首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Intraguild predation is a common ecological interaction that occurs when a species preys upon another species with which it competes. The interaction is potentially a mechanism of divergence between intraguild prey (IG‐prey) populations, but it is unknown if cases of character shifts in IG‐prey are an environmental or evolutionary response. We investigated the genetic basis and inducibility of character shifts in threespine stickleback from lakes with and without prickly sculpin, a benthic intraguild predator (IG‐predator). Wild populations of stickleback sympatric with sculpin repeatedly show greater defensive armor and water column height preference. We laboratory‐raised stickleback from lakes with and without sculpin, as well as marine stickleback, and found that differences between populations in armor, body shape, and behavior persisted in a common garden. Within the common garden, we raised stickleback half‐families from multiple populations in the presence and absence of sculpin. Although the presence of sculpin induced trait changes in the marine stickleback, we did not observe an induced response in the freshwater stickleback. Behavioral and morphological trait differences between freshwater populations thus have a genetic basis and suggest an evolutionary response to intraguild predation.  相似文献   

2.
Species competing for resources also commonly share predators. While competition often drives divergence between species, the effects of shared predation are less understood. Theoretically, competing prey species could either diverge or evolve in the same direction under shared predation depending on the strength and symmetry of their interactions. We took an empirical approach to this question, comparing antipredator and trophic phenotypes between sympatric and allopatric populations of threespine stickleback and prickly sculpin fish that all live in the presence of a trout predator. We found divergence in antipredator traits between the species: in sympatry, antipredator adaptations were relatively increased in stickleback but decreased in sculpin. Shifts in feeding morphology, diet and habitat use were also divergent but driven primarily by stickleback evolution. Our results suggest that asymmetric ecological character displacement indirectly made stickleback more and sculpin less vulnerable to shared predation, driving divergence of antipredator traits between sympatric species.  相似文献   

3.
Species at the same trophic level may interact through competition for food, but can also interact through intraguild predation. Intraguild predation is widespread at the second and third trophic level and the effects may cascade down to the plant level. The effects of intraguild predation can be modified by antipredator behaviour in the intraguild prey. We studied intraguild predation and antipredator behaviour in two species of predatory mite, Neoseiulus californicus and Phytoseiulus persimilis, which are both used for control of the two-spotted spider mite in greenhouse and outdoor crops. Using a Y-tube olfactometer, we assessed in particular whether each of the two predators avoids odours emanating from prey patches occupied by the heterospecific predator. Furthermore, we measured the occurrence and rate of intraguild predation of different developmental stages of P. persimilis and N. californicus on bean leaves in absence or in presence of the shared prey. Neither of the two predator species avoided prey patches with the heterospecific competitor, both when inexperienced with the other predator and when experienced with prey patches occupied by the heterospecific predator. Intraguild experiments showed that N. californicus is a potential intraguild predator of P. persimilis. However, P. persimilis did not suffer much from intraguild predation as long as the shared prey was present. This is probably because N. californicus prefers to feed on two-spotted spider mites rather than on its intraguild prey.  相似文献   

4.
Intraguild predation is the simplest, ubiquitous form of trophic omnivory, known to greatly influence the structure and functioning of natural and managed food webs. Although alternative states are fundamental to intraguild predation dynamics, only necessary conditions for alternative states have been previously reported. Using simple models, we found complex but systematic patterns in which different alternative states occur along a productivity gradient, and clarified the sufficient conditions to separate these patterns. We found that two quantities known to control the necessary conditions also determine the sufficient conditions: (1) relative energy transfer efficiency through alternative trophic pathways to an intraguild predator, and (2) relative resource exploitation ability between intraguild prey and predator. These governing quantities suggest how body size and stoichiometric relations between intraguild prey and predators can influence the possibility of alternative states. Our results indicate that food webs involving intraguild predation have a high potential of complex alternative states, and their management can be highly precarious.  相似文献   

