共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
以宁麦13和徐麦31两种小麦(Triticum aestivum)品种为材料,通过盆栽试验研究了不同pH值酸雨对小麦产量和籽粒品质的影响。结果表明:模拟酸雨抑制了小麦的生长,减少了生物量的积累。pH值2.0酸雨处理后宁麦13的单穗粒数和单茎产量分别较对照下降了48.6%和56.7%,徐麦31则分别下降了31.2%和39.7%,差异显著。小麦籽粒主要营养成分对酸雨胁迫响应不同,酸雨处理提高了籽粒氨基酸、蛋白质含量,pH值2.0酸雨处理后,宁麦13和徐麦31小麦籽粒中氨基酸含量分别比对照高36.6%和30.9%,总蛋白含量分别比对照高20.6%和15.1%,均与对照差异显著。而小麦可溶性糖、淀粉和脂肪含量较对照降低,且总体表现为酸度增强变化幅度增大。不同蛋白组分也对酸雨胁迫反应不同,酸雨处理提高了籽粒中清蛋白和球蛋白含量,而降低了谷蛋白含量和谷/醇。pH值2.0的酸雨处理后,宁麦13和徐麦31的清蛋白含量较对照分别增加了13.1%和23.9%,但与对照差异不显著。酸雨胁迫降低了总淀粉和支链淀粉含量,宁麦13和徐麦31的pH值2.0酸雨处理总淀粉含量分别较对照下降了11.8%和20.2%,与对照差异显著,但对直链淀粉含量影响不明显。可见酸雨不仅影响小麦的产量,而且对品质也有明显影响。酸雨处理尽管提高了籽粒总蛋白含量,但降低了谷蛋白和谷/醇,降低了其加工品质。 相似文献
3.
Gemma Molero Ryan Joynson Francisco J. Pinera‐Chavez Laura‐Jayne Gardiner Carolina Rivera‐Amado Anthony Hall Matthew P. Reynolds 《Plant biotechnology journal》2019,17(7):1276-1288
One of the major challenges for plant scientists is increasing wheat (Triticum aestivum) yield potential (YP). A significant bottleneck for increasing YP is achieving increased biomass through optimization of radiation use efficiency (RUE) along the crop cycle. Exotic material such as landraces and synthetic wheat has been incorporated into breeding programmes in an attempt to alleviate this; however, their contribution to YP is still unclear. To understand the genetic basis of biomass accumulation and RUE, we applied genome‐wide association study (GWAS) to a panel of 150 elite spring wheat genotypes including many landrace and synthetically derived lines. The panel was evaluated for 31 traits over 2 years under optimal growing conditions and genotyped using the 35K wheat breeders array. Marker‐trait association identified 94 SNPs significantly associated with yield, agronomic and phenology‐related traits along with RUE and final biomass (BM_PM) at various growth stages that explained 7%–17% of phenotypic variation. Common SNP markers were identified for grain yield, BM_PM and RUE on chromosomes 5A and 7A. Additionally, landrace and synthetic derivative lines showed higher thousand grain weight (TGW), BM_PM and RUE but lower grain number (GM2) and harvest index (HI). Our work demonstrates the use of exotic material as a valuable resource to increase YP. It also provides markers for use in marker‐assisted breeding to systematically increase BM_PM, RUE and TGW and avoid the TGW/GM2 and BM_PM/HI trade‐off. Thus, achieving greater genetic gains in elite germplasm while also highlighting genomic regions and candidate genes for further study. 相似文献
4.
