首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Most early evolutionary thinkers came from medicine, yet evolution has had a checkered history in medical education. It is only in the last few decades that serious efforts have begun to be made to integrate evolutionary biology into the medical curriculum. However, it is not clear when, where (independently or as part of preclinical or clinical teaching courses) and, most importantly, how should medical students learn the basic principles of evolutionary biology applied to medicine, known today as evolutionary or Darwinian medicine. Most clinicians are ill-prepared to teach evolutionary biology and most evolutionary biologists ill-equipped to formulate clinical examples. Yet, if evolutionary science is to have impact on clinical thought, then teaching material that embeds evolution within the clinical framework must be developed. In this paper, we use two clinical case studies to demonstrate how such may be used to teach evolutionary medicine to medical students in a way that is approachable as well as informative and relevant.  相似文献   

2.
3.
Jay B. Labov 《Evolution》2011,4(4):561-566
Over the past several years, numerous reports that have been independently prepared by prestigious organizations in the U.S. have agreed that new approaches to improve teaching and learning of biology at both the pre-college and undergraduate levels are important and timely. Their recommendations, which are based on emerging research about human learning and cognition, are in agreement that evolution is an organizing principle and foundation of modern biology and should be presented as such. This paper provides an overview of the conclusions and recommendations from those reports and proposes that helping students learn evolution through the lens of human examples that are part of the emerging field of evolutionary medicine could help biology educators improve the teaching of evolution, and biology more generally, by asking students to address biological problems that are inherently interesting and motivating.  相似文献   

4.
Medical students have much to gain by understanding how evolutionary principles affect human health and disease. Many theoretical and experimental studies have applied lessons from evolutionary biology to issues of critical importance to medical science. A firm grasp of evolution and natural selection is required to understand why the human body remains vulnerable to many diseases. Although we often integrate evolutionary concepts when we teach medical students and residents, the vast majority of medical students never receive any instruction on evolution. As a result, many trainees lack the tools to understand key advances and miss valuable opportunities for education and research. Here, we outline some of the evolutionary principles that we wished we had learned during our medical training.  相似文献   

5.
An appreciation of the potential applications of molecular biology is of growing importance in many areas of life sciences, including marine biology. During the past two decades, the development of sophisticated molecular technologies and instruments for biomedical research has resulted in significant advances in the biological sciences. However, the value of molecular techniques for addressing problems in marine biology has only recently begun to be cherished. It has been proven that the exploitation of molecular biological techniques will allow difficult research questions about marine organisms and ocean processes to be addressed. Marine molecular biology is a discipline, which strives to define and solve the problems regarding the sustainable exploration of marine life for human health and welfare, through the cooperation between scientists working in marine biology, molecular biology, microbiology and chemistry disciplines. Several success stories of the applications of molecular techniques in the field of marine biology are guiding further research in this area. In this review different molecular techniques are discussed, which have application in marine microbiology, marine invertebrate biology, marine ecology, marine natural products, material sciences, fisheries, conservation and bio-invasion etc. In summary, if marine biologists and molecular biologists continue to work towards strong partnership during the next decade and recognize intellectual and technological advantages and benefits of such partnership, an exciting new frontier of marine molecular biology will emerge in the future.  相似文献   

6.
We introduce the field of Hamiltonian medicine, which centres on the roles of genetic relatedness in human health and disease. Hamiltonian medicine represents the application of basic social-evolution theory, for interactions involving kinship, to core issues in medicine such as pathogens, cancer, optimal growth and mental illness. It encompasses three domains, which involve conflict and cooperation between: (i) microbes or cancer cells, within humans, (ii) genes expressed in humans, (iii) human individuals. A set of six core principles, based on these domains and their interfaces, serves to conceptually organize the field, and contextualize illustrative examples. The primary usefulness of Hamiltonian medicine is that, like Darwinian medicine more generally, it provides novel insights into what data will be productive to collect, to address important clinical and public health problems. Our synthesis of this nascent field is intended predominantly for evolutionary and behavioural biologists who aspire to address questions directly relevant to human health and disease.  相似文献   