5.
Intraguild predation (IGP) among predatory species can influence many plant-arthropod associations. However, the relevance of IGP is poorly understood for truly omnivorous species such as those that can complete development on both animal and plant diets. Here we test the hypothesis that IGP among two omnivorous mirids is more common when extraguild food is either absent or not suitable. Laboratory experiments were performed in experimental cages in order to determine the effect of intraguild prey densities and diet availability on direction and intensity of IGP between Dicyphus tamaninii and Macrolophus caliginosus (Heteroptera: Miridae). Intraguild predation was symmetrical between the two mirid species in the absence of alternative food. Increasing densities of intraguild prey enhanced drastically the incidence of IGP. Intraguild predation was reduced when mirids were in the presence of green or red tomato fruits, but the presence of any other extraguild resources had no impact on IGP level. However, when given before the experiments, all resources with the exception of tomato leaves significantly reduced IGP. A second experiment was performed on live plants to compare the results of the previous trials with that obtained in a more natural setting. No IGP was observed when both mirid species were present on a plant. However, development of the intraguild prey (the more vulnerable stage) was hindered by the presence of the intraguild predator. The potential of such results is discussed from community ecology and biological control perspective.  相似文献   

6.
Intraguild predation can be important in determining community structure and dynamics. Artificial stream pools were used to test for the impacts of intraguild predation among three species of larval plethodontid salamanders. Intraguild predators (large Gyrinophilus porphyriticus and Pseudotriton ruber) significantly decreased the survival of small Pseudotriton ruber. There was a trend toward reduced growth of Pseudotriton and Eurycea cirrigera in the presence of intraguild predators. The presence of large Gyrinophilus significantly reduced the growth rate of large Pseudotriton, both in the absence and presence of intraguild prey. The presence of intraguild prey did not significantly increase the growth rates of the intraguild predators. Intraguild predation is likely to be an important force shaping the evolution and ecology of these salamanders.  相似文献   

7.
We conducted laboratory experiments to investigate interpopulation differences in the behavioural responses of the whelk Buccinum undatum to the predatory lobster Homarus americanus and the asteroid Leptasterias polaris, both in the absence and presence of feeding opportunities. Whelks from three populations in the eastern North Atlantic (1) responded to lobsters by displaying avoidance behaviours (burrowing in the sediments or retreating inside their shell), (2) responded to asteroids by displaying escape responses (rapid crawling, shell rocking behaviour or foot contortions), and (3) more often refrained from feeding in the presence of a lobster than in the presence of an asteroid. Although whelks from the three populations responded similarly to lobsters and asteroids, interpopulation differences were evident. Thus, whelks from populations sympatric with a given predator more frequently displayed 'appropriate' antipredator behaviours (i.e. avoidance in the presence of a lobster, and escape in the presence of an asteroid) than did whelks allopatric with that predator. Also, whelks from a population sympatric with both predators fed less readily in the presence of a given predator than did whelks allopatric with that predator. However, the presence of a lobster or an asteroid had the same impact on the feeding response of whelks from two populations with contrasting predator fields, one sympatric with lobsters, but allopatric with asteroids, and one sympatric with asteroids, but allopatric with lobsters. The results of our study indicate that coexistence (over evolutionary or ecological time) with lobsters and asteroids increases the propensity of the whelk to display avoidance and escape behaviours in the presence of lobsters and asteroids, respectively, but has a less predictable effect on how whelks trade off predation risk and food acquisition. Studies are needed to investigate the roles of inheritance and experience on the development of antipredator behaviours and decision making by prey animals when predation risk conflicts with other fitness-related activities such as the acquisition of food or reproductive opportunities. Copyright 1999 The Association for the Study of Animal Behaviour.  相似文献   

8.
The top-down and bottom-up properties of model food webs that include intraguild predation and self-limiting factors such as cannibalism are investigated. Intraguild predation can dampen or even reverse the top-down effects predicted by food chain theory. The degree of self-limitation among the intraguild prey is a key factor in determining the direction and strength of the top-down response. Intraguild predation and self-limiting factors can also substantially alter the bottom-up effects of enrichment. These results can help explain the disparate results of trophic cascade experiments in lakes, where cascades are usually seen when large Daphnia are the primary herbivores, but not when smaller-bodied herbivores are dominant. Top-down manipulations should cascade at least modestly to phytoplankton in those lakes whose food web can be reasonably approximated by a chain (typically, those where Daphnia is the dominant herbivore), as predicted by food chain theory. On the other hand, smaller-bodied zooplankton are often preyed upon heavily by invertebrate predators as well as by planktivorous fish, thereby introducing elements of intraguild predation into these food webs. In this case, conventional food chain theory is likely to give incorrect predictions. Very large cascade effects may be due primarily to regime shifts between intraguild predation-dominated food webs and those that more resemble food chains, rather than due to the simple food chain cascade usually considered.  相似文献   