水氮互作对小麦籽粒蛋白质、淀粉含量及其组分的影响 总被引:9,自引:0,他引:9
以两个不同品质类型的小麦品种(强筋品种豫麦34、弱筋品种豫麦50)为材料,在大田条件下,研究了3个灌水处理(W1:拔节水;W2:拔节水+花后15 d灌浆水;W3:拔节水+灌浆水+花后28 d麦黄水)和3个氮肥水平(0、150、270 kg·hm-2)对籽粒蛋白质、淀粉含量及其组分的影响.结果表明:270 kg·hm-2的施氮量有利于提高强筋小麦(豫麦34)籽粒蛋白质含量,籽粒清蛋白、醇溶蛋白和谷蛋白含量明显提高,谷/醇增大;支链淀粉和总淀粉含量提高,直/支下降;籽粒产量增加.弱筋小麦(豫麦50)在150 kg·hm-2 的施氮量下,清蛋白和醇溶蛋白含量增加,球蛋白和谷蛋白含量下降,谷/醇降低;支链淀粉和总淀粉含量提高;不施氮肥或氮肥施用过多(270 kg·hm-2)均影响籽粒蛋白质和淀粉的积累,使产量下降.W2处理促进了籽粒蛋白质和淀粉积累,W1或W3处理均不利于籽粒蛋白质和淀粉积累,且导致籽粒产量下降.水、氮互作效应中,强筋和弱筋小麦分别以全生育期270 kg·hm-2和150 kg·hm-2施氮量配合拔节水+灌浆水(W2)为比较理想的水氮运筹方式. 相似文献
5.
Kempa S Rozhon W Samaj J Erban A Baluska F Becker T Haselmayer J Schleiff E Kopka J Hirt H Jonak C 《The Plant journal : for cell and molecular biology》2007,49(6):1076-1090
Glycogen synthase kinase 3 (GSK-3) was originally identified as a regulator of glycogen synthesis in mammals. Like starch in plants, glycogen is a polymer of glucose, and serves as an energy and carbon store. Starch is the main carbohydrate store in plants. Regulation of starch metabolism, in particular in response to environmental cues, is of primary importance for carbon and energy flow in plants but is still obscure. Here, we provide evidence that MsK4, a novel Medicago sativa GSK-3-like kinase, connects stress signalling with carbon metabolism. MsK4 was found to be a plastid-localized protein kinase that is associated with starch granules. High-salt stress rapidly induced the in vivo kinase activity of MsK4. Metabolic profiling of MsK4 over-expressor lines revealed changes in sugar metabolism, including increased amounts of maltose, the main degradation product of starch in leaves. Plants over-expressing MsK4 showed improved tolerance to salt stress. Moreover, under high-salinity conditions, MsK4-over-expressing plants accumulated significantly more starch and showed modified carbohydrate content compared with wild-type plants. Overall, these data indicate that MsK4 is an important regulator that adjusts carbohydrate metabolism to environmental stress. 相似文献
6.
利用红外测温仪,于2005~2006年在甘肃陇东旱原研究了我国北方冬麦区域的23个小麦品种(系)灌浆不同时期冠层温度的差异及其与产量和水分利用效率的关系。结果表明,不同基因型小麦在籽粒灌浆结实期存在着冠层温度高度分异的现象,其分异程度随灌浆过程的进行明显加大,到灌浆中后期达到最大。无论灌浆初期还是中期或中后期,旱地冬小麦产量、水分利用效率与冠层温度均呈极显著的负相关(R2=0.445-0.812),并且随着灌浆期推移,相关性增大,灌浆中后期冠层温度每升高1℃,旱地冬小麦产量减少近280 kg hm-2,水分利用效率下降约0.6 kg hm-2mm-1。灌浆中期以后不同基因型小麦冠层温度保持较高的一致性,冠层温度偏低的品种具有较高的产量和水分利用效率。灌浆中后期的冠层温度在评价小麦产量和水分利用效率上具有较高的可靠性,可作为一个田间选择指标应用。 相似文献
7.
Baunsgaard L Lütken H Mikkelsen R Glaring MA Pham TT Blennow A 《The Plant journal : for cell and molecular biology》2005,44(4):595-605
An Arabidopsis thaliana gene encoding a homologue of the potato alpha-glucan, water dikinase GWD, previously known as R1, was identified by screening the Arabidopsis genome and named AtGWD3. The AtGWD3 cDNA was isolated, heterologously expressed and the protein was purified to apparent homogeneity to determine the enzymatic function. In contrast to the potato GWD protein, the AtGWD3 primarily catalysed phosphorylation at the C-3 position of the glucose unit of preferably pre-phosphorylated amylopectin substrate with long side chains. An Arabidopsis mutant, termed Atgwd3, with downregulated expression of the AtGWD3 gene was analysed. In Atgwd3 the amount of leaf starch was constantly higher than wild type during the diurnal cycle. Compared with wild-type leaf starch, the level of C-3 phosphorylation of the glucosyl moiety of starch in this mutant was reduced. Taken together, these data indicate that the C-3 linked phospho-ester in starch plays a so far unnoticed specific role in the degradation of transitory starch. 相似文献
8.
