首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Tissue morphogenesis depends on precise regulation and timely co-ordination of cell division and also on the control of the direction of cell division. Establishment of polarity division axis, correct alignment of the mitotic spindle, segregation of fate determinants equally or unequally between daughter cells, are essential for the realization of oriented cell division. Furthermore, oriented cell division is regulated by intrinsic cues, extrinsic cues and other cues, such as cell geometry and polarity. However, dysregulation of cell division orientation could lead to abnormal tissue development and function. In the present study, we review recent studies on the molecular mechanism of cell division orientation and explain their new roles in skin repair and regeneration.  相似文献   

2.
Oriented cell division is a key regulator of tissue architecture and crucial for morphogenesis and homeostasis. Balanced regulation of proliferation and differentiation is an essential property of tissues not only to drive morphogenesis but also to maintain and restore homeostasis. In many tissues orientation of cell division is coupled to the regulation of differentiation producing daughters with similar (symmetric cell division, SCD) or differential fate (asymmetric cell division, ACD). This allows the organism to generate cell lineage diversity from a small pool of stem and progenitor cells. Division orientation and/or the ratio of ACD/SCD need to be tightly controlled. Loss of orientation or an altered ratio can promote overgrowth, alter tissue architecture and induce aberrant differentiation, and have been linked to morphogenetic diseases, cancer and aging. A key requirement for oriented division is the presence of a polarity axis, which can be established through cell intrinsic and/or extrinsic signals. Polarity proteins translate such internal and external cues to drive polarization. In this review we will focus on the role of the polarity complex aPKC/Par3/Par6 in the regulation of division orientation and cell fate in different mammalian epithelia. We will compare the conserved function of this complex in mitotic spindle orientation and distribution of cell fate determinants and highlight common and differential mechanisms in which this complex is used by tissues to adapt division orientation and cell fate to the specific properties of the epithelium.  相似文献   

3.
细胞不对称分裂是多细胞生物发育的基础。细胞不对称分裂的重要特征是细胞命运决定子在细胞分裂期间的不对称分离。细胞不对称分裂一般要经历4个步骤:在细胞中建立一个极性轴;沿此轴定向并形成纺锤体;细胞命运决定子沿极性轴作极性分布;细胞分裂后,不同的细胞命运决定子指导决定细胞的不同命运。  相似文献   

4.
The extracellular matrix guides the orientation of the cell division axis   总被引:5,自引:0,他引:5  
The cell division axis determines the future positions of daughter cells and is therefore critical for cell fate. The positioning of the division axis has been mostly studied in systems such as embryos or yeasts, in which cell shape is well defined. In these cases, cell shape anisotropy and cell polarity affect spindle orientation. It remains unclear whether cell geometry or cortical cues are determinants for spindle orientation in mammalian cultured cells. The cell environment is composed of an extracellular matrix (ECM), which is connected to the intracellular actin cytoskeleton via transmembrane proteins. We used micro-contact printing to control the spatial distribution of the ECM on the substrate and demonstrated that it has a role in determining the orientation of the division axis of HeLa cells. On the basis of our analysis of the average distributions of actin-binding proteins in interphase and mitosis, we propose that the ECM controls the location of actin dynamics at the membrane, and thus the segregation of cortical components in interphase. This segregation is further maintained on the cortex of mitotic cells and used for spindle orientation.  相似文献   

5.
In most lineages, cell cycle exit is correlated with the growth of a primary cilium. We analyzed cell cycle exit and ciliogenesis in human retinal cells and found that, contrary to the classical view, not all cells exiting the cell division cycle generate a primary cilium. Using adhesive micropatterns to control individual cell spreading, we demonstrate that cell spatial confinement is a major regulator of ciliogenesis. When spatially confined, cells assemble a contractile actin network along their ventral surface and a protrusive network along their dorsal surface. The nucleus-centrosome axis in confined cells is oriented toward the dorsal surface where the primary cilium is formed. In contrast, highly spread cells assemble mostly contractile actin bundles. The nucleus-centrosome axis of spread cells is oriented toward the ventral surface, where contractility prevented primary cilium growth. These results indicate that cell geometrical confinement affects cell polarity via the modulation of actin network architecture and thereby regulates basal body positioning and primary cilium growth.  相似文献   

