首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Volume regulation is essential for normal cell function. A key component of the cells' response to volume changes is the activation of a channel, which elicits characteristic chloride currents (I(Cl, Swell)). The molecular identity of this channel has been controversial. Most recently, ClC-3, a protein highly homologous to the ClC-4 and ClC-5 channel proteins, has been proposed as being responsible for I(Cl, Swell). Subsequently, however, other reports have suggested that ClC-3 may generate chloride currents with characteristics clearly distinct from I(Cl, Swell). Significantly different tissue distributions for ClC-3 have also been reported, and it has been suggested that two isoforms of ClC-3 may be expressed with differing functions. In this study we generated a series of cell lines expressing variants of ClC-3 to rigorously address the question of whether or not ClC-3 is responsible for I(Cl, Swell). The data demonstrate that ClC-3 is not responsible for I(Cl, Swell) and has no role in regulatory volume decrease, furthermore, ClC-3 is not activated by intracellular calcium and fails to elicit chloride currents under any conditions tested. Expression of ClC-3 was shown to be relatively tissue-specific, with high levels in the central nervous system and kidney, and in contrast to previous reports, is essentially absent from heart. This distribution is also inconsistent with the previous proposed role in cell volume regulation.  相似文献   

2.
TRPM7 is a ubiquitously expressed cation channel with a fused alpha kinase domain. It is highly permeable to magnesium and calcium, and is negatively gated by intracellular Mg(2+) and Mg-ATP. Substrates for the TRPM7 kinase domain include annexinA1 and myosin IIA heavy chain, and there is evidence to suggest a functional interaction between the channel and kinase domains. Alterations in the expression and activity of TRPM7 have profound effects on cell proliferation and differentiation. Genetic deletion of TRPM7 in model systems demonstrates that this channel is critical for cellular growth and embryonic development. Here, we provide a brief overview of the activity of TRPM7 and the associated regulatory mechanisms. We will then discuss the biological functions of TRPM7, emphasizing its role in development and the potential pathophysiological significance of TRPM7 in neurological and cardiovascular disease.  相似文献   

3.
To investigate thepossible role of members of the mammalian transient receptor potential(TRP) channel family (TRPC1-7) in vasoconstrictor-inducedCa2+ entry in vascular smooth muscle cells, we studied[Arg8]-vasopressin (AVP)-activated channels in A7r5aortic smooth muscle cells. AVP induced an increase in free cytosolicCa2+ concentration ([Ca2+]i)consisting of Ca2+ release and Ca2+ influx.Whole cell recordings revealed the activation of a nonselective cationcurrent with a doubly rectifying current-voltage relation strikinglysimilar to those described for some heterologously expressed TRPCisoforms. The current was also stimulated by direct activation of Gproteins as well as by activation of the phospholipase C-coupledplatelet-derived growth factor receptor. Currents were not activated bystore depletion or increased [Ca2+]i.Application of 1-oleoyl-2-acetyl-sn-glycerol stimulated the current independently of protein kinase C, a characteristic property ofthe TRPC3/6/7 subfamily. Like TRPC6-mediated currents, cation currentsin A7r5 cells were increased by flufenamate. Northern hybridizationrevealed mRNA coding for TRPC1 and TRPC6. We therefore suggest thatTRPC6 is a molecular component of receptor-stimulated Ca2+-permeable cation channels in A7r5 smooth muscle cells.

  相似文献   

4.
5.
Cell volume regulation and swelling-activated chloride channels   总被引:9,自引:0,他引:9  
Maintenance of a constant volume is essential for normal cell function. Following cell swelling, as a consequence of reduction of extracellular osmolarity or increase of intracellular content of osmolytes, animal cells are able to restore their original volume by activation of potassium and chloride conductances. The loss of these ions, followed passively by water, is responsible for the homeostatic response called regulatory volume decrease (RVD). Activation of a chloride conductance upon cell swelling is a key step in RVD. Several proteins have been proposed as candidates for this chloride conductance. The status of the field is reviewed, with particular emphasis on ClC-3, a member of the ClC family which has been recently proposed as the chloride channel involved in cell volume regulation.  相似文献   