7.
Evolutionary medicine is a perspective on medical sciences derived through application of theory of evolution to aid in therapeutics. This study sought to determine the level of knowledge and acceptance of evolutionary theory in medical students along with their attitude toward teaching evolutionary medicine as a part of their undergraduate course. Factors that are likely to cause difficulty in teaching evolutionary medicine were also identified. A cross-sectional study was carried out at Army Medical College, National University of Sciences and Technology, Pakistan in which 299 medical students were selected by nonprobability convenient sampling technique to participate in the study. Participants’ views were obtained by a structured questionnaire comprised of three sections: appreciation of evolutionary medicine, acceptance of evolutionary theory, knowledge of evolutionary theory. Medical students had a low acceptance [mean measure of acceptance of theory of evolution (MATE) = 58.32] and a low knowledge (mean score of 5.20 out of a total ten marks). Students believed that religious beliefs, lack of resources, and an existent extensive medical curriculum would cause difficulty in imparting such an education despite its potential to improve medical research and clinical practice. Only 37.2% agreed that the subject should be taught in medical schools as an individual subject.  相似文献   

8.
This report describes the road map we followed at our university to accommodate three main factors: financial pressure within the university system; desire to enhance the learning experience of undergraduates; and motivation to increase the prominence of the discipline of developmental biology in our university. We engineered a novel, multi-year undergraduate developmental biology program which was "student-oriented," ensuring that students were continually exposed to the underlying principles and philosophy of this discipline throughout their undergraduate career. Among its key features are introductory lectures in core courses in the first year, which emphasize the relevance of developmental biology to tissue engineering, reproductive medicine, therapeutic approaches in medicine, agriculture and aquaculture. State-of-the-art animated computer graphics and images of high visual impact are also used. In addition, students are streamed into the developmental biology track in the second year, using courses like human embryology and courses shared with cell biology, which include practicals based on modern experimental approaches. Finally, fully dedicated third-year courses in developmental biology are undertaken in conjunction with stand-alone practical courses where students experiencefirst-hand work in a research laboratory. Our philosophy is a "cradle-to-grave" approach to the education of undergraduates so as to prepare highly motivated, enthusiastic and well-educated developmental biologists for entry into graduate programs and ultimately post-doctoral research.  相似文献   

9.
Regarding such an important issue as our origin, as well as the origin of all biological diversity, it is surprising to realize that evolution still faces drawbacks in keeping its deserved notability as a unifying theory in biology. This does not happen because evolutionism lacks validity as a scientific theory, but rather because of several misconceptions regarding evolutionary biology that were and continue to be found in elementary and secondary education. Furthermore, mistaken evolutionary ideas also affect some philosophical and social issues. The aim of the present study was to evaluate knowledge about evolution among freshman students from distinct majoring areas at Universidade Estadual do Centro-Oeste do Paraná (UNICENTRO), Brazil. The research was carried out based on a ten-question questionnaire about evolution with distinct levels of difficulty, comprising the most observed misconceptions. In this study, 231 students attending classes in biological sciences (morning and evening schedule), exact sciences (agronomy, physics, chemistry, and math), and human sciences (history, geography, and pedagogy) were interviewed. The total average of right answers was 48.8%, and the highest average per course obtained was 58.7% from the students attending biological sciences (evening schedule). Although evolutionary biology and ecology are supposed to represent teaching guide issues according to the recommendations of the National Curricular Parameters for the Secondary School, the data obtained suggest that the evidence for evolution, the role of natural selection and random events, as well as the sources of variation, must be better focused at schools.  相似文献   

10.
This review is aimed at readers seeking an introductory overview, teaching courses and interested in visionary ideas. It first describes the range of topics covered by evolutionary medicine, which include human genetic variation, mismatches to modernity, reproductive medicine, degenerative disease, host–pathogen interactions and insights from comparisons with other species. It then discusses priorities for translational research, basic research and health management. Its conclusions are that evolutionary thinking should not displace other approaches to medical science, such as molecular medicine and cell and developmental biology, but that evolutionary insights can combine with and complement established approaches to reduce suffering and save lives. Because we are on the cusp of so much new research and innovative insights, it is hard to estimate how much impact evolutionary thinking will have on medicine, but it is already clear that its potential is enormous.  相似文献   

11.
Understanding how the spectacular diversity of colour patterns on butterfly wings is shaped by natural selection, and how particular pattern elements are generated, has been the focus of both evolutionary and developmental biologists. The growing field of evolutionary developmental biology has now begun to provide a link between genetic variation and the phenotypes that are produced by developmental processes and that are sorted by natural selection. Butterfly wing patterns are set to become one of the few examples of morphological diversity to be studied successfully at many levels of biological organization, and thus to yield a more complete picture of adaptive morphological evolution.  相似文献   