9.
Adaptive phenotypic divergence of sympatric morphs in a single species may have significant evolutionary consequences. In the present study, phenotypic impacts of predator on zooplankton prey populations were compared in two northern Finnish lakes; one with an allopatric whitefish, Coregonus lavaretus (L.), population and the other with three sympatric whitefish populations. First, we examined whether there were phenotypic associations with specific niches in allopatric and sympatric whitefish. Second, trait utility (i.e. number of gillrakers) of allopatric and sympatric whitefish in utilizing a pelagic resource was explored by comparing predator avoidance of prey, prey size in environment, and prey size in predator diet. The allopatric living large sparsely rakered (LSR) whitefish morph, was a generalist using both pelagic and benthic niches. In contrast, sympatric living whitefish morphs were specialized: LSR whitefish was a littoral benthivore, small sparsely rakered whitefish was a profundal benthivore and densely rakered (DR) whitefish was a pelagic planktivore. In the lake with allopatric whitefish, zooplankton prey did not migrate vertically to avoid predation whereas, in the lake with sympatric whitefish, all important prey taxa migrated significantly. Trait utility was observed as significantly smaller size of prey in environment and predator diet in the lake with DR whitefish than in the lake with only LSR whitefish.  © 2007 The Linnean Society of London, Biological Journal of the Linnean Society , 2007, 92 , 561–572.  相似文献   

10.
Occurrence of cannibalism and inferior competitive ability of predators compared to their prey have been suggested to promote coexistence in size-structured intraguild predation (IGP) systems. The intrinsic size-structure of fish provides the necessary prerequisites to test whether the above mechanisms are general features of species interactions in fish communities where IGP is common. We first experimentally tested whether Arctic char (Salvelinus alpinus) were more efficient as a cannibal than as an interspecific predator on the prey fish ninespine stickleback (Pungitius pungitius) and whether ninespine stickleback were a more efficient competitor on the shared zooplankton prey than its predator, Arctic char. Secondly, we performed a literature survey to evaluate if piscivores in general are more efficient as cannibals than as interspecific predators and whether piscivores are inferior competitors on shared resources compared to their prey fish species. Both controlled pool experiments and outdoor pond experiments showed that char imposed a higher mortality on YOY char than on ninespine sticklebacks, suggesting that piscivorous char is a more efficient cannibal than interspecific predator. Estimates of size dependent attack rates on zooplankton further showed a consistently higher attack rate of ninespine sticklebacks compared to similar sized char on zooplankton, suggesting that ninespine stickleback is a more efficient competitor than char on zooplankton resources. The literature survey showed that piscivorous top consumers generally selected conspecifics over interspecific prey, and that prey species are competitively superior compared to juvenile piscivorous species in the zooplankton niche. We suggest that the observed selectivity for cannibal prey over interspecific prey and the competitive advantage of prey species over juvenile piscivores are common features in fish communities and that the observed selectivity for cannibalism over interspecific prey has the potential to mediate coexistence in size structured intraguild predation systems.  相似文献   

11.
Finke DL  Denno RF 《Oecologia》2006,149(2):265-275
The ability of predators to elicit a trophic cascade with positive impacts on primary productivity may depend on the complexity of the habitat where the players interact. In structurally-simple habitats, trophic interactions among predators, such as intraguild predation, can diminish the cascading effects of a predator community on herbivore suppression and plant biomass. However, complex habitats may provide a spatial refuge for predators from intraguild predation, enhance the collective ability of multiple predator species to limit herbivore populations, and thus increase the overall strength of a trophic cascade on plant productivity. Using the community of terrestrial arthropods inhabiting Atlantic coastal salt marshes, this study examined the impact of predation by an assemblage of predators containing Pardosa wolf spiders, Grammonota web-building spiders, and Tytthus mirid bugs on herbivore populations (Prokelisia planthoppers) and on the biomass of Spartina cordgrass in simple (thatch-free) and complex (thatch-rich) vegetation. We found that complex-structured habitats enhanced planthopper suppression by the predator assemblage because habitats with thatch provided a refuge for predators from intraguild predation including cannibalism. The ultimate result of reduced antagonistic interactions among predator species and increased prey suppression was enhanced conductance of predator effects through the food web to positively impact primary producers. Behavioral observations in the laboratory confirmed that intraguild predation occurred in the simple, thatch-free habitat, and that the encounter and capture rates of intraguild prey by intraguild predators was diminished in the presence of thatch. On the other hand, there was no effect of thatch on the encounter and capture rates of herbivores by predators. The differential impact of thatch on the susceptibility of intraguild and herbivorous prey resulted in enhanced top-down effects in the thatch-rich habitat. Therefore, changes in habitat complexity can enhance trophic cascades by predator communities and positively impact productivity by moderating negative interactions among predators.  相似文献   

