首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Several autoinflammatory diseases with distinct clinical manifestations have been associated with sequence variations in the gene products PYPAF1/CIAS1 and NOD2/CARD15. Both proteins belong to the PYD/CARD-containing family of apoptosis regulators and activators of pro-inflammatory caspases. To gain insight into the dysfunctional role of sequence alterations, we assembled a structure-based multiple sequence alignment of family members and related proteins. This allowed us to analyze the putative effect of the alterations on the function of nucleotide-binding (NACHT) and leucine-rich repeat (LRR) domains shared by the family members. In support of this analysis, we carefully selected template structures for the NACHT and LRR domains and mapped the genetic variations onto 3D domain models. Additionally, we propose a model of the NACHT and LRR domain complex. Our study revealed that many of the disease-associated sequence variants are located close to highly conserved sequence regions of functional relevance and are spatially adjacent in the predicted 3D structure. The implications on the domain functions such as NTP-hydrolysis or oligomerization are discussed.  相似文献   

2.
Factor XI (FXI) binds specifically and reversibly to high affinity sites on the surface of stimulated platelets (Kd app of approximately 10 nm; Bmax of approximately 1,500 sites/platelet) utilizing residues exposed on the Apple 3 domain in the presence of high molecular weight kininogen and Zn2+ or prothrombin and Ca2+. Because the FXI receptor in the platelet membrane is contained within the glycoprotein Ibalpha subunit of the glycoprotein Ib-IX-V complex (Baglia, F. A., Badellino, K. O., Li, C. Q., Lopez, J. A., and Walsh, P. N. (2002) J. Biol. Chem. 277, 1662-1668), we utilized mocarhagin, a cobra venom metalloproteinase, to generate a fragment (His1-Glu282) of glycoprotein Ibalpha that contains the leucine-rich repeats of the NH2-terminal globular domain and excludes the macroglycopeptide portion of glycocalicin, the soluble extracytoplasmic portion of glycoprotein Ibalpha. This fragment was able to compete with FXI for binding to activated platelets (Ki of 3.125 +/- 0.25 nm) with a potency similar to that of intact glycocalicin (Ki of 3.72 +/- 0.30 nm). However, a synthetic glycoprotein Ibalpha peptide, Asp269-Asp287, containing a thrombin binding site had no effect on the binding of FXI to activated platelets. Moreover, the binding of 125I-labeled thrombin to glycocalicin was unaffected by the presence of FXI at concentrations up to 10(-5) m. The von Willebrand factor A1 domain, which binds the leucine-rich repeats, inhibited the binding of FXI to activated platelets. Thus, we examined the effect of synthetic peptides of each of the seven leucine-rich repeats on the binding of 125I-FXI to activated platelets. All leucine-rich repeat (LRR) peptides derived from glycoprotein Ibalpha were able to inhibit FXI binding to activated platelets in the following order of decreasing potency: LRR7, LRR1, LRR4, LRR5, LRR6, LRR3, and LRR2. However, the leucine-rich repeat synthetic peptides derived from glycoprotein Ibbeta and Toll protein had no effect. We conclude that FXI binds to glycoprotein Ibalpha at sites comprising the leucine-rich repeat sequences within the NH2-terminal globular domain that are separate and distinct from the thrombin-binding site.  相似文献   

3.
Mutations in leucine-rich repeat kinase 2 (LRRK2) are the most common cause of familial Parkinson's disease. Much research effort has been directed towards the catalytic core region of LRRK2 composed of GTPase (ROC, Ras of complex proteins) and kinase domains and a connecting COR (C-terminus of ROC) domain. In contrast, the precise functions of the protein-protein interaction domains, such as the leucine-rich repeat (LRR) domain, are not known. In the present study, we modeled the LRRK2 LRR domain (LRR(LRRK2)) using a template assembly approach, revealing the presence of 14 LRRs. Next, we focused on the expression and purification of LRR(LRRK2) in Escherichia coli. Buffer optimization revealed that the protein requires the presence of a zwitterionic detergent, namely Empigen BB, during solubilization and the subsequent purification and characterization steps. This indicates that the detergent captures the hydrophobic surface patches of LRR(LRRK2) thereby suppressing its aggregation. Circular dichroism (CD) spectroscopy measured 18% α-helices and 21% β-sheets, consistent with predictions from the homology model. Size exclusion chromatography (SEC) and dynamic light scattering measurements showed the presence of a single species, with a Stokes radius corresponding to the model dimensions of a protein monomer. Furthermore, no obvious LRR(LRRK2) multimerization was detected via cross-linking studies. Finally, the LRR(LRRK2) clinical mutations did not influence LRR(LRRK2) secondary, tertiary or quaternary structure as determined via SEC and CD spectroscopy. We therefore conclude that these mutations are likely to affect putative LRR(LRRK2) inter- and intramolecular interactions.  相似文献   