12.
Evolutionary trees are key tools for modern biology and are commonly portrayed in textbooks to promote learning about biological evolution. However, many people have difficulty in understanding what evolutionary trees are meant to portray. In fact, some ideas that current professional biologists depict with evolutionary trees are neither clearly defined nor conveyed to students. To help biology teachers and students learn how to more deeply interpret, understand and gain knowledge from diagrams that represent ancestor–descendant relationships and evolutionary lineages, we describe the different rooted and unrooted evolutionary tree visualisations and explain how they are best read. Examples from a study of tree-shaped diagrams in the journal Science are used to illustrate how to distinguish evolutionary trees from other tree-shaped representations that are easily misunderstood as visualising evolutionary relationships. We end by making recommendations for how our findings may be implemented in teaching practice in this important area of biology education.  相似文献   

13.
One hundred years ago, Flexner emphasized the importance of science in medicine and medical education. Over the subsequent years, science education in the premedical and medical curricula has changed little, in spite of the vast changes in the biomedical sciences. The National Research Council, in their report Bio 2010, noted that the premedical curriculum caused many students to lose interest in medicine and in the biological sciences in general. Many medical students and physicians have come to view the premedical curriculum as of limited relevance to medicine and designed more as a screening mechanism for medical school admission. To address this, the Association of American Medical Colleges and the Howard Hughes Medical Institute formed a committee to evaluate the premedical and medical school science curricula. The committee made a number of recommendations that are summarized in this essay. Most important were that competencies replace course requirements and that the physical sciences and mathematics be better integrated with the biological sciences and medicine. The goal is that all physicians possess a strong scientific knowledge base and come to appreciate the importance of this to the practice of medicine. While science education needs to evolve, Flexner's vision is as relevant today as it was 100 years ago.  相似文献   

14.
When biologists are asked to discuss the evidence for evolution at public forums, they usually use well-established microevolutionary examples. Although these examples show the efficacy of evolution within species, they often leave audiences susceptable to the arguments of creationists who deny that evolution can create new structures and species. Recent studies from evolutionary developmental biology are beginning to provide case studies that specifically address these concerns. This perspective presents some of this new evidence and provides a framework in which to explain homology and phylogeny to such audiences.  相似文献   

15.
Although studies analyzing the content of evolution curriculum usually focus on courses within the context of a biological sciences department or program, research must also address students and courses outside of the biological sciences. For example, using data solely from biological courses will not fully represent the scope of coverage of evolution in university education, as other fields, like anthropology, also utilize evolutionary principles. We analyzed the content of 31 university-level anthropology textbooks for the following: (1) presence of a definition of evolution in various sections of the textbooks, (2) accuracy and consistency of the definitions provided in the textbook sections, and (3) differences between textbooks for cultural and physical anthropology. Results of this study suggest that anthropology textbooks do not necessarily (1) provide a single definition of evolution or (2) provide an accurate, “baseline” definition of evolution when present. Additionally, substantive differences were observed between definitions provided in different sections within a single textbook, as well as between textbooks written for cultural anthropology and physical anthropology/archaeology courses. Given the inclusion of anthropology courses in general education curriculum at the university-level, we conclude that this situation may further exacerbate the misunderstanding of the basic tenets of evolution that university students have been repeatedly shown to demonstrate. We stress the role of the instructor in choosing textbooks that provide accurate information for students, as well as the responsibility they hold in providing a concise, accurate definition of evolution in social sciences courses.  相似文献   

16.
Science teachers can use examples and concepts from evolutionary medicine to teach the three concepts central to evolution: common descent, the processes or mechanisms of evolution, and the patterns produced by descent with modification. To integrate medicine into common ancestry, consider how the evolutionary past of our (or any) species affects disease susceptibility. That humans are bipedal has produced substantial changes in our musculoskeletal system, as well as causing problems for childbirth. Mechanisms such as natural selection are well exemplified in evolutionary medicine, as both disease-causing organism and their targets adapt to one another. Teachers often use examples such as antibiotic resistance to teach natural selection: it takes little alteration of the lesson plan to make explicit that evolution is key to understanding the principles involved. Finally, the pattern of evolution can be illustrated through evolutionary medicine because organisms sharing closer ancestry also share greater susceptibility to the same disease-causing organisms. Teaching evolution using examples from evolutionary medicine can make evolution more interesting and relevant to students, and quite probably, more acceptable as a valid science.  相似文献   