12.
1. Intraguild predation occurs when top predators feed upon both intermediate predators and herbivores. Intraguild predators may thus have little net impact on herbivore abundance. Variation among communities in the strength of trophic cascades (the indirect effects of predators on plants) may be due to differing frequencies of intraguild predation. Less is known about the influence of variation within communities in predator-predator interactions upon trophic cascade strength. 2. We compared the effects of a single predator community between two sympatric plants and two herbivore guilds. We excluded insectivorous birds with cages from ponderosa pine Pinus ponderosa trees parasitized by dwarf mistletoe Arceuthobium vaginatum. For 3 years we monitored caged and control trees for predatory arthropods that moved between the two plants, foliage-feeding caterpillars and sap-feeding hemipterans that were host-specific, and plant damage and growth. 3. Excluding birds increased the abundance of ant-tended aphids on pine and resulted in an 11% reduction in pine woody growth. Mutualist ants protected pine-feeding aphids from predatory arthropods, allowing aphid populations to burgeon in cages even though predatory arthropods also increased in cages. By protecting pine-feeding aphids from predatory arthropods but not birds, mutualist ants created a three-tiered linear food chain where bird effects cascaded to pine growth via aphids. 4. In contrast to the results for tended aphids on pine, bird exclusion had no net effects on untended pine herbivores, the proportion of pine foliage damaged by pine-feeding caterpillars, or the proportion of mistletoe plants damaged by mistletoe-feeding caterpillars. These results suggest that arthropod predators, which were more abundant in cages as compared with control trees, compensated for bird predation of untended pine and mistletoe herbivores. 5. These contrasting effects of bird exclusion support food web theory: where birds were connected to pine by a linear food chain, a trophic cascade occurred. Where birds fed as intraguild predators, the reticulate food webs linking birds to pine and mistletoe resulted in no net effects on herbivores or plant biomass. Our study shows that this variation in food web structure occurred between sympatric plants and within plants between differing herbivore guilds.  相似文献   

13.
Intraguild predation, a form of omnivory that can occur in simple food webs when one species preys on and competes for limiting resources with another species, can have either a stabilizing effect (McCann and Hastings in Proc. R. Soc. Lond. B 264:1249-1254, 1997) or a destabilizing effect (Holt and Polis in Am. Nat. 149:745-764, 1997), depending on the assumptions of the system. Another type of behavior that has been observed in simple food web experiments (Murdoch in Ecol. Monogr. 39:335-354, 1969) is prey switching. Prey switching can occur when the predator prefers the most abundant prey. This has also been shown to be capable of having either a stabilizing effect or a destabilizing effect and even possibly lead to predator extinction (VanLeeuwen et al. in Ecology 88:1571-1581, 2007). Therefore, it is clear that incorporating prey switching into an intraguild predation model could lead to unexpected consequences. In this paper, we propose and explore such a model.  相似文献   