6.
The process of oriented divisions of polarised cells is a recurrent mechanism of cell fate diversification in development. It is commonly assumed that a specialised mechanism of spindle alignment into the axis of polarity is a prerequisite for such systems to generate cell fate diversity. Oriented divisions also take place in the frog blastula, where orientation of the spindle into the apicobasal axis of polarised blastomeres generates inner and outer cells with different fates. Here, we show that, in this system, the spindle orients according to the shape of the cells, a mechanism often thought to be a default. We show that in the embryo, fatedifferentiative, perpendicular divisions correlate with a perpendicular long axis and a small apical surface, but the long axis rather then the size of the apical domain defines the division orientation. Mitotic spindles in rounded, yet polarised, isolated Xenopus blastula cells orient randomly, but align into an experimentally introduced long axis when cells are deformed early in the cell cycle. Unlike other systems of oriented divisions, the spindle aligns at prophase, rotation behaviour is rare and restricted to small angle adjustments. Disruption of astral microtubules leads to misalignment of the spindle. These results show that a mechanism of spindle orientation that depends on cell shape rather than cortical polarity can nevertheless generate cell fate diversity from a population of polarised cells.  相似文献   

7.
8.
The relationship between the hair cell orientation pattern and innervation in the saccule and lagena of the teleost Helostoma temmincki (the kissing gourami) was investigated with scanning electron microscopy and the Winkelmann-Schmitt silver impregnation technique. The hair cell pattern in the saccule consists of four orthogonally oriented groups. The anterior two groups are oriented along the animal's rostrocaudal axis, and the posterior two are oriented along its dorsoventral axis. The pattern of hair cell orientations in the lagena is a typical bidirectional one. Two divisions of the eighth nerve innervate the saccule. The anterior division innervates the horizontally oriented hair cell groups, and the posterior division innervates the dorsoventrally oriented groups. A single nerve innervates the lagena, with the majority of fibers innervating one or the other of the two lagenar hair cell groups. The segregated pattern of innervation according to hair cell orientation groups in the saccule was confirmed in other species. Individual types of axonal terminations appear to innervate hair cells of specific ciliary bundle types.  相似文献   

9.
Oriented cell division is a fundamental determinant of tissue organization. Simple epithelia divide symmetrically in the plane of the monolayer to preserve organ structure during epithelial morphogenesis and tissue turnover. For this to occur, mitotic spindles must be stringently oriented in the Z-axis, thereby establishing the perpendicular division plane between daughter cells. Spatial cues are thought to play important roles in spindle orientation, notably during asymmetric cell division. The molecular nature of the cortical cues that guide the spindle during symmetric cell division, however, is poorly understood. Here we show directly for the first time that cadherin adhesion receptors are required for planar spindle orientation in mammalian epithelia. Importantly, spindle orientation was disrupted without affecting tissue cohesion or epithelial polarity. This suggests that cadherin receptors can serve as cues for spindle orientation during symmetric cell division. We further show that disrupting cadherin function perturbed the cortical localization of APC, a microtubule-interacting protein that was required for planar spindle orientation. Together, these findings establish a novel morphogenetic function for cadherin adhesion receptors to guide spindle orientation during symmetric cell division.  相似文献   

10.
Cilia are microtubule-based organelles that are present on the surfaces of almost all vertebrate cells. Most cilia function as sensory or molecular transport structures. Malfunctions of cilia have been implicated in several diseases of human development. The assembly of cilia is initiated by the centriole (or basal body), and several centrosomal proteins are involved in this process. The mammalian LIM protein Ajuba is a well-studied centrosomal protein that regulates cell division but its role in ciliogenesis is unknown. In this study, we isolated the medaka homolog of Ajuba and showed that Ajuba localizes to basal bodies of cilia in growth-arrested cells. Knockdown of Ajuba resulted in randomized left-right organ asymmetries and altered expression of early genes responsible for left-right body axis determination. At the cellular level, we found that Ajuba function was essential for ciliogenesis in the cells lining Kupffer’s vesicle; it is these cells that induce the asymmetric fluid flow required for left-right axis determination. Taken together, our findings identify a novel role for Ajuba in the regulation of vertebrate ciliogenesis and left-right axis determination.  相似文献   

11.
Orientation of cell divisions is a key mechanism of tissue morphogenesis. In the growing Drosophila wing imaginal disc epithelium, most of the cell divisions in the central wing pouch are oriented along the proximal–distal (P–D) axis by the Dachsous‐Fat‐Dachs planar polarity pathway. However, cells at the periphery of the wing pouch instead tend to orient their divisions perpendicular to the P–D axis despite strong Dachs polarization. Here, we show that these circumferential divisions are oriented by circumferential mechanical forces that influence cell shapes and thus orient the mitotic spindle. We propose that this circumferential pattern of force is not generated locally by polarized constriction of individual epithelial cells. Instead, these forces emerge as a global tension pattern that appears to originate from differential rates of cell proliferation within the wing pouch. Accordingly, we show that localized overgrowth is sufficient to induce neighbouring cell stretching and reorientation of cell division. Our results suggest that patterned rates of cell proliferation can influence tissue mechanics and thus determine the orientation of cell divisions and tissue shape.  相似文献   

