首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.
G protein-coupled receptor kinases (GRKs) mediate desensitization of agonist-occupied G protein-coupled receptors (GPCRs). Here we report that GRK5 contains a DNA-binding nuclear localization sequence (NLS) and that its nuclear localization is regulated by GPCR activation, results that suggest potential nuclear functions for GRK5. As assessed by fluorescence confocal microscopy, transfected and endogenous GRK5 is present in the nuclei of HEp2 cells. Mutation of basic residues in the catalytic domain of GRK5 (between amino acids 388 and 395) results in the nuclear exclusion of the mutant enzyme (GRK5(Delta)(NLS)), demonstrating that GRK5 contains a functional NLS. The nuclear localization of GRK5 is subject to dynamic regulation. Calcium ionophore treatment or activation of Gq-coupled muscarinic-M3 receptors promotes the nuclear export of the kinase in a Ca(2+)/calmodulin (Ca(2+)/CaM)-dependent fashion. Ca(2+)/CaM binding to the N-terminal CaM binding site of GRK5 mediates this effect. Furthermore, GRK5, but not GRK5(Delta)(NLS) or GRK2, binds specifically and directly to DNA in vitro. Consistent with their presence in the nuclei of transfected cells, all the GRK4, but not GRK2, subfamily members contain putative NLSs. These results suggest that the GRK4 subfamily of GRKs may play a signaling role in the nucleus and that GRK4 and GRK2 subfamily members perform divergent cellular functions.  相似文献   

2.
3.
Upon stimulation, many proteins translocate into the nucleus in order to regulate a variety of cellular processes. The mechanism underlying the translocation is not clear since many of these proteins lack a canonical nuclear localization signal (NLS). We searched for an alternative mechanism in extracellular signal-regulated kinase (ERK)-2 and identified a 3 amino acid domain (SPS) that is phosphorylated upon stimulation to induce nuclear translocation of ERK2. A 19 amino acid stretch containing this phosphorylated domain inserts nondiffusible proteins to the nucleus autonomously. The phosphorylated SPS acts by binding to importin7 and the release from nuclear pore proteins. This allows its functioning both in passive and active ERK transports. A similar domain appears in many cytonuclear shuttling proteins, and we found that phosphorylation of similar sequences in SMAD3 or MEK1 also induces their nuclear accumulation. Therefore, our findings show that this phosphorylated domain acts as a general nuclear translocation signal (NTS).  相似文献   

4.
5.
6.
Intracellular targeting may enable protein kinases with broad substrate- specificities, such as multifunctional Ca2+/calmodulin-dependent protein kinase (CaM kinase) to achieve a selectivity of action in vivo. We have examined the intracellular targeting of three delta-CaM kinase isoforms. The delta B-CaM kinase isoform is targeted to the nucleus in transfected cells while the delta A- and delta C-CaM kinase isoforms are cytosolic/cytoskeletal. A chimeric construct of alpha-CaM kinase containing the delta B-CaM kinase variable domain is rerouted to the nucleus while the native alpha-CaM kinase and chimeras of alpha-CaM kinase which contain the delta A- or delta C-CaM kinase variable domains are retained in the cytoplasm. Using site-directed mutagenesis, we have defined a nuclear localization signal (NLS) within an 11-amino acid sequence, likely inserted by alternative splicing, in the variable domain of delta B-CaM kinase. Isoform-specific nuclear targeting of CaM kinase is probably a key mechanism in the selective regulation of nuclear functions by CaM kinase. CaM kinase is a multimer that can be composed of several isoforms. We find that when cells express two different isoforms of CaM kinase, cellular targeting is determined by the ratio of the isoforms. When an excess of the cytoplasmic isoform of CaM kinase is coexpressed along with the nuclear isoform, both isoforms are localized in the cytoplasm. Conversely an excess of the nuclear isoform can reroute the cytoplasmic isoform to the nucleus. The nuclear isoform likely coassembles with the cytosolic isoform, to form a heteromultimeric holoenzyme which is transported into the nucleus. These experiments demonstrate isoform-specific targeting of CaM kinase and indicate that such targeting can be modified by the expression of multiple isoforms of the enzyme.  相似文献   

