首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The honey bee population of South Africa is divided into two subspecies: a northern population in which queenless workers reproduce arrhenotokously and a southern one in which workers reproduce thelytokously. A hybrid zone separates the two, but on at least three occasions the northern population has become infested by reproductive workers derived from the southern population. These parasitic workers lay in host colonies parthenogenetically, resulting in yet more parasites. The current infestation is 20-year old--surprising because an asexual lineage is expected to show a decline in vigor over time due to increasing homozygosity. The decline is expected to be acute in honey bees, where homozygosity at the sex locus is lethal. We surveyed colonies from the zone of infestation and genotyped putative parasites at two sets of linked microsatellite loci. We confirm that there is a single clonal lineage of parasites that shows minor variations arising from recombination events. The lineage shows high levels of heterozygosity, which may be maintained by selection against homozygotes, or by a reduction in recombination frequency within the lineage. We suggest that the clonal lineage can endure the costs of asexual reproduction because of the fitness benefits of its parasitic life history.  相似文献   

2.
During reproductive swarming, some workers of the Cape honey bee, Apis mellifera capensis, lay eggs in queen cells, many of which are reared to maturity. However, it is unknown if workers are able to lay in queen cells immediately after queen loss during an episode of emergency queen rearing. In this study we experimentally de‐queened colonies and determined the maternity of larvae and pupae that were reared as queens. This allowed us to determine how soon after queen loss workers contribute to the production of new queens. We were further interested to see if workers would preferentially raise new queens from queen‐laid brood if this was introduced later. We performed our manipulations in two different settings: an apiary setting where colonies were situated close together and a more natural situation in which the colonies were well separated. This allowed us to determine how the vicinity of other colonies affects the presence of parasites. We found that workers do indeed contribute to queen cell production immediately after the loss of their queen, thus demonstrating that some workers either have activated ovaries even when their colony has a queen or are able to activate their ovaries extremely rapidly. Queen‐laid brood introduced days after queen loss was ignored, showing that workers do not prefer to raise new queens from queen brood when given a choice. We also detected non‐natal parasitism of queen cells in both settings. We therefore conclude that some A. m. capensis genotypes specialize in parasitizing queen cells.  相似文献   

3.
Honey bees are among the most effective pollinators that promote plant reproduction. Bees are highly active in the pollen collection season, which can lead to the transmission of selected pathogens between colonies. The clade Starmerella comprises yeasts that are isolated mainly from bees and their environment. When visiting plants, bees can come into contact with Starmerella spp. The aim of this study was to determine the prevalence and phylogenetic position of S. apis in bee colonies. Bee colonies were collected from nine apiaries in three regions. Ten colonies were sampled randomly from each apiary, and pooled samples were collected from the central part of the hive in each colony. A total of 90 (100%) bee colonies from nine apiaries were examined. Starmerella apis was detected in 31 (34.44%) samples, but related species were not identified. The 18S rRNA amplicon sequences of S. apis were compatible with the GenBank sequences of Starmerella spp. from India, Japan, Syria, Thailand, and the USA. The amplicon sequences of S. apis were also 99.06% homologous with the sequences deposited in GenBank under accession numbers JX515988 and NG067631 .This is the first study to perform a phylogenetic analysis of S. apis in Polish honey bees.  相似文献   

4.
The recent invasion by self-replicating socially parasitic Cape honeybee workers, Apis mellifera capensis, of colonies of the neighbouring African subspecies Apis mellifera scutellata represents an opportunity to study evolution of intraspecific parasitism in real time. As honeybee workers compete pheromonally for reproductive dominance, and as A. m. capensis workers readily produce queen-like pheromones, we hypothesized that these semiochemicals promoted the evolution of intraspecific social parasitism. Remarkably, the offspring of a single worker became established as a parasite in A. m. scutellata's range. This could have resulted from extreme selection among different clonal parasitic worker lineages. Using pheromonal contest experiments, we show that the selected parasitic lineage dominates in the production of mandibular gland pheromones over all other competitors to which it is exposed. Our results suggest that mandibular gland pheromones played a key role in the evolution of intraspecific social parasitism in the honeybee and in the selection of a single genotype of parasitic workers.  相似文献   