4.
The three fibronectin leucine-rich repeat transmembrane (FLRT) proteins contain 10 leucine-rich repeats (LRR), a type III fibronectin (FN) domain, followed by the transmembrane region, and a short cytoplasmic tail. XFLRT3, a Nodal/TGFβ target, regulates cell adhesion and modulates FGF signalling during Xenopus gastrulation. The present study describes the onset and pattern of FLRT1-3 expression in the early mouse embryo. FLRT3 expression is activated in the anterior visceral endoderm (AVE), and during gastrulation appears in anterior streak derivatives namely the node, notochord and the emerging definitive endoderm. To explore FLRT3 function we generated a null allele via gene targeting. Early Nodal activities required for anterior-posterior (A-P) patterning, primitive streak formation and left-right (L-R) axis determination were unperturbed. However, FLRT3 mutant embryos display defects in headfold fusion, definitive endoderm migration and a failure of the lateral edges of the ventral body wall to fuse, leading to cardia bifida. Surprisingly, the mutation has no effect on FGF signalling. Collectively these experiments demonstrate that FLRT3 plays a key role in controlling cell adhesion and tissue morphogenesis in the developing mouse embryo.  相似文献   

5.
We have identified and characterized a novel single span transmembrane leucine-rich repeat protein, synleurin, that renders cells highly sensitive to the activation by cytokines and lipopolysaccharide (LPS). The major part of the extracellular domain consists of a leucine-rich repeats (LRR) cassette. The LRR central core has 12 analogous LRR repeating modules arranged in a seamless tandem array. The LRRs are most homologous to that of chondroadherin, insulin-like growth factor binding proteins, platelet glycoprotein V, slits, and toll-like receptors. Synleurin expression was detected at low levels in many tissues, including smooth muscle, brain, uterus, pancreas, cartilage, adipose, spleen, and testis. When synleurin is ecotopically expressed in transfected cells, the cells exhibit amplified responses to bFGF, EGF, PDGF-B, IGF-1, IGF-2, and LPS. Synleurin gene (slrn) maps to human chromosome at 5q12. The name synleurin reflects its synergistic effect on cytokine stimulation and its prominent leucine-rich repeats.  相似文献   

6.
Choi du S  Hwang IS  Hwang BK 《The Plant cell》2012,24(4):1675-1690
Plants recruit innate immune receptors such as leucine-rich repeat (LRR) proteins to recognize pathogen attack and activate defense genes. Here, we identified the pepper (Capsicum annuum) pathogenesis-related protein10 (PR10) as a leucine-rich repeat protein1 (LRR1)-interacting partner. Bimolecular fluorescence complementation and coimmunoprecipitation assays confirmed the specific interaction between LRR1 and PR10 in planta. Avirulent Xanthomonas campestris pv vesicatoria infection induces PR10 expression associated with the hypersensitive cell death response. Transient expression of PR10 triggers hypersensitive cell death in pepper and Nicotiana benthamiana leaves, which is amplified by LRR1 coexpression as a positive regulator. LRR1 promotes the ribonuclease activity and phosphorylation of PR10, leading to enhanced cell death signaling. The LRR1-PR10 complex is formed in the cytoplasm, resulting in its secretion into the apoplastic space. Engineered nuclear confinement of both proteins revealed that the cytoplasmic localization of the PR10-LRR1 complex is essential for cell death-mediated defense signaling. PR10/LRR1 silencing in pepper compromises resistance to avirulent X. campestris pv vesicatoria infection. By contrast, PR10/LRR1 overexpression in Arabidopsis thaliana confers enhanced resistance to Pseudomonas syringae pv tomato and Hyaloperonospora arabidopsidis. Together, these results suggest that the cytosolic LRR-PR10 complex is responsible for cell death-mediated defense signaling.  相似文献   