14.
1. Intraguild predation and cannibalism are common among predaceous phytoseiid mites (Acari, Phytoseiidae) but the nutritional benefits gained by these processes are poorly understood. 2. The study reported here addressed the questions of whether cannibalism and intraguild predation provide different nutritional benefits and whether the ability to utilise cannibalism and intraguild predation is linked to the diet specialisation of phytoseiid mites. Specialists tested were Phytoseiulus macropilis, Galendromus occidentalis, and Neoseiulus longispinosus; generalists tested were Amblyseius andersoni, Neoseiulus cucumeris, and Neoseiulus fallacis. 3. All generalists and the specialist P. macropilis were able to complete juvenile development with both con‐ and hetero‐specific prey. Juvenile development of generalists was shorter with heterospecific prey than with conspecific prey, whereas development of the specialist P. macropilis did not differ between prey types. Only a few N. longispinosus and G. occidentalis, both specialists, reached adulthood by cannibalism but none reached adulthood by intraguild predation. 4. All generalists were able to sustain oviposition by intraguild predation. Neoseiulus cucumeris and A. andersoni laid more eggs with heterospecific prey than with conspecific prey, whereas N. fallacis had similar oviposition rates with both prey types. No specialist sustained oviposition by intraguild predation or cannibalism. 5. Overall, generalists gained equal or more nutritional benefits by intraguild predation than by cannibalism and were able to utilise phytoseiid intraguild prey as an alternative food source. Specialists gained equal or more nutritional benefits from cannibalism than from intraguild predation. For specialists, con‐ and hetero‐specific phytoseiids may be considered only a supplemental food.  相似文献   

15.
We investigated the addition of a trophic level to a simple food web. Direct and indirect effects caused by the presence of a new species in the food web were quantified by estimating survival and consumption rates on the basal resource. We focused on a blowfly intraguild prey–predator system with various ecological interactions taking place during the larval period. The experiments were designed to set Chrysomya megacephala (Fabricius) (Diptera: Calliphoridae) as the intraguild prey and Chrysomya albiceps (Wiedemann) as the intraguild predator and/or cannibal. The generalist pupal parasitoid Nasonia vitripennis (Walker) (Hymenoptera: Pteromalidae) was introduced into the system during a non‐susceptible life stage of the interacting blowfly species. The cascading parasitoid effects induced behavioral changes in the blowfly larvae, increasing the impact of intraguild predation and cannibalism on blowfly survival. The results suggest that blowfly larvae can change their feeding behavior in response to the presence of a parasitoid.  相似文献   

16.
Theory predicts that intraguild predation leads to different community dynamics than the trophic cascades of a linear food chain. However, experimental comparisons of these two food‐web modules are rare. Mixotrophic plankton species combine photoautotrophic and heterotrophic nutrition by grazing upon other phytoplankton species. We found that the mixotrophic chrysophyte Ochromonas can grow autotrophically on ammonium, but not on nitrate. This offered a unique opportunity to compare predator–prey interactions in the presence and absence of intraguild predation, without changing the species composition of the community. With ammonium as nitrogen source, Ochromonas can compete with its autotrophic prey for nitrogen and therefore acts as intraguild predator. With nitrate, Ochromonas acts solely as predator, and is not in competition with its prey for nitrogen. We parameterized a simple intraguild predation model based on chemostat experiments with monocultures of Ochromonas and the toxic cyanobacterium Microcystis. Subsequently, we tested the model predictions by inoculating Ochromonas into the Microcystis monocultures, and vice versa. The results showed that Microcystis was a better competitor for ammonium than Ochromonas. In agreement with theoretical predictions, Microcystis was much more strongly suppressed by intraguild predation on ammonium than by top–down predation on nitrate. Yet, Microcystis persisted at very low population densities, because the type III functional response of Ochromonas implied that the grazing pressure upon Microcystis became low when Microcystis was rare. Our results provide experimental support for intraguild predation theory, and indicate that intraguild predation may enable biological control of microbial pest species.  相似文献   

17.
The role and prevalence of omnivory, defined as feeding on more than one trophic level, are critical to understand food web structure and dynamics. Whether omnivory stabilizes or destabilizes food webs depends on the assumptions of theoretical models. Recently, Tanabe and Namba [Tanabe, K., Namba, T., 2005. Omivory creates chaos in simple food web models. Ecology 86, 3411–3414] found that omnivory can create chaos in a simple food web model with linear functional responses and 12 model parameters. In this paper, first we numerically examined bifurcation diagrams with all the parameters as bifurcation parameters, including self-limitation of the intermediate consumer and predator. Chaos spontaneously appears when the intraguild predator’s consumption rates are low for nutrient-rich intraguild prey and high for nutrient-poor basal resource and the intraguild prey reproduces efficiently feeding on the basal resource. Second, we investigated effects of the addition of a species into the basic model food web which exhibits chaos. The additional species is assumed to consume only one of the basal resource, intermediate consumer, or omnivorous predator. Consequences of the addition greatly depend on the trophic level on which the additional species feeds. While the increased diversity of predators feeding on the intermediate consumer stabilizes the web, the increased diversity of prey feeding on the basal resource induces collapse of the food web through exploitative competition for the basal resource. The food chain with the top predator feeding on the omnivorous predator is highly unstable unless the mortality of the top predator is extremely low. We discuss the possibility of real-world chaos and the reason why stability of food webs strongly depends on the topological structure of the webs. Finally, we consider the implications of our results for food web theory and resource management.  相似文献   