Colin F. Jenner 《Plant biology (Stuttgart, Germany)》1980,93(1):289-298
Although the flow of carbon from sites where it is assimilated to its eventual destination as starch is, for convenience, investigated as a large number of partial processes, it is nevertheless possible to conceive of a simple unifying model: the plant as a set of conductors for reduced carbon compounds, the direction of flow and the flux being determined by gradients of concentration and resistance to movement (Beevers 1969, Jenner 1974 a). This simple idea can explain what is known about the overall process, and one attractive feature of a recent hypothesis on the nature of the regulatory mechanism (Herold and Walker 1979) is that it spans the gap between origin and destination. 相似文献
9.
Light induces both the germination of turions of the duckweed Spirodela polyrhiza and the degradation of the reserve starch stored in the turions. The germination photoresponse requires nitrate, and we show here that nitrate is also needed for the light-induced degradation of the turion starch. Ammonium cannot substitute for nitrate in this regard, and nitrate thus acts specifically as signal to promote starch degradation in the turions. Irradiation with continuous red light leads to starch degradation via auto-phosphorylation of starch-associated glucan, water dikinase (GWD), phosphorylation of the turion starch and enhanced binding of alpha-amylase to starch granules. The present study shows that all of these processes require the presence of nitrate, and that nitrate exerts its effect on starch degradation at a point between the absorption of light by phytochrome and the auto-phosphorylation of the GWD. Nitrate acts to coordinate carbon and nitrogen metabolism in germinating turions: starch will only be broken down when sufficient nitrogen is present to ensure appropriate utilization of the released carbohydrate. These data constitute the first report of control over the initiation of reserve starch degradation by nitrate. 相似文献
10.
Chunxiao Xu Shufeng Wei Yan Lu Yuxia Zhang Chuanfang Chen Tao Song 《Bioelectromagnetics》2013,34(6):437-442
11.
用盆栽方法测定了2个春小麦品种-地方品种和尚头与现代品种陇春-8275在5个土壤水分梯度下,单、混播时的水分消耗、水分利用效率、竞争能力和籽实产量。单播条件下,在极低水分条件下(12%),和尚头有相对较高的产量,在水分条件较好时陇春-8275有较高的产量;在保持各水分处理条件下,地方品种和尚头较之现代品种陇春-8275消耗更多的水分,水分利用效率较低。混播条件下,各尚头有较高生物量、籽实产量及较强的竞争能力,竞争优势不受土壤水分的影响,其表现为高个体生物量品种较之低个体生物量品种消耗更多的水分,陇春-8275受到强烈的抑制,消耗较少的水分及较低的籽实产量。表明进化选择的是竞争能力,而非单播下的产量表现。可以预见,在小麦育种中选育具小根系的对水分弱竞争能力的品种将成为半干旱区今后育种的一个重要方法。 相似文献
12.
Wheat is an important commodity in Europe. With a production of 133 million tonnes per year and annual import and export accounting for 6.3 and 5.3 billion US$, respectively, wheat is the most important cereal in Europe. Wheat cultivation further feeds into a wide variety of products ranging from bread, over imitation meat, to biofuels and bio‐based materials. Therefore, it is desirable to have a synthetic life cycle assessment (LCA) of the impacts of an average kilogram (kg) of wheat produced in Europe. This article aims to provide such a synthesis using two strategies. In the first strategy, we give an overview of published LCA impacts of wheat production. A second strategy is a meta‐analysis in which a re‐evaluation is made of 20 available life cycle inventories representing cases in 11 different European countries. Based on the production shares of these countries in the total European production, weighted average impacts are calculated. These weighted averages of the re‐evaluated inventories show that an average kg of wheat grain produced in Europe demands 3.25 megajoules of nonrenewable, fossil energy, emits 0.61 to 0.65 kg carbon dioxide equivalents, triggers terrestrial acidification of 4.94 to 6.51 grams (g) sulphur dioxide equivalents, freshwater eutrophication of 0.08 to 0.09 g phosphorous equivalents, marine eutrophication of 4.97 to 7.60 g nitrogen equivalents, and occupies 1.63 square meter years of agricultural land. The re‐evaluation of studies results in similar impacts as the mere reviewing of energy demands and global warming potentials. Given the many applications of wheat, the presented meta‐analysis is interesting to evaluate the average and range of environmental performance of wheat production in Europe, but is also useful as an input in assessing impacts of wheat‐based products. 相似文献
13.