5.
We studied possible host finding and resistance mechanisms ofhost colonies in the context of social parasitism by Cape honeybee(Apis mellifera capensis) workers. Workers often join neighboringcolonies by drifting, but long-range drifting (dispersal) tocolonies far away from the maternal nests also rarely occurs.We tested the impact of queenstate and taxon of mother andhost colonies on drifting and dispersing of workers and on the hosting of these workers in A. m. capensis, A. m. scutellata,and their natural hybrids. Workers were paint-marked accordingto colony and reintroduced into their queenright or queenlessmother colonies. After 10 days, 579 out of 12,034 labeled workerswere recaptured in foreign colonies. We found that driftingand dispersing represent different behaviors, which were differentlyaffected by taxon and queenstate of both mother and host colonies.Hybrid workers drifted more often than A. m. capensis and A.m. scutellata. However, A. m. capensis workers dispersed moreoften than A. m. scutellata and the hybrids combined, and A. m. scutellata workers also dispersed more frequently than thehybrids. Dispersers from queenright A. m. capensis colonieswere more often found in queenless host colonies and vice versa,indicating active host searching and/or a queenstate-discriminatingguarding mechanism. Our data show that A. m. capensis workersdisperse significantly more often than other races of A. mellifera,suggesting that dispersing represents a host finding mechanism.The lack of dispersal in hybrids and different hosting mechanismsof foreign workers by hybrid colonies may also be responsiblefor the stability of the natural hybrid zone between A. m.capensis and A. m. scutellata.  相似文献   

6.

Background

Hemolymph plays key roles in honey bee molecule transport, immune defense, and in monitoring the physiological condition. There is a lack of knowledge regarding how the proteome achieves these biological missions for both the western and eastern honey bees (Apis mellifera and Apis cerana). A time-resolved proteome was compared using two-dimensional electrophoresis-based proteomics to reveal the mechanistic differences by analysis of hemolymph proteome changes between the worker bees of two bee species during the larval to pupal stages.

Results

The brood body weight of Apis mellifera was significantly heavier than that of Apis cerana at each developmental stage. Significantly, different protein expression patterns and metabolic pathways were observed in 74 proteins (166 spots) that were differentially abundant between the two bee species. The function of hemolymph in energy storage, odor communication, and antioxidation is of equal importance for the western and eastern bees, indicated by the enhanced expression of different protein species. However, stronger expression of protein folding, cytoskeletal and developmental proteins, and more highly activated energy producing pathways in western bees suggests that the different bee species have developed unique strategies to match their specific physiology using hemolymph to deliver nutrients and in immune defense.

Conclusions

Our disparate findings constitute a proof-of-concept of molecular details that the ecologically shaped different physiological conditions of different bee species match with the hemolymph proteome during the brood stage. This also provides a starting point for future research on the specific hemolymph proteins or pathways related to the differential phenotypes or physiology.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-563) contains supplementary material, which is available to authorized users.  相似文献   

7.
In the Cape honeybee, Apis mellifera capensis, workers lay diploid(female) eggs via thelytoky. In other A. mellifera subspecies,workers lay haploid (male) eggs via arrhenotoky. When thelytokousworker reproduction occurs, worker policing has no relatednessbenefit because workers are equally related to their sisterworkers' clonal offspring and their mother queen's female offspring.We studied worker policing in A. m. capensis and in the arrhenotokousAfrican honeybee A. m. scutellata by quantifying the removalrates of worker-laid and queen-laid eggs. Discriminator coloniesof both subspecies policed worker-laid eggs of both their ownand the other subspecies. The occurrence of worker policing,despite the lack of relatedness benefit, in A. m. capensis stronglysuggests that worker reproduction is costly to the colony andthat policing is maintained because it enhances colony efficiency.In addition, because both subspecies policed each others eggs,it is probable that the mechanism used in thelytokous A. m.capensis to discriminate between queen-laid and worker-laideggs is the same as in arrhenotokous A. m. scutellata.  相似文献   

8.

Background

With the development of inexpensive, high-throughput sequencing technologies, it has become feasible to examine questions related to population genetics and molecular evolution of non-model species in their ecological contexts on a genome-wide scale. Here, we employed a newly developed suite of integrated, web-based programs to examine population dynamics and signatures of selection across the genome using several well-established tests, including FST, pN/pS, and McDonald-Kreitman. We applied these techniques to study populations of honey bees (Apis mellifera) in East Africa. In Kenya, there are several described A. mellifera subspecies, which are thought to be localized to distinct ecological regions.