7.
Fibroblast growth factor receptors (FGFRs) comprise a subfamily of receptor tyrosine kinases (RTKs) that are master regulators of a broad spectrum of cellular and developmental processes, including apoptosis, proliferation, migration, and angiogenesis. Due to their broad impact, FGFRs and other RTKs are highly regulated and normally only basally active. Deregulation of FGFR signaling by activating mutations or ligand/receptor overexpression could allow these receptors to become constitutively active, leading to cancer development, including both hematopoietic and solid tumors, such as breast, bladder, and prostate carcinomas. In this review, we focus on potential modes of FGFR-mediated tumorigenesis, in particular, the role of FGFR1 during prostate cancer progression.  相似文献   

8.
IpaH proteins are bacterium-specific E3 enzymes that function as type three secretion system (T3SS) effectors in Salmonella, Shigella, and other Gram-negative bacteria. IpaH enzymes recruit host substrates for ubiquitination via a leucine-rich repeat (LRR) domain, which can inhibit the catalytic domain in the absence of substrate. The basis for substrate recognition and the alleviation of autoinhibition upon substrate binding is unknown. Here, we report the X-ray structure of Salmonella SspH1 in complex with human PKN1. The LRR domain of SspH1 interacts specifically with the HR1b coiled-coil subdomain of PKN1 in a manner that sterically displaces the catalytic domain from the LRR domain, thereby activating catalytic function. SspH1 catalyzes the ubiquitination and proteasome-dependent degradation of PKN1 in cells, which attenuates androgen receptor responsiveness but not NF-κB activity. These regulatory features are conserved in other IpaH-substrate interactions. Our results explain the mechanism whereby substrate recognition and enzyme autoregulation are coupled in this class of bacterial ubiquitin ligases.  相似文献   

9.
The leucine-rich repeat acidic nuclear protein (Anp32a/LANP) belongs to a family of evolutionarily-conserved phosphoproteins involved in a complex network of protein-protein interactions. In an effort to understand the cellular role, we have investigated the mode of interaction of Anp32a with its partners. As a prerequisite, we solved the structure in solution of the evolutionarily conserved N-terminal leucine-rich repeat (LRR) domain and modeled its interactions with other proteins, taking PP2A as a paradigmatic example. The interaction between the Anp32a LRR domain and the AXH domain of ataxin-1 was probed experimentally. The two isolated and unmodified domains bind with very weak (millimolar) affinity, thus suggesting the necessity either for an additional partner (e.g. other regions of either or both proteins or a third molecule) or for a post-translational modification. Finally, we identified by two-hybrid screening a new partner of the LRR domain, i.e. the microtubule plus-end tracking protein Clip 170/Restin, known to regulate the dynamic properties of microtubules and to be associated with severe human pathologies.  相似文献   

10.
The innate immune system of both plants and animals uses immune receptors to detect pathogens and trigger defence responses. Despite having distinct evolutionary origin, most plant and animal immune receptors have a leucine-rich repeat (LRR) domain. The LRR domain adopts a slender conformation that maximizes surface area and has been shown to be ideal for mediating protein–protein interactions. Although the LRR domain was expected to be a platform for pathogen recognition, the NB-LRR class of plant innate immune receptors uses its LRR domain to carry out many other roles. This review discusses the domain architecture of plant LRRs and the various roles ascribed to this motif.  相似文献   

11.
Densin is a member of the leucine-rich repeat (LRR) and PDZ domain (LAP) protein family that binds several signaling molecules via its C-terminal domains, including calcium/calmodulin-dependent protein kinase II (CaMKII). In this study, we identify several novel mRNA splice variants of densin that are differentially expressed during development. The novel variants share the LRR domain but are either prematurely truncated or contain internal deletions relative to mature variants of the protein (180 kDa), thus removing key protein–protein interaction domains. For example, CaMKIIα coimmunoprecipitates with densin splice variants containing an intact C-terminal domain from lysates of transfected HEK293 cells, but not with variants that only contain N-terminal domains. Immunoblot analyses using antibodies to peptide epitopes in the N- and C- terminal domains of densin are consistent with developmental regulation of splice variant expression in brain. Moreover, putative splice variants display different subcellular fractionation patterns in brain extracts. Expression of green fluorescent protein (GFP)-fused densin splice variants in HEK293 cells shows that the LRR domain can target densin to a plasma membrane-associated compartment, but that the splice variants are differentially localized and have potentially distinct effects on cell morphology. In combination, these data show that densin splice variants have distinct functional characteristics suggesting multiple roles during neuronal development.  相似文献   