7.
We previously identified Per1-interacting protein of the suprachiasmatic nucleus (PIPS) in rats. To reveal its role, its tissue distribution was examined by immunoblotting. PIPS-like immunoreactive substance (PIPSLS) was observed in the brain, adrenal gland, and PC12 cells. Since PIPS, which has no nuclear localization signal (NLS), is translocated into nuclei of COS-7 cells in the presence of mPer1, the effect of NGF on nuclear localization of PIPS was examined using PC12 cells. NGF caused nuclear translocation of either PIPSLS or GFP-PIPS. NGF mediated nuclear translocation of PIPSLS was blocked by K252a, a TrkA-inhibitor, or wortmannin, a PI3K-inhibitor. Gab1, which is implicated in TrkA signaling and has NLS, co-immunoprecipitated with PIPSLS from PC12 cells using an anti-PIPS antibody. Inhibition of PIPS expression by RNAi increased levels of apoptosis in PC12 cells. These findings suggest that nuclear translocation of PIPS is involved in NGF mediated neuronal survival via TrkA, PI3K, and Gab1 signaling pathway.  相似文献   

8.
Chen QQ  Chen XY  Jiang YY  Liu J 《Cell research》2005,15(7):504-510
ErbB2, a member of the receptor tyrosine kinase family, is frequently over-expressed in breast cancer. Proteolysis of the extracellular domain of ErbB2 results in constitutive activation of ErbB2 kinase. Recent study reported that ErbB2 is found in the nucleus. Here, we showed that ErbB2 is imported into the nucleus through a nuclear localization signal(NLS)-mediated mechanism. The NLS sequence KRRQQKIRKYTMRR (aa655-668) contains three clusters of basic amino acids and it is sufficient to target GFP into the nucleus. However, mutation in any basic amino acid cluster of this NLS sequence significantly affects its nuclear localization. Furthermore, it was found that this NLS is essential for the nuclear localization of ErbB2 since the intracellular domain of Erb2 lacking NLS completely abrogates its nuclear translocation. Taken together, our study identified a novel nuclear localization signal and reveals a novel mechanism underlying ErbB2 nuclear trafficking and localization.  相似文献   

9.
Polo-like kinase 1 (Plk1), a mammalian ortholog of Drosophila Polo, is a serine-threonine protein kinase implicated in the regulation of multiple aspects of mitosis. The protein level, activity, and localization of Plk1 change during the cell cycle, and its proper subcellular localization is thought to be crucial for its function. Although localization of Plk1 to the centrosome has been established, nuclear localization or nucleocytoplasmic translocation of Plk1 has not been fully addressed. Here we show that Plk1 accumulates in both the nucleus and the cytoplasm in addition to its localization to the centrosome during S and G(2) phases. Our results identify a conserved region in the kinase domain of Plk1 (residues 134-146) as a functional bipartite nuclear localization signal (NLS) sequence that regulates nuclear translocation of Plk1. The identified NLS is necessary and sufficient for directing nuclear localization of Plk1. This bipartite NLS has an unusually short spacer sequence between two clusters of basic amino acids but is sensitive to RanQ69L, a dominant negative form of Ran, similar to ordinary bipartite NLS. Remarkably, the expression of an NLS-disrupted mutant of Plk1 during S phase was found to arrest the cells in G(2) phase. These results suggest that the bipartite NLS-dependent nuclear localization of Plk1 before mitosis is important for ensuring normal cell cycle progression.  相似文献   

10.
11.
Despite much evidence for phosphatidylinositol phosphate (PIP)-triggered signaling pathways in the nucleus, there is little understanding of how the levels and activities of these proteins are regulated. As a first step to elucidating this problem, we determined whether phosphatase and tensin homolog deleted on chromosome 10 (PTEN) enters the nucleus by passive diffusion or active transport. We expressed various PTEN fusion proteins in tsBN2, HeLa, LNCaP, and U87MG cells and determined that the largest PTEN fusion proteins showed little or no nuclear localization. Because diffusion through nuclear pores is limited to proteins of 60,000 Da or less, this suggests that nuclear translocation of PTEN occurs via diffusion. We examined PTEN mutants, seeking to identify a nuclear localization signal (NLS) for PTEN. Mutation of K13 and R14 decreased nuclear localization, but these amino acids do not appear to be part of an NLS. We used fluorescence recovery after photobleaching (FRAP) to demonstrate that GFP-PTEN can passively pass through nuclear pores. Diffusion in the cytoplasm is retarded for the PTEN mutants that show reduced nuclear localization. We conclude that PTEN enters the nucleus by diffusion. In addition, sequestration of PTEN in the cytoplasm likely limits PTEN nuclear translocation.  相似文献   