12.
Cell shape and cell division   总被引:1,自引:0,他引:1  
The correlation between cell shape elongation and the orientation of the division axis described by early cell biologists is still used as a paradigm in developmental studies. However, analysis of early embryo development and tissue morphogenesis has highlighted the role of the spatial distribution of cortical cues able to guide spindle orientation. In vitro studies of cell division have revealed similar mechanisms. Recent data support the possibility that the orientation of cell division in mammalian cells is dominated by cell adhesion and the associated traction forces developed in interphase. Cell shape is a manifestation of these adhesive and tensional patterns. These patterns control the spatial distribution of cortical signals and thereby guide spindle orientation and daughter cell positioning. From these data, cell division appears to be a continuous transformation ensuring the maintenance of tissue mechanical integrity.  相似文献   

13.
The pattern of cell division is very regular in Arabidopsis embryogenesis, enabling seedling structures to be traced back to groups of cells in the early embryo. Recessive mutations in the FASS gene alter the pattern of cell division from the zygote, without interfering with embryonic pattern formation: although no primordia of seedling structures can be recognised by morphological criteria at the early-heart stage, all elements of the body pattern are differentiated in the seedling. fass seedlings are strongly compressed in the apical-basal axis and enlarged circumferentially, notably in the hypocotyl. Depending on the width of the hypocotyl, fass seedlings may have up to three supernumerary cotyledons. fass mutants can develop into tiny adult plants with all parts, including floral organs, strongly compressed in their longitudinal axis. At the cellular level, fass mutations affect cell elongation and orientation of cell walls but do not interfere with cell polarity as evidenced by the unequal division of the zygote. The results suggest that the FASS gene is required for morphogenesis, i.e., oriented cell divisions and position-dependent cell shape changes generating body shape, but not for cell polarity which seems essential for pattern formation.  相似文献   

14.
Tissue-specific stem cells combine proliferative and asymmetric divisions to balance self-renewal with differentiation. Tight regulation of the orientation and plane of cell division is crucial in this process. Here, we study the reproducible pattern of anterior-posterior-oriented stem cell-like divisions in the Caenorhabditis elegans seam epithelium. In a genetic screen, we identified an alg-1 Argonaute mutant with additional and abnormally oriented seam cell divisions. ALG-1 is the main subunit of the microRNA-induced silencing complex (miRISC) and was previously shown to regulate the timing of postembryonic development. Time-lapse fluorescence microscopy of developing larvae revealed that reduced alg-1 function successively interferes with Wnt signaling, cell adhesion, cell shape and the orientation and timing of seam cell division. We found that Wnt inactivation, through mig-14 Wntless mutation, disrupts tissue polarity but not anterior-posterior division. However, combined Wnt inhibition and cell shape alteration resulted in disordered orientation of seam cell division, similar to the alg-1 mutant. Our findings reveal additional alg-1-regulated processes, uncover a previously unknown function of Wnt ligands in seam tissue polarity, and show that Wnt signaling and geometric cues redundantly control the seam cell division axis.  相似文献   

15.
Corbin BD  Yu XC  Margolin W 《The EMBO journal》2002,21(8):1998-2008
The MinCDE proteins help to select cell division sites in normal cylindrical Escherichia coli by oscillating along the long axis, preventing unwanted polar divisions. To determine how the Min system might function in cells with multiple potential division planes, we investigated its role in a round-cell rodA mutant. Round cells lacking MinCDE were viable, but growth, morphology and positioning of cell division sites were abnormal relative to Min+ cells. In round cells with a long axis, such as those undergoing cell division, green fluorescent protein (GFP) fusions to MinD almost always oscillated parallel to the long axis. However, perfect spheres or irregularly shaped cells exhibited MinD movement to and from multiple sites on the cell surface. A MinE-GFP fusion exhibited similar behavior. These results indicate that the Min proteins can potentially localize anywhere in the cell but tend to move a certain maximum distance from their previous assembly site, thus favoring movement along the cell's long axis. A new model for the spatial control of division planes by the Min system in round cells is proposed.  相似文献   

16.
Insect epidermal cells display planar polarity (i.e. polarity in the plane of the cell sheet) by secreting oriented cuticular denticles and bristles before each moult. We investigate how cell polarities in an abdominal segment are uniformly oriented towards the posterior of the animal. Recently we have shown for the cotton bug Dysdercus that, in 180 degrees-rotated grafts pretreated with colchicine, graft cells tend to adopt the orientation prevailing in surrounding host cells via an intermediate stage with outward oriented denticles (Nübler-Jung and Grau, 1987). Here we show that, in untreated grafts that were transposed along the anteroposterior segment axis, the denticles also always tend to point outwards. This independence of the polarity pattern from the direction of transposition is compatible neither with a gradient model for polarity control, nor with the assumption that epidermal cells orient according to the local sequence of distinctly differentiated cells. Instead we found that outward orientation of graft denticles correlates with an elongation of epidermal cells along a host-graft border with divergent cell adhesiveness. We therefore propose that outward orientation in a graft results from a combination of two factors: epidermal cells stretch along an interface with divergent cell adhesiveness, and they form a denticle perpendicular to their long axis. By analogy, the normal anteroposterior orientation of denticles in a segment may result because epidermal cells tend to elongate parallel to the segment boundary and to form denticles perpendicular to this mediolateral cell elongation, i.e. along the anteroposterior segment axis.  相似文献   