12.
The Toll-like receptor (TLR) gene family consists of type 1 transmembrane receptors, which play essential roles in both innate immunity and adaptive immune response by ligand recognition and signal transduction. Using all available vertebrate TLR protein sequences, we inferred the phylogenetic tree and then characterized critical amino acid residues for functional divergence by detecting altered functional constraints after gene duplications. We found that the extracellular domain of TLR genes showed higher functional divergence than that of the cytoplasmic domain, particularly in the region between leucine-rich repeat (LRR) 10 and LRR 15 of TLR 4. Our finding supports the concept that sequence evolution in the extracellular domain may be responsible for the broad diversity of TLR ligand-binding affinity, providing a testable hypothesis for potential targets that could be verified by further experimentation.  相似文献   

13.
We have identified a new functional transmembrane receptor, LRRC19 (leucine-rich repeat containing 19), that belongs to the LRR protein family. LRRC19’s central core has four analogous LRR repeating modules in a juxtaposed array and a casein kinase (CK2) phosphorylation site in the cytoplasmic domain. LRRC19 mRNA was found in the kidney, spleen and intestine of adult mice using both RT-PCR and in situ hybridization. LRRC19 does not contain a cytoplasmic Toll/IL-1 receptor (TIR) domain but was able to activate NF-κB and induce production of proinflammatory cytokines. LRRC19 shares a close evolutionary relationship with multiple Toll-like receptors (TLRs), especially TLR3. Importantly, the TLR3 ligand, as well as other TLR ligands, significantly promoted the expression of proinflammatory cytokines and the activation of NF-κB by LRRC19. Thus, LRRC19 may play an important role in inducing innate immune responses in certain tissues such as the kidney.  相似文献   

14.
Ligand-receptor signaling initiated by the CLAVATA3/ ENDOSPERM SURROUNDING REGION (CLE) family peptides is critical in regulating cell division and differentiation in meristematic tissues in plants. Biologically active CLE peptides are released from precursor proteins via proteolytic processing. The mature form of CLE ligands consists of 12–13 amino acids with several post-translational modifications. This review summarizes recent progress toward understanding the proteolytic activities that cleave precursor proteins to release CLE peptides, the molecular structure and function of mature CLE ligands, and interactions between CLE ligands and corresponding leucine-rich repeat (LRR) receptor-like kinases (RLKs).  相似文献   

15.
Glycoprotein Ib (GPIb) is a platelet receptor with a critical role in mediating the arrest of platelets at sites of vascular damage. GPIb binds to the A1 domain of von Willebrand factor (vWF-A1) at high blood shear, initiating platelet adhesion and contributing to the formation of a thrombus. To investigate the molecular basis of GPIb regulation and ligand binding, we have determined the structure of the N-terminal domain of the GPIb(alpha) chain (residues 1-279). This structure is the first determined from the cell adhesion/signaling class of leucine-rich repeat (LRR) proteins and reveals the topology of the characteristic disulfide-bonded flanking regions. The fold consists of an N-terminal beta-hairpin, eight leucine-rich repeats, a disulfide-bonded loop, and a C-terminal anionic region. The structure also demonstrates a novel LRR motif in the form of an M-shaped arrangement of three tandem beta-turns. Negatively charged binding surfaces on the LRR concave face and anionic region indicate two-step binding kinetics to vWF-A1, which can be regulated by an unmasking mechanism involving conformational change of a key loop. Using molecular docking of the GPIb and vWF-A1 crystal structures, we were also able to model the GPIb.vWF-A1 complex.  相似文献   