17.
Acceptance of evolution among the general public, high schools, teachers, and scientists has been documented in the USA; little is known about college students’ views on evolution; this population is relevant since it transits from a high-school/parent-protective environment to an independent role in societal decisions. Here we compare perspectives about evolution, creationism, and intelligent design (ID) between a secular (S) and a religious (R) college in the Northeastern USA. Interinstitutional comparisons showed that 64% (mean S + R) biology majors vs. 42/62% (S/R) nonmajors supported the exclusive teaching of evolution in science classes; 24/29% (S/R) biology majors vs. 26/38% (S/R) nonmajors perceived ID as both alternative to evolution and/or scientific theory about the origin of life; 76% (mean S + R) biology majors and nonmajors accepted evolutionary explanations about the origin of life; 86% (mean S + R) biology majors vs. 79% (mean S + R) nonmajors preferred science courses where human evolution is discussed; 76% (mean S+R) biology majors vs. 79% (mean S + R) nonmajors welcomed questions about evolution in exams and/or thought that such questions should always be in exams; and 66% (mean S + R) biology majors vs. 46% (mean S + R) nonmajors admitted they accept evolution openly and/or privately. Intrainstitutional comparisons showed that overall acceptance of evolution among biologists (S or R) increased gradually from the freshman to the senior year, due to exposure to upper-division courses with evolutionary content. College curricular/pedagogical reform should fortify evolution literacy at all education levels, particularly among nonbiologists.  相似文献   

18.
The goal of this research was to illuminate the relationship between students’ acceptance and understanding of macroevolution. Our research questions were: (1) Is there a relationship between knowledge of macroevolution and acceptance of the theory of evolution?; (2) Is there a relationship between the amount of college level biology course work and acceptance of evolutionary theory and knowledge of macroevolution?; and (3) Can college student acceptance of the theory of evolution and knowledge of macroevolution change over the course of a semester? The research participants included 667 students from a first-semester biology course and 74 students from the evolutionary biology course. Data were collected using both the MATE (a measure of the acceptance of evolutionary theory) and the MUM (a measure of understanding of macroevolution). Pre-instruction data were obtained for the introductory biology course, and pre- and post-data were obtained for the evolutionary biology course. Analysis revealed acceptance of evolution (as measured by the MATE) was correlated to understanding of macroevolution, and the number of biology courses was significantly correlated to acceptance and knowledge of macroevolution. Finally, there was a statistically significant change in students’ understanding of macroevolution and acceptance of evolution after the one-semester evolutionary biology course. Significance of these findings is discussed.  相似文献   

19.
The well-established finding that substantial confusion and misconceptions about evolution and natural selection persist after college instruction suggests that these courses neither foster accurate mental models of evolution’s mechanisms nor instill an appreciation of evolution’s centrality to an understanding of the living world. Our essay explores the roles that introductory biology courses and textbooks may play in reinforcing undergraduates’ pre-existing, faulty mental models of the place of evolution in the biological sciences. Our content analyses of the three best-selling introductory biology textbooks for majors revealed the conceptual segregation of evolutionary information. The vast majority of the evolutionary terms and concepts in each book were isolated in sections about evolution and diversity, while remarkably few were employed in other sections of the books. Standardizing the data by number of pages per unit did not alter this pattern. Students may fail to grasp that evolution is the unifying theme of biology because introductory courses and textbooks reinforce such isolation. Two goals are central to resolving this problem: the desegregation of evolution as separate “units” or chapters and the active integration of evolutionary concepts at all levels and across all domains of introductory biology.  相似文献   

20.

Background

Faculty perception of student knowledge and acceptance of subject matter affects the choice of what to teach and how to teach it. Accurate assessment of student acceptance of evolution, then, is relevant to how the subject should be taught. To explore the accuracy of such assessment, we compared how community college instructors of life sciences courses perceive students’ attitudes towards evolution with those students’ actual attitudes towards evolution.

Results

The research had two components: (1) a survey of students of several biology classes at a community college about their acceptance of evolutionary theory and (2) interviews with the biology faculty teaching those classes about their perceptions of their students’ attitudes towards evolution. Results of the study indicate relatively high levels of acceptance of evolution among community college students at this West Coast institution. We also found that community college instructors of life sciences courses varied in accuracy of their perceptions of their students’ attitudes towards evolution–but not systematically. Although one professor assessed each class quite accurately, the other two professors frequently underestimated the acceptance of evolution among their students.

Conclusions

Errors in perception seemed independent of whether the class was composed of majors, nonmajors, or a combination. Clearly, in our sample there is much idiosyncrasy regarding community college instructor accuracy concerning student opinions about evolution.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号