Results

We performed whole genome sequencing of 11 worker honey bees from apiaries distributed throughout Kenya and identified 3.6 million putative single-nucleotide polymorphisms. The dense coverage allowed us to apply several computational procedures to study population structure and the evolutionary relationships among the populations, and to detect signs of adaptive evolution across the genome. While there is considerable gene flow among the sampled populations, there are clear distinctions between populations from the northern desert region and those from the temperate, savannah region. We identified several genes showing population genetic patterns consistent with positive selection within African bee populations, and between these populations and European A. mellifera or Asian Apis florea.

Conclusions

These results lay the groundwork for future studies of adaptive ecological evolution in honey bees, and demonstrate the use of new, freely available web-based tools and workflows (http://usegalaxy.org/r/kenyanbee) that can be applied to any model system with genomic information.

Electronic supplementary material

The online version of this article (doi:10.1186/s12864-015-1712-0) contains supplementary material, which is available to authorized users.  相似文献   

9.
Honey bees Apis mellifera L. are one of the most studied insect species due to their economic importance. The interest in studying honey bees chiefly stems from the recent rapid decrease in their world population, which has become a problem of food security. Nevertheless, there are no systemic studies on the properties of the mitochondria of honey bee flight muscles. We conducted a research of the mitochondria of the flight muscles of A. mellifera L. The influence of various organic substrates on mitochondrial respiration in the presence or absence of adenosine diphosphate (ADP) was investigated. We demonstrated that pyruvate is the optimal substrate for the coupled respiration. A combination of pyruvate and glutamate is required for the maximal respiration rate. We also show that succinate oxidation does not support the oxidative phosphorylation and the generation of membrane potential. We also studied the production of reactive oxygen species by isolated mitochondria. The greatest production of H2O2 (as a percentage of the rate of oxygen consumed) in the absence of ADP was observed during the respiration supported by α‐glycerophosphate, malate, and a combination of malate with another NAD‐linked substrate. We showed that honey bee flight muscle mitochondria are unable to uptake Ca2+‐ions. We also show that bee mitochondria are able to oxidize the respiration substrates effectively at the temperature of 50°С compared to Bombus terrestris mitochondria, which were more adapted to lower temperatures.  相似文献   

10.
High-fidelity PCR of 16S rRNA sequences was used to identify bacteria associated with worker adults of the honeybee subspecies Apis mellifera capensis and Apis mellifera scutellata. An expected approximately 1.5-kb DNA band, representing almost the entire length of the 16S rRNA gene, was amplified from both subspecies and cloned. Ten unique sequences were obtained: one sequence each clustered with Bifidobacterium (Gram-positive eubacteria), Lactobacillus (Gram-positive eubacteria), and Gluconacetobacter (Gram-negative alpha-proteobacteria); two sequences each clustered with Simonsiella (beta-proteobacteria) and Serratia (gamma-proteobacteria); and three sequences each clustered with Bartonella (alpha-proteobacteria). Although the sequences relating to these six bacterial genera initially were obtained from either A. m. capensis or A. m. scutellata or both, newly designed honeybee-specific 16S rRNA primers subsequently amplified all sequences from all individual workers of both subspecies. Attempts to amplify these sequences from eggs have failed. However, the wsp primers designed to amplify Wolbachia DNA from arthropods, including these bees, consistently produced a 0.6-kb DNA band from individual eggs, indicating that amplifiable bacterial DNA was present. Hence, the 10 bacteria could have been acquired orally from workers or from other substrates. This screening of 16S rRNA sequences from A. m. capensis and A. m. scutellata found sequences related to Lactobacillus and Bifidobacterium which previously had been identified from other honeybee subspecies, as well as sequences related to Bartonella, Gluconacetobacter, Simonsiella/Neisseria, and Serratia, which have not been identified previously from honeybees.  相似文献   

11.
Nosema ceranae is a microsporidian intracellular parasite of honey bees, Apis mellifera. Previously Nosema apis was thought to be the only cause of nosemosis, but it has recently been proposed that N. ceranae is displacing N. apis. The rapid spread of N. ceranae could be due to additional transmission mechanisms, as well as higher infectivity. We analyzed drones for N. ceranae infections using duplex qPCR with species specific primers and probes. We found that both immature and mature drones are infected with N. ceranae at low levels. This is the first report detecting N. ceranae in immature bees. Our data suggest that because drones are known to drift from their parent hives to other hives, they could provide a means for disease spread within and between apiaries.  相似文献   