16.
17.
The CED4/Apaf-1 family of proteins functions as critical regulators of apoptosis and NF-kappaB signaling pathways. A novel human member of this family, called CARD12, was identified that induces apoptosis when expressed in cells. CARD12 is most similar in structure to the CED4/Apaf-1 family member CARD4, and is comprised of an N-terminal caspase recruitment domain (CARD), a central nucleotide-binding site (NBS), and a C-terminal domain of leucine-rich repeats (LRR). The CARD domain of CARD12 interacts selectively with the CARD domain of ASC, a recently identified proapoptotic protein. In addition, CARD12 coprecipitates caspase-1, a caspase that participates in both apoptotic signaling and cytokine processing. CARD12 may assemble with proapoptotic CARD proteins to coordinate the activation of downstream apoptotic and inflammatory signaling pathways.  相似文献   

18.
Plant defense responses against pathogens often involve the restriction of the pathogen to its site of penetration achieved through the combined effects of the hypersensitive response (HR) and its tightly connected localized acquired resistance (LAR). The tobacco DD9-3 expressed sequence tag was previously isolated from a screen designed to isolate genes induced early during the HR, thus potentially involved in the induction/regulation of the HR or LAR. Translation of the open reading frame of DD9-3 revealed a leucine-rich repeat (LRR) domain highly homologous with the receptor domain of a receptor kinase, suggesting a potential function in signaling pathways. The full-length cDNA was cloned. It encodes a small (232 amino acids) LRR protein, designated Nicotiana tabacum leucine-rich protein 1 (NtLRP1), containing a signal peptide, four leucine zipper repeats, five LRR repeats, and a C-terminal domain rich in proline. NtLRP1 expression is induced early during the HR initiated by elicitins, Ralstonia solanacearum, or Tobacco mosaic virus. NtLRP1 coupled with the green fluorescent protein localizes to the endoplasmic reticulum (ER). Loss-of-function through virus-induced gene silencing or through RNA interference did not modify the elicitin-induced HR or LAR. Gain-of-function experiments through transient Agrobacterium tumefaciens-mediated NtLRP1 expression in tobacco leaves caused the suppression of the HR induced by 2 nM elicitin and delayed the HR when the elicitin was applied at higher concentrations. The results suggest that NtLRP1 acts as a modulator of the HR and that retention in the ER is essential for its function.  相似文献   

19.
Functions of toll-like receptors: lessons from KO mice   总被引:13,自引:0,他引:13  
The innate immune response is a first-line defense system in which individual Toll-like receptors (TLRs) recognize distinct pathogen-associated molecular patterns (PAMPs) and exert subsequent immune responses against a variety of pathogens. TLRs are composed of an extracellular leucine-rich repeat (LRR) domain and a cytoplasmic domain that is homologous to that of the IL-IR family. Upon stimulation, TLR recruits a cytoplasmic adaptor molecule MyD88, then IL-IR-associated kinase (IRAK), and finally induces activation of NF-kappaB and MAP kinases. However, the responses to TLR ligands differ, indicating the diversity of TLR signaling pathways. Besides MyD88, several novel adaptor molecules have recently been identified. Differential utilization of these adaptor molecules may provide the specificity in the TLR signaling.  相似文献   

20.
Reciprocal cross-talk between Nod2 and TAK1 signaling pathways   总被引:10,自引:0,他引:10  
Mutations in the leucine-rich repeat (LRR) domain of Nod2 have been implicated in the pathogenesis of Crohn's disease, yet the function of Nod2 and regulation of the Nod2 pathway remain unclear. In this study, we determined that mitogen-activated protein kinase kinase transforming growth factor (TGF)-beta-activated kinase 1 (TAK1) interacts with Nod2 and is required for Nod2-mediated NF-kappaB activation. The dominant negative form of TAK1 abolished muramyl dipeptide-induced NF-kappaB activation in Nod2-expressing cells. Nod2, acting in a reciprocal manner, inhibited TAK1-induced NF-kappaB activation in RICK-deficient embryonic fibroblasts. Nod2 appears to interact with TAK1 through its LRR region to exert its inhibitory effect on TAK1-induced NF-kappaB activation. Further, wild-type LRR more effectively suppressed NF-kappaB activation induced by TAK1 than LRR with a 3020insC mutation. Considered together, these findings demonstrate a critical role for TAK1 in Nod2-mediated innate immune responses and reveal a novel function for Nod2 in the regulation of the TAK1 signaling pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号