven by that underlying quality. Our model follows the population's distribution through both breeding and dispersal seasons when perception limits differ in their likely influence. We demonstrate that populations of perception limited movers can approximate an IFD provided sufficient population growth; however, the emergent IFD would be temporally inconstant and correspond to reproductive events. The time to emergence of the IFD during breeding is shorter under exponential growth than under logistic growth. The IFD during early colonization of a community persists longer when more patches are available to individuals. As the population matures and dispersal becomes increasingly random, there is an oscillation in the observance of IFD, with peaks most closely approximating the IFD occurring immediately after reproductive events, and higher reproductive rates producing distributions closer to the IFD.  相似文献   

12.
In spatially heterogeneous landscapes, some habitats may be persistent sources, providing immigrants to sustain populations in unfavorable sink habitats (where extinction is inevitable without immigration). Recent theoretical and empirical studies of source-sink systems demonstrate that temporally variable local growth rates in sinks can substantially increase average abundance of a persisting population, provided that the variation is positively autocorrelated--in effect, temporal variation inflates average abundance. Here we extend these results to a metapopulation in which all habitat patches are sinks. Using numerical studies of a population with discrete generations (buttressed by analytic results), we show that temporal variation and moderate dispersal can jointly permit indefinite persistence of the metapopulation and that positive autocorrelation both lowers the magnitude of variation required for persistence and increases the average abundance of persisting metapopulations. These effects are weakened--but not destroyed--if variation in local growth rates is spatially synchronized and dispersal is localized. We show that the inflationary effect is robust to a number of extensions of the basic model, including demographic stochasticity and density dependence. Because ecological and environmental processes contributing to temporally variable growth rates in natural populations are typically autocorrelated, these observations may have important implications for species persistence.  相似文献   

13.
 We study the evolution of dispersal in a structured metapopulation model. The metapopulation consists of a large (infinite) number of local populations living in patches of habitable environment. Dispersal between patches is modelled by a disperser pool and individuals in transit between patches are exposed to a risk of mortality. Occasionally, local catastrophes eradicate a local population: all individuals in the affected patch die, yet the patch remains habitable. We prove that, in the absence of catastrophes, the strategy not to migrate is evolutionarily stable. Under a given set of environmental conditions, a metapopulation may be viable and yet selection may favor dispersal rates that drive the metapopulation to extinction. This phenomenon is known as evolutionary suicide. We show that in our model evolutionary suicide can occur for catastrophe rates that increase with decreasing local population size. Evolutionary suicide can also happen for constant catastrophe rates, if local growth within patches shows an Allee effect. We study the evolutionary bifurcation towards evolutionary suicide and show that a discontinuous transition to extinction is a necessary condition for evolutionary suicide to occur. In other words, if population size smoothly approaches zero at a boundary of viability in parameter space, this boundary is evolutionarily repelling and no suicide can occur. Received: 10 November 2000 / Revised version: 13 February 2002 / Published online: 17 July 2002  相似文献   

14.
The conceptualization of fragmented populations in terms of metapopulation theory has become standard over the last three decades. It is well known that increases in between‐patch migration rates cause more synchronous population fluctuations and that this coherence increases the risk of global metapopulation extinction. Because species’ migration rates and the probability of individuals surviving migration events depend on the effective distance between patches, the benefit of improving conservation corridors or the matrix between habitat patches has been questioned. As populations occur in the context of larger communities, moving from a metapopulation to a metacommunity model framework is a natural extension to address the generality of these conclusions. We show how considering a metacommunity can modify the conclusion that decreasing the effective distance between habitat patches (via improving matrix quality or other measures) necessarily increases the degree of metapopulation synchrony. We show that decreases in effective between‐patch distance may deter population synchrony because of the simultaneous effect this change has on the migration patterns of other species. These results indicate that species interactions need to be considered when the effect of conservation measures on population synchrony, and ultimately persistence, is addressed.  相似文献   