Eric Shiue Irene M. Brockman Kristala L. J. Prather 《Biotechnology and bioengineering》2015,112(3):579-587
14.
大豆叶片淀粉的降解及淀粉降解酶 总被引:1,自引:0,他引:1
在90μmol m~(-2)s~(-1)光强以下可见大豆叶片淀粉的降解,降解速率为0.8~3.8mg淀粉dm~(-2)h~(-1)。淀粉降解通过水解及磷酸解两条途径,α,β—淀粉酶的最适pH5~6,磷酸化酶pH7~8。α—淀粉酶活力随叶片的成长显著增强,β—淀粉酶则有所减弱。叶片淀粉积累或消耗时此三酶活力无显著变化。 黄化小麦叶片照光转绿过程中此三酶活力变化不大。黄化玉米叶片照光转绿过程中磷酸化酶活力降低,β—淀粉酶活力增强。 相似文献
15.
Ahmed Regina Pierre Berbezy Behjat Kosar‐Hashemi Suzhi Li Mark Cmiel Oscar Larroque Anthony R. Bird Steve M. Swain Colin Cavanagh Stephen A. Jobling Zhongyi Li Matthew Morell 《Plant biotechnology journal》2015,13(9):1276-1286
Resistant starch (RS), a type of dietary fibre, plays an important role in human health; however, the content of RS in most modern processed starchy foods is low. Cereal starch, when structurally manipulated through a modified starch biosynthetic pathway to greatly increase the amylose content, could be an important food source of RS. Transgenic studies have previously revealed the requirement of simultaneous down‐regulation of two starch branching enzyme (SBE) II isoforms both located on the long arm of chromosome 2, namely SBEIIa and SBEIIb, to elevate the amylose content in wheat from ~25% to ~75%. The current study revealed close proximity of genes encoding SBEIIa and SBEIIb isoforms in wheat with a genetic distance of 0.5 cM on chromosome 2B. A series of deletion and single nucleotide polymorphism (SNP) loss of function alleles in SBEIIa, SBEIIb or both was isolated from two different wheat populations. A breeding strategy to combine deletions and SNPs generated wheat genotypes with altered expression levels of SBEIIa and SBEIIb, elevating the amylose content to an unprecedented ~85%, with a marked concomitant increase in RS content. Biochemical assays were used to confirm the complete absence in the grain of expression of SBEIIa from all three genomes in combination with the absence of SBEIIb from one of the genomes. 相似文献
16.
This article deals with the optimization of the various parameters for production of phytase using Achromobacter sp. PB‐01 in submerged fermentation (SmF). A semisynthetic medium containing ingredients of phytase screening media (PSM) supplemented with 2% (w/v) sucrose, 1% (w/v) peptone, and 10% (w/v) wheat bran was found to be the best production medium among the various combinations tried. Among various surfactants added to SmF, Triton X‐100 (0.1%) exhibited a 16% increase in phytase activity. An overall 11.2 fold enhancement in enzyme activity (0.79 U/mL→8.84 U/mL) was attained when SmF was carried out using 0.5% (v/v) inoculum of a 15 h old culture of Achromobacter sp. PB‐01 at an initial pH of 5.5, temperature 30°C and allowed to grow for 48 h. Presence of accessory hydrolytic enzymes in the crude extract further added value as feed additive by mediating efficient degradation of non‐starch polysaccharides (NSP). In addition, we also investigated the efficacy of phytase on different agro‐industrial residues using in vitro experiments that simulated the conditions of the digestive tract. Results indicate that phytase from our source hydrolyze phytate efficiently with the concomitant liberation of inorganic phosphate, protein, reducing sugar, and calcium. © 2012 American Institute of Chemical Engineers Biotechnol. Prog., 2012 相似文献
17.