12.
13.
Summary Honey bees of different age and castes were investigated calorimetrically at 20, 25 and 30 °C. Experiments were completed by endoscopic observation of the insects in the visible and the near infrared range and by acoustical monitoring and subsequent frequency analysis of various locomotor activities. Direct calorimetric results of this paper are compared with data of indirect calorimetry from the literature using a respiratory quotient of 1.00 and 21.13 J consumed. Agreements between both methods are generally good. The results show that weight-specific heat production rates increase with age of worker bees by a factor of 5.6 at 30 °C, 3.7 at 25 °C and 40.0 at 20 °C. In groups of foragers the heat production decreases with growing group size to around 6% of the value for an isolated bee. The presence of a fertile queen or of brood reduces the heat output of a small worker group significantly. Adult drones exhibit a much higher metabolic rate (up to 19.7-fold at 20 °C) than juveniles with strong fluctuations in the power-time curves. Fertile queens show a less pronounced heat production rate than virgin queens (54% at 30 °C, 87% at 25 °C and 77% at 20 °C). Calorimetric unrest is much higher for young than for adult queens. Heat production is very low in both uncapped and capped brood and less than 30% of that of a newly emerged worker. In most cases temperature showed a significant influence on the metabolic level, although its sign was not homogeneous between the castes or even within them. Locomotor activities are easily recorded by the acoustic frequency spectrum (0–7.5 kHz) and in good agreement with endoscopic observations and calorimetric traces.Abbreviations RQ respiratory quotient - ww wet weight This paper is part of the PhD thesis of L.F.  相似文献   

14.
Determining the extent and causes of barriers to gene flow is essential for understanding sympatric speciation, but the practical difficulties of quantifying reproductive isolation remain an obstacle to analysing this process. Social parasites are common in eusocial insects and tend to be close phylogenetic relatives of their hosts (= Emery's rule). Sympatric speciation caused by reproductive isolation between host and parasite is a possible evolutionary pathway. Socially parasitic workers of the Cape honeybee, Apis mellifera capensis, produce female clonal offspring parthenogenetically and invade colonies of the neighbouring subspecies A. m. scutellata. In the host colony, socially parasitic workers can become pseudoqueens, an intermediate caste with queenlike pheromone secretion. Here, we show that over an area of approximately 275.000 km2, all parasitic workers bear the genetic signature of a clone founded by a single ancestral worker genotype. Any gene flow from the host to the parasite is impossible because honeybee workers cannot mate. Gene flow from the parasite to the host is possible, as parasitic larvae can develop into queens. However, we show that despite sympatric coexistence for more than a decade, gene flow between host and social parasite (F(st) = 0.32) and hybridizations (0.71%) are rare, resulting in reproductive isolation. Our data suggest a new barrier to gene flow in sympatry, which is not based on assortative matings but on thelytoky and reproductive division of labour in eusocial insects, thereby suggesting a new potential pathway to Emery's rule.  相似文献   

15.
Using bee pollinators as a means for the dissemination of microbial control agents, such as Beauveria bassiana, against insect pests of agricultural crops is a novel and interesting approach to biological control. In four laboratory trials, one in Canada and three in Jordan, factors affecting the acquisition of B. bassiana by honey bees were evaluated using hive-mounted inoculum dispensers. The numbers of conidia carried by bees emerging from the dispensers differed according to the type of carrier used. Bees that passed through corn flour acquired more inoculum than did those that walked through wheat flour, durum semolina, corn meal, potato starch, potato flakes, oat flour or barley flour. The numbers of conidia acquired by the bees increased with decreasing particle size and moisture content of the carrier, and with increasing density of B. bassiana conidia in the formulation. Time required for a bee to pass through the dispenser did not significantly affect the acquisition of conidia. This study indicated that honeybees (Apis mellifera carnica) have a great potential for vectoring B. bassiana in crop systems. It also opens more avenues for studies on bee delivery of other microbial biological control agents.  相似文献   