18.
Structurally complex habitats provide cover and may hinder the movement of animals. In predator–prey relationships, habitat structure can decrease predation risk when it provides refuges for prey or hinders foraging activity of predators. However, it may also provide shelter, supporting structures and perches for sit-and-wait predators and hence increase their predation rates. We tested the effect of habitat structure on prey mortality in aquatic invertebrates in short-term laboratory predation trials that differed in the presence or absence of artificial vegetation. The effect of habitat structure on prey mortality was context dependent as it changed with predator and prey microhabitat use. Specifically, we observed an ‘anti-refuge’ effect of added vegetation: phytophilous predators that perched on the plants imposed higher predation pressure on planktonic prey, while mortality of benthic prey decreased. Predation by benthic and planktonic predators on either type of prey remained unaffected by the presence of vegetation. Our results show that the effects of habitat structure on predator–prey interactions are more complex than simply providing prey refuges or cover for predators. Such context-specific effects of habitat complexity may alter the coupling of different parts of the ecosystem, such as pelagic and benthic habitats, and ultimately affect food web stability through cascading effects on individual life histories and trophic link strengths.  相似文献   

19.
Trophic supplements to intraguild predation   总被引:2,自引:0,他引:2  
Intraguild predation (IGP) is a dominant community module in terrestrial food webs that occurs when multiple consumers feed both on each other and on a shared prey. This specific form of omnivory is common in terrestrial communities and is of particular interest for conservation biology and biological control given its potential to disrupt management of threatened or pest species. Extensive theory exists to describe the dynamics of three-species IGP, but these models have largely overlooked the potential for other, exterior interactions, to alter the dynamics within the IGP module. We investigated how three forms of feeding outside of the IGP module by intraguild predators (i.e. trophic supplementation) affect the dynamics of the predators (both IG predator and IG prey) and their shared resource. Specifically, we examined how the provision of a constant donor-controlled resource, the availability of an alternative prey species, and predator plant-feeding affect the dynamics of IGP models. All three forms of trophic supplements modified the basic expectations of IGP theory in two important ways, and their effects were similar. First, coexistence was possible without the IG prey being a superior competitor for the original shared resource if the IG prey could effectively exploit one of the types of trophic supplements. However, supplements to the IG predator restricted the potential for coexistence. Second, supplements to the IG prey ameliorated the disruptive effects of the IG predator on the suppression of the shared resource, promoting effective control of the resource in the presence of both predators. Consideration of these three forms of trophic supplementation, all well documented in natural communities, adds substantial realism and predictive power to intraguild predation theory.  相似文献   

20.
Intraguild predation (IGP) is common among generalist predators and an important issue in food web theory, because IGP may destabilise communities by increasing extinction of species. Also, IGP may interfere with the effectiveness of generalist predators as biological control agents. In general, occurrence of IGP in laboratory or field studies is inferred from abundance data or direct observations only. We investigated if tracing stable isotopes allows distinction between different types of predation and confirmation of IGP. Wolf spiders were chosen as model organisms for generalist predators; IGP of third instar A. cuneata on second instar P. palustris was investigated in a laboratory experiment. The availability of alternative prey and the complexity of the microhabitat were manipulated, since both factors are thought to facilitate coexistence of predators.
Stable isotope analysis documented predation of A. cuneata on P. palustris and predation on alternative prey by both juveniles. Both the presence of alternative prey and the availability of shelter reduced mortality of juvenile P. palustris during the first week. During the second week mortality increased in complex structure without alternative prey presumably due to enhanced activity and cannibalism among starving P. palustris . Thus, microhabitat complexity and prey abundance may foster coexistence of wolf spiders in the field.
In conclusion, stable isotope analysis was proven a powerful tool to investigate animal behaviour without direct observation. The method allowed disentangling predator feeding behaviour when more than one type of prey was present.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号