12.
We have isolated a cDNA clone encoding a new AMSH (associated molecule with the SH3 domain of STAM) family protein, termed AMSH-like protein (AMSH-LP). AMSH-LP has similar characteristics to AMSH; both AMSH-LP and AMSH are expressed ubiquitously in various human tissues, contain a putative nuclear localization signal (NLS), an Mpr/Pad1/N-terminal (MPN) domain, and a Jab1/MPN domain metalloenzyme (JAMM) motif in their structures, and are excluded from the nucleus when lacking either the NLS or MPN domain. Moreover, we observed an enhancement of interleukin 2 (IL-2)-mediated c-myc induction in AMSH-LP-transfected cells similar to that seen in AMSH-transfected cells, suggesting a functional similarity between AMSH-LP and AMSH. However, the present study demonstrated that AMSH-LP, unlike AMSH, fails to bind to the SH3 domains of STAM1 (signal transducing adaptor molecule 1) and Grb2. These results suggest that AMSH-LP and AMSH may have different functions.  相似文献   

13.
Glucose-regulated GRP58 has shown clinical applications to endoplasmic reticulum (ER) stress and cancer. GRP58 is localized in the cytosol, endoplasmic reticulum (ER) and nucleus. Twenty-four amino acids at the N-terminal hydrophobic region are known to target GRP58 to ER for synthesis at the ER membrane and translocation into the ER lumen. In addition, GRP58 contains putative nuclear localization (494KPKKKKK500) and ER retention (502QEDL505) signals. However, the role of these signals in nuclear import and ER retention of GRP58 remains unknown. Present studies investigated the signals that control nuclear localization and ER retention of GRP58. Deletion/mutation of nuclear localization signal (NLS) abrogated nuclear import of GRP58. NLS attached to EGFP localized EGFP in the nucleus. However, deletion/mutation of putative ER retention signal alone did not alter ER retention of GRP58. Interestingly, a combined deletion/mutation of NLS and ER retention signals blocked the GRP58 retention in the ER. These results concluded that overlapping NLS and ER retention signal sequences regulate nuclear localization and ER retention of GRP58.  相似文献   

14.
15.
Calmodulin (CaM) is the major component of calcium signaling pathways mediating the action of various effectors. Transient increases in the intracellular calcium level triggered by a variety of stimuli lead to the formation of Ca(2+)/CaM complexes, which interact with and activate target proteins. In the present study the role of Ca(2+)/CaM in the regulation of the ligand-dependent activation of the epidermal growth factor receptor (EGFR) has been examined in living cells. We show that addition of different cell permeable CaM antagonists to cultured cells or loading cells with a Ca(2+) chelator inhibited ligand-dependent EGFR auto(trans)phosphorylation. This occurred also in the presence of inhibitors of protein kinase C, CaM-dependent protein kinase II and calcineurin, which are known Ca(2+)- and/or Ca(2+)/CaM-dependent EGFR regulators, pointing to a direct effect of Ca(2+)/CaM on the receptor. Furthermore, we demonstrate that down-regulation of CaM in conditional CaM knock out cells stably transfected with the human EGFR decreased its ligand-dependent phosphorylation. Substitution of six basic amino acid residues within the CaM-binding domain (CaM-BD) of the EGFR by alanine resulted in a decreased phosphorylation of the receptor and of its downstream substrate phospholipase Cγ1. These results support the hypothesis that Ca(2+)/CaM regulates the EGFR activity by directly interacting with the CaM-BD of the receptor located at its cytosolic juxtamembrane region.  相似文献   