15.
Currently, the habitat of many species is fragmented, resulting in small local populations with individuals occasionally dispersing between the remaining habitat patches. In a solitary bee metapopulation, extinction probability was related to both local bee population sizes and pollen resources measured as host plant population size. Patch size, on the other hand, had no additional predictive power. The turnover rate of local bee populations in 63 habitat patches over 4 years was high, with 72 extinction events and 31 colonization events, but the pollen plant population was stable with no extinctions or colonizations. Both pollen resources and bee populations had strong and independent effects on extinction probability, but connectivity was not of importance. Colonizations occurred more frequently within larger host plant populations. For metapopulation survival of the bee, large pollen plant populations are essential, independent of current bee population size.  相似文献   

16.
Species responses are influenced by processes operating at multiple scales, yet many conservation studies and management actions are focused on a single scale. Although landscape-level habitat conditions (i.e., habitat amount, fragmentation and landscape quality) are likely to drive the regional persistence of spatially structured populations, patch-level factors (i.e., patch size, isolation, and quality) may also be important. To determine the spatial scales at which habitat factors influence the regional persistence of endangered Ord's kangaroo rats (Dipodomys ordii) in Alberta, Canada, we simulated population dynamics under a range of habitat conditions. Using a spatially-explicit population model, we removed groups of habitat patches based on their characteristics and measured the resulting time to extinction. We used proportional hazards models to rank the influence of landscape and interacting patch-level variables. Landscape quality was the most influential variable followed by patch quality, with both outweighing landscape- and patch-level measures of habitat quantity and fragmentation/proximity. Although habitat conservation and restoration priorities for this population should be in maximizing the overall quality of the landscape, population persistence depends on how this goal is achieved. Patch quality exerted a significant influence on regional persistence, with the removal of low quality road margin patches (sinks) reducing the risk of regional extinction. Strategies for maximizing overall landscape quality that omit patch-level considerations may produce suboptimal or detrimental results for regional population persistence, particularly where complex local population dynamics (e.g., source-sink dynamics) exist. This study contributes to a growing body literature that suggests that the prediction of species responses and future conservation actions may best be assessed with a multi-scale approach that considers habitat quality and that the success of conservation actions may depend on assessing the influences of habitat factors at multiple scales.  相似文献   

17.
The extinction process of fragmented populations, characterized by a small number of conspecifics inhabiting each patch, is heavily affected by natural and human disturbance. To evaluate the risk of extinction we consider a network of identical patches connected by passive or active dispersal and hosting a finite, discrete number of individuals. We discuss three types of disturbance affecting the metapopulation: permanent loss of habitat patches, erosion of existing patches, and random catastrophes that wipe out the entire population of a patch. Starting from an infinite-dimensional Markov model that fully accounts for demographic stochasticity, we reduce it to finite dimension via moment closure with negative-binomial approximation. The compact models obtained in this way account for the dynamics of the fraction of empty patches, the average number of individuals in occupied patches, and the variance of their distribution. After comparing the performance of these compact models with that of the infinite-dimensional model in the case of no disturbances, we then proceed to computing persistence-extinction boundaries as bifurcation lines of the compact models in the space of demographic and disturbance parameters. We consider bifurcations with respect to demographic and environmental parameters and contrast our results with those of previous theories. We find out that environmental catastrophes increase the risk of extinction for both frequent and infrequent dispersers, while the random loss of patches has a much larger influence on frequent dispersers. This influence can be counterbalanced by active dispersal. Local erosion of habitat fragments has a larger influence on infrequent than on frequent dispersers. We finally discuss the important synergistic effects of disturbances acting simultaneously.  相似文献   