增强UV-B辐射和干旱对春小麦光合作用及其生长的影响 总被引:5,自引:0,他引:5
在室外盆栽条件下研究了UV-B辐射和土壤干旱对春小麦 '和尚头'生长和光合作用的影响.结果显示:(1)干旱、UV-B辐射、干旱+UV-B(复合)处理均可使叶片类黄酮含量增加,且干旱+UV-B处理增加显著高于其他处理(P<0.05).UV-B辐射和干旱单独处理均能显著降低叶片光合色素含量,但UV-B辐射的副作用大于干旱,复合处理对光合色素的影响介于UV-B和干旱之间.(2)各处理间的光合速率日均值大小次序为:对照>UV-B+干旱>UV-B>干旱;增强UV-B对净光合速率的抑制作用大于干旱,而UV-B+干旱处理的抑制作用较二者单独处理有所减轻.(3)UV-B辐射和干旱单独处理后总生物量比对照减少15%,且抑制作用为:干旱>UV-B>复合处理; UV-B辐射和干旱胁迫不但影响春小麦的生物量,而且影响小穗特征和产量.研究表明,UV-B辐射和干旱之间存在交互作用,说明一种胁迫可以减缓(轻)另外一种胁迫对春小麦的抑制作用. 相似文献
18.
Fushan Liu Qianru Zhao Noel Mano Zaheer Ahmed Felix Nitschke Yinqqi Cai Kent D. Chapman Martin Steup Ian J. Tetlow Michael J. Emes 《Plant biotechnology journal》2016,14(3):976-985
We have identified a novel means to achieve substantially increased vegetative biomass and oilseed production in the model plant Arabidopsis thaliana. Endogenous isoforms of starch branching enzyme (SBE) were substituted by either one of the endosperm‐expressed maize (Zea mays L.) branching isozymes, ZmSBEI or ZmSBEIIb. Transformants were compared with the starch‐free background and with the wild‐type plants. Each of the maize‐derived SBEs restored starch biosynthesis but both morphology and structure of starch particles were altered. Altered starch metabolism in the transformants is associated with enhanced biomass formation and more‐than‐trebled oilseed production while maintaining seed oil quality. Enhanced oilseed production is primarily due to an increased number of siliques per plant whereas oil content and seed number per silique are essentially unchanged or even modestly decreased. Introduction of cereal starch branching isozymes into oilseed plants represents a potentially useful strategy to increase biomass and oilseed production in related crops and manipulate the structure and properties of leaf starch. 相似文献
19.
《Acta Crystallographica. Section D, Structural Biology》2017,73(1):64-76
Lytic polysaccharide monooxygenases (LPMOs) are a class of copper‐dependent enzymes discovered within the last ten years. They oxidatively cleave polysaccharides (chitin, lignocellulose, hemicellulose and starch‐derived), presumably making recalcitrant substrates accessible to glycoside hydrolases. Recently, the first crystal structure of an LPMO–substrate complex was reported, giving insights into the interaction of LPMOs with β‐linked substrates (Frandsen et al. , 2016). The LPMOs acting on α‐linked glycosidic bonds (family AA13) display binding surfaces that are quite different from those of LPMOs that act on β‐linked glycosidic bonds (families AA9–AA11), as revealed from the first determined structure (Lo Leggio et al. , 2015), and thus presumably the AA13s interact with their substrate in a distinct fashion. Here, several new structures of the same AA13 enzyme, Aspergillus oryzae AA13, are presented. Crystals obtained in the presence of high zinc‐ion concentrations were used, as they can be obtained more reproducibly than those used to refine the deposited copper‐containing structure. One structure with an ordered zinc‐bound active site was solved at 1.65 Å resolution, and three structures from crystals soaked with maltooligosaccharides in solutions devoid of zinc ions were solved at resolutions of up to 1.10 Å. Despite similar unit‐cell parameters, small rearrangements in the crystal packing occur when the crystals are depleted of zinc ions, resulting in a more occluded substrate‐binding surface. In two of the three structures maltooligosaccharide ligands are bound, but not at the active site. Two of the structures presented show a His‐ligand conformation that is incompatible with metal‐ion binding. In one of these structures this conformation is the principal one (80% occupancy), giving a rare atomic resolution view of a substantially misfolded enzyme that is presumably rendered inactive. 相似文献