17.
During asymmetric cell division, spindle positioning is critical for ensuring the unequal inheritance of polarity factors. In budding yeast, the mother-bud neck determines the cleavage plane and a correct nuclear division between mother and daughter cell requires orientation of the mitotic spindle along the mother-bud axis. A surveillance device called the spindle position/orientation checkpoint (SPOC) oversees this process and delays mitotic exit and cytokinesis until the spindle is properly oriented along the division axis, thus ensuring genome stability. Cytoskeletal proteins called septins form a ring at the bud neck that is essential for cytokinesis. Furthermore, septins and septin-associated proteins are implicated in spindle positioning and SPOC. In this review, we discuss the emerging connections between septins and the SPOC and the role of the mother-bud neck as a signaling platform to couple proper chromosome segregation to cytokinesis.  相似文献   

18.
Models able to describe the events of cellular growth and division and the dynamics of cell populations are useful for the understanding of functional control mechanisms and for the theoretical support for automated analysis of flow cytometric data and of cell volume distributions. This paper reports on models that we have developed with this aim for different kinds of cells. The models are composed by two subsystems: one describes the growth dynamics of RNA and protein, and the second accounts for DNA replication and cell division, and describe in a rather unitary frame the cell cycle of eukaryotic cells, like mammalian cells and yeast, and of prokaryotic cells. The model is also used to study the effects of various sources of variability on the statistical properties of cell populations, and we find that in microbial cells the main source of variability appears to be an inaccuracy of the molecular mechanism that monitors cell size. In normal mammalian cells another source of variability, that depends upon the interaction with growth factors which give competence, is apparent. An extended version of the model, which comprises also this additional variability, is presented and used to describe the properties of mammalian cell growth.  相似文献   

19.
Setting aside pluripotent cells that give rise to the future body is a central cell fate decision in mammalian development. It requires that some blastomeres divide asymmetrically to direct cells to the inside of the embryo. Despite its importance, it is unknown whether the decision to divide symmetrically versus asymmetrically shows any spatial or temporal pattern, whether it is lineage-dependent or occurs at random, or whether it influences the orientation of the embryonic-abembryonic axis. To address these questions, we developed time-lapse microscopy to enable a complete 3D analysis of the origins, fates and divisions of all cells from the 2- to 32-cell blastocyst stage. This showed how in the majority of embryos, individual blastomeres give rise to distinct blastocyst regions. Tracking the division orientation of all cells revealed a spatial and temporal relationship between symmetric and asymmetric divisions and how this contributes to the generation of inside and outside cells and thus embryo patterning. We found that the blastocyst cavity, defining the abembryonic pole, forms where symmetric divisions predominate. Tracking cell ancestry indicated that the pattern of symmetric/asymmetric divisions of a blastomere can be influenced by its origin in relation to the animal-vegetal axis of the zygote. Thus, it appears that the orientation of the embryonic-abembryonic axis is anticipated by earlier cell division patterns. Together, our results suggest that two steps influence the allocation of cells to the blastocyst. The first step, involving orientation of 2- to 4-cell divisions along the animal-vegetal axis, can affect the second step, the establishment of inside and outside cell populations by asymmetric 8- to 32-cell divisions.  相似文献   

20.
The relative contributions of cell polarity and nuclear position in specifying the plane of asymmetric division in fucoid zygotes were investigated. In zygotes developing normally, telophase nuclei were positioned parallel to the polar growth axis, and the division plane bisected both axes. To assess division plane specification, the colinearity of the nuclear and growth axes was uncoupled by treatment with pharmacological agents. Spatial correlations between the growth axis, telophase nuclei, and the division plane were analyzed in the treated zygotes. In all cases, cytokinesis was oriented transverse to the telophase mitotic array and was less well aligned with the growth axis. Telophase nuclei also played a predominant role in positioning the division plane in polyspermic zygotes. Microtubules from the telophase nuclei interdigitated throughout the plane of subsequent cytokinesis, and we speculate that they specify the division plane. Morphological markers of the division plane were not observed before telophase; the earliest division marker detected was a plate of actin that assembled in the zone of microtubule overlap late in telophase. These findings are consistent with division plane specification at cytoplast boundaries.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号