16.
Nucleomorphin is a novel nuclear calmodulin (CaM)-binding protein (CaMBP) containing an extensive DEED (glu/asp repeat) domain that regulates nuclear number. GFP-constructs of the 38 kDa NumA1 isoform localize as intranuclear patches adjacent to the inner nuclear membrane. The translocation of CaMBPs into nuclei has previously been shown by others to be mediated by both classic nuclear localization sequences (NLSs) and CaM-binding domains (CaMBDs). Here we show that NumA1 possesses a CaMBD (171EDVSRFIKGKLLQKQQKIYKDLERF195) containing both calcium-dependent-binding motifs and an IQ-like motif for calcium-independent binding. GFP-constructs containing only NumA1 residues 1-129, lacking the DEED and CaMBDs, still localized as patches at the internal periphery of nuclei thus ruling out a direct role for the CaMBD in nuclear import. These constructs contained the amino acid residues 48KKSYQDPEIIAHSRPRK64 that include both a putative bipartite and classical NLS. GFP-bipartite NLS constructs localized uniformly within nuclei but not as patches. As with previous work, removal of the DEED domain resulted in highly multinucleate cells. However as shown here, multinuclearity only occurred when the NLS was present allowing the protein to enter nuclei. Site-directed mutation analysis in which the NLS was changed to 48EF49 abolished the stability of the GFP fusion at the protein but not RNA level preventing subcellular analyses. Cells transfected with the 48EF49 construct exhibited slowed growth when compared to parental AX3 cells and other GFP-NumA1 deletion mutants. In addition to identifying an NLS that is sufficient for nuclear translocation of nucleomorphin and ruling out CaM-binding in this event, this work shows that the nuclear localization of NumA1 is crucial to its ability to regulate nuclear number in Dictyostelium.  相似文献   

17.
In the absence of hormone, corticosteroid receptors are primarily located in the cytoplasm, and they rapidly accumulate in the nucleus (t0.5 = 5 min) upon ligand binding. It is generally believed that the dissociation of hsp90 from the receptor is an absolute requirement for allowing its nuclear translocation. However, recent evidence suggests that hsp90 may remain associated with the glucocorticoid receptor during this process, and thus, the receptor nuclear localization signal (NLS) is not obscured by its presence. To determine the requirements for mineralocorticoid receptor (MR) nuclear transport, it was first shown that in rat kidney collecting duct cells, nuclear localization of MR in the presence of aldosterone was complete in 10 min. Although the hsp90 inhibitor radicicol delayed nuclear translocation, it did not prevent complete nuclear accumulation of MR at longer incubation times (t0.5 = 30-40 min). MR carbamylation generates a non-steroid-transformed receptor that, in contrast to native MR, is very stable in cell-free systems. In contrast to the full nuclear translocation of aldosterone-transformed MR, only a fraction of the carbamylated MR became nuclear in digitonin-permeabilized cells even though its NLS is exposed. Furthermore, while preincubation of permeabilized cells with NL1 peptide or anti-NL1 antibody fully inhibited the nuclear translocation of NL1-tagged albumin, neither treatment fully inhibited MR nuclear translocation. We postulate that there are at least two possible mechanisms for MR nuclear translocation. One of them is hsp90- and NL1-dependent, and the other functions in a manner that is independent of the classical pathway.  相似文献   

18.
19.
Cytolethal distending toxin (CDT) is a heterotrimeric protein toxin produced by several bacterial pathogens. Cells exposed to CDT die from either activation of the mitotic checkpoint cascade or apoptosis. Introduction of the purified CdtB subunit, a homologue of mammalian type I DNase, into cells mimics the action of the CDT holotoxin. Mutant CdtBs lacking DNase activity are devoid of biological activity. Chromosomal DNA appears to be the CDT target; thus, nuclear translocation of CdtB must precede cytolethal activity. Examination of the CdtB sequence indicates the presence of putative candidate bipartite nuclear localization signals (NLS). Here, we examine the functionality of the two potential NLS sequences found in the Escherichia coli CdtB-II. Nuclear translocation of EcCdtB-II was examined by monitoring the localization of an EcCdtB-II-EGFP fusion in Cos-7 cells. Our results indicated that EGFP-EcCdtB-II localized to the nucleus. The candidate EcCdtB-II-II NLS sequences were modified by site-directed mutagenesis such that tandem arginine residues were changed to threonine and serine respectively. Mutation of both putative NLS sequences had no effect on EcCdtB-II-associated DNase activity; however, cell cycle arrest and nuclear localization were significantly impaired in cells that received CDT reconstituted from the EcCdtB-II-DeltaNLS mutants. When HeLa cells were electroporated with the EcCdtB-II-DeltaNLS1 and the EcCdtB-II-NLS double mutants, toxicity was not observed, whereas the activity of EcCdtB-II-DeltaNLS2 was similar to that of wild-type EcCdtB-II. These data indicate that the putative NLS sequences are important for CDT-mediated action arrest and that they are likely to function in the nuclear translocation of EcCdtB-II.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号