18.
Both dispersal and local competitive ability may determine the outcome of competition among species that cannot coexist locally. I develop a spatially implicit model of two-species competition at a small spatial scale. The model predicts the relative fitness of two competitors based on local reproductive rates and regional dispersal rates in the context of the number, size, and extinction probability of habitat patches in the landscape. I test the predictions of this model experimentally using two genotypes of the bacteriophagous soil nematode Caenorhabditis elegans in patchy microcosms. One genotype has higher fecundity while the other is a better disperser. With such a fecundity-dispersal trade-off between competitors, the model predicts that relative fitness will be affected most by local population size when patches do not go extinct and by the number of patches when there is a high probability of patch extinction. The microcosm experiments support the model predictions. Both approaches suggest that competitive dominance in a patchily distributed transient assemblage will depend upon the architecture and predictability of the environment. These mechanisms, operating at a small scale with high spatial admixture, may be embedded in a larger metacommunity process.  相似文献   

19.
Mark P. Johnson 《Oikos》2000,88(1):67-74
The classical view of metapopulations relates the regional abundance of a species to the balance between the extinction and colonization dynamics of identical local populations. Species in successional landscapes may represent the most appropriate examples of classical metapopulations. However, Levins‐type metapopulation models do not explicitly separate population loss due to successional habitat change from other causes of extinction. A further complication is that the chance of population loss due to successional habitat change may be related to the age of a patch. I developed simple patch occupancy models to include succession and included consideration of patch age structure to address two related questions: what are the implications of changes in patch demographic rates and when is a move to a structured patch occupancy model justified? Age‐related variation in patch demography could increase or decrease the equilibrium fraction of the available habitat occupied by a species when compared to the predictions of an unstructured model. Metapopulation persistence was enhanced when the age class of patches with the highest species occupancy suffered relatively low losses to habitat succession. Conversely, when the age class of patches with the highest species occupancy also had relatively high successional loss rates, extinction thresholds were higher that would be predicted by a simple unstructured model. Hence age‐related variation in patch successional rate introduces biases into the predictions of simple unstructured models. Such biases can be detected from field surveys of the fraction of occupied and unoccupied patches in each age class. Where a bias is demonstrated, unstructured models will not be adequate for making predictions about the effects of changing parameters on metapopulation size. Thinking in successional terms emphasizes how landscapes might be managed to enhance or reduce the patch occupancy by any particular metapopulation  相似文献   

20.
Interpretation of spatially structured population systems is critically dependent on levels of migration between habitat patches. If there is considerable movement, with each individual visiting several patches, there is one ”patchy population”; if there is intermediate movement, with most individuals staying within their natal patch, there is a metapopulation; and if (virtually) no movement occurs, then the populations are separate (Harrison 1991, 1994). These population types actually represent points along a continuum of much to no mobility in relation to patch structure. Therefore, interpretation of the effects of spatial structure on the dynamics of a population system must be accompanied by information on mobility. We use empirical data on movements by ringlet butterflies, Aphantopus hyperantus, to investigate two key issues that need to be resolved in spatially-structured population systems. First, do local habitat patches contain largely independent local populations (the unit of a metapopulation), or merely aggregations of adult butterflies (as in patchy populations)? Second, what are the effects of patch area on migration in and out of the patches, since patch area varies considerably within most real population systems, and because human landscape modification usually results in changes in habitat patch sizes? Mark-release-recapture (MRR) data from two spatially structured study systems showed that 63% and 79% of recaptures remained in the same patch, and thus it seems reasonable to call both systems metapopulations, with some capacity for separate local dynamics to take place in different local patches. Per capita immigration and emigration rates declined with increasing patch area, while the resident fraction increased. Actual numbers of emigrants either stayed the same or increased with area. The effect of patch area on movement of individuals in the system are exactly what we would have expected if A. hyperantus were responding to habitat geometry. Large patches acted as local populations (metapopulation units) and small patches simply as locations with aggregations (units of patchy populations), all within 0.5 km2. Perhaps not unusually, our study system appears to contain a mixture of metapopulation and patchy-population attributes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号