16.
African honeybees, Apis mellifera, are characterised by frequent disturbance-induced absconding. However, the effectiveness in preparation before such disturbance-induced absconding has not been rigorously quantified yet. We investigated the effectiveness of preparation for disturbance-induced absconding by evaluating colony phenotypes prior to and after absconding in ten colonies of the Cape honeybee, A. m. capensis. Seven non-absconding colonies at the same apiary were used as controls. While seven absconded colonies left neither stores nor brood behind, three colonies abandoned only a small area of honey, pollen, open or capped brood. At the end of the observations, the control colonies still had pollen and honey stores and brood. The mean reduction rate between a major disturbance and the absconding event was 0.052 ± 0.018 cm2 stores and open brood per worker per day. Our results demonstrate that disturbance-induced absconding can also occur with preparation, if the disturbance is not highly destructive and enough time for preparation is available. We conclude that Cape honeybee colonies can show a considerable high effectiveness in their preparation before disturbance-induced absconding, which limits the loss of colony resources. In light of the general high mobility of African honeybee colonies such an efficient behaviour is probably adaptive. Received 22 December 2004; revised 3 June 2005; accepted 13 June 2005.  相似文献   

17.
Nutrition contributes to honey bee caste differentiation, but the role of individual nutrients is still unclear. Most essential amino acid contents, except that of methionine (Met), are greater in royal jelly than worker jelly. After ∼3.5 d, the Met content in the latter was slightly greater than in the former. Met is the major raw material used in the synthesis of S-adenosyl-L-methionine, an active methyl donor for DNA methylation, which is an epigenetic driver of caste differentiation. Here, we tested whether Met regulates caste differentiation in honey bees by determining its effects on the caste development of bees receiving four diets: the basic, basic + 0.2% Met, basic + 0.2% Met + 20 mg/kg 5-azacytidine, and basic + 20 mg/kg 5-azacytidine. The presence of Met decreased the adult bee body length and the numbers of ovarioles, indicating that Met may direct the development of female larvae toward worker bees. The upregulated expression of SAMS, Dnmt1, and Dnmt3 caused by Met exposure in 4-d-old larvae indicated that the worker-inductive effects of Met may occur through the promotion of DNA methylation. We investigated the co-effects of Met and glucose on bee development, and found that the effects of an increased glucose level on the number of ovarioles and body length did not strengthen the worker-inductive effects caused by Met. Our results contribute to caste development theory and suggest that Met—as a methyl donor—plays a regulatory, but not decisive, role in caste differentiation.  相似文献   

18.
Experimental work was conducted at two apiaries located in Irbid district and in Shuna North, Jordan, during the years 2004–2006. The aims of these investigations were to estimate the seasonal changes in the infestation rates of the bee louse (Braula sp.) and to develop an easy and rapid method of estimating the infestation rate on workers with bee Braula. Two major honey bee subspecies are reared in Jordan; Apis mellifera carnica and Apis mellifera syriaca were used in this study. The results showed that the infestation rate began to increase rapidly in May, reaching the season's maximum rate of 16.2%, 15.8% and 17.4% for A. m. carnica and 22.6%, 23.9% and 22.9% for A. m. syriaca in December of 2004, 2005 and 2006, respectively. The maximum adult numbers of bees were found in April and June, whereas the minimum for the year was in January in both honey bee subspecies colonies during the study period. The actual population of the bee louse could be estimated by counting the daily dropped lice and multiplying by a factor of 158. This factor is valid for the experimental colonies of both subspecies kept for 3 years under semi‐arid Mediterranean conditions.  相似文献   

19.
20.
The Africanized honey bee (AHB) is a New World amalgamation of several subspecies of the western honey bee (Apis mellifera), a diverse taxon historically grouped into four major biogeographic lineages: A (African), M (Western European), C (Eastern European), and O (Middle Eastern). In 1956, accidental release of experimentally bred “Africanized” hybrids from a research apiary in Sao Paulo, Brazil initiated a hybrid species expansion that now extends from northern Argentina to northern California (U.S.A.). Here, we assess nuclear admixture and mitochondrial ancestry in 60 bees from four countries (Panamá; Costa Rica, Mexico; U.S.A) across this expansive range to assess ancestry of AHB several decades following initial introduction and test the prediction that African ancestry decreases with increasing latitude. We find that AHB nuclear genomes from Central America and Mexico have predominately African genomes (76%–89%) with smaller contributions from Western and Eastern European lineages. Similarly, nearly all honey bees from Central America and Mexico possess mitochondrial ancestry from the African lineage with few individuals having European mitochondria. In contrast, AHB from San Diego (CA) shows markedly lower African ancestry (38%) with substantial genomic contributions from all four major honey bee lineages and mitochondrial ancestry from all four clades as well. Genetic diversity measures from all New World populations equal or exceed those of ancestral populations. Interestingly, the feral honey bee population of San Diego emerges as a reservoir of diverse admixture and high genetic diversity, making it a potentially rich source of genetic material for honey bee breeding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号