6.
7.
Transient receptor potential melastatin-3 (TRPM3) is a broadly expressed Ca(2+)-permeable nonselective cation channel. Previous work has demonstrated robust activation of TRPM3 by the neuroactive steroid pregnenolone sulfate (PS), but its in?vivo gating mechanisms and functions remained poorly understood. Here, we provide evidence that TRPM3 functions as a chemo- and thermosensor in the somatosensory system. TRPM3 is molecularly and functionally expressed in a large subset of small-diameter sensory neurons from dorsal root and trigeminal ganglia, and mediates the aversive and nocifensive behavioral responses to PS. Moreover, we demonstrate that TRPM3 is steeply activated by heating and underlies heat sensitivity in a subset of sensory neurons. TRPM3-deficient mice exhibited clear deficits in their avoidance responses to noxious heat and in the development of inflammatory heat hyperalgesia. These experiments reveal an unanticipated role for TRPM3 as a thermosensitive nociceptor channel implicated in the detection of noxious heat.  相似文献   

8.
Magnesium is essential for cellular life, but how it is homeostatically controlled still remains poorly understood. Here, we report that members of CNNM family, which have been controversially implicated in both cellular Mg2+ influx and efflux, selectively bind to the TRPM7 channel to stimulate divalent cation entry into cells. Coexpression of CNNMs with the channel markedly increased uptake of divalent cations, which is prevented by an inactivating mutation to the channel’s pore. Knockout (KO) of TRPM7 in cells or application of the TRPM7 channel inhibitor NS8593 also interfered with CNNM-stimulated divalent cation uptake. Conversely, KO of CNNM3 and CNNM4 in HEK-293 cells significantly reduced TRPM7-mediated divalent cation entry, without affecting TRPM7 protein expression or its cell surface levels. Furthermore, we found that cellular overexpression of phosphatases of regenerating liver (PRLs), known CNNMs binding partners, stimulated TRPM7-dependent divalent cation entry and that CNNMs were required for this activity. Whole-cell electrophysiological recordings demonstrated that deletion of CNNM3 and CNNM4 from HEK-293 cells interfered with heterologously expressed and native TRPM7 channel function. We conclude that CNNMs employ the TRPM7 channel to mediate divalent cation influx and that CNNMs also possess separate TRPM7-independent Mg2+ efflux activities that contribute to CNNMs’ control of cellular Mg2+ homeostasis.

Magnesium is essential for cellular life, but how is it homeostatically controlled? This study shows that proteins of the CNNM family bind to the TRPM7 channel to stimulate divalent cation entry into cells, independent of their function in regulating magnesium ion efflux.  相似文献   

9.
The TRPM subfamily of mammalian TRP channels displays unusually diverse activation mechanisms and selectivities. One member of this subfamily, TRPM5, functions in taste receptor cells and has been reported to be activated through G protein-coupled receptors linked to phospholipase C. However, the specific mechanisms regulating TRPM5 have not been described. Here, we demonstrate that TRPM5 is a monovalent-specific cation channel with a 23 pS unitary conductance. TRPM5 does not display constitutive activity. Rather, it is activated by stimulation of a receptor pathway coupled to phospholipase C and by IP(3)-mediated Ca(2+) release. Gating of TRPM5 was dependent on a rise in Ca(2+) because it was fully activated by Ca(2+). Unlike any previously described mammalian TRP channel, TRPM5 displayed voltage modulation and rapid activation and deactivation kinetics upon receptor stimulation. The most closely related protein, the Ca(2+)-activated monovalent-selective cation channel TRPM4b, also showed voltage modulation, although with slower relaxation kinetics than TRPM5. Taken together, the data demonstrate that TRPM5 and TRPM4b represent the first examples of voltage-modulated, Ca(2+)-activated, monovalent cation channels (VCAMs). The voltage modulation and rapid kinetics provide TRPM5 with an excellent set of properties for participating in signaling in taste receptors and other excitable cells.  相似文献   

10.
11.
目的:观察人小肠上皮细胞调节性细胞容积减小(RVD)的过程,探讨参与RVD过程的离子通道机制.方法:将培养的人小肠上皮细胞暴露于低渗溶液, 利用电子细胞体积测量系统测定细胞平均容积变化过程和离子通道的参与过程;采用RT-PCR方法检测人小肠上皮细胞上离子通道的表达.结果:人小肠上皮细胞具有良好的RVD功能; 其RVD过程可被氯通道阻断剂NPPB 和钾通道阻断剂四乙铵所阻断; 进一步的研究发现, 中等电导钙激活性钾通道(IK)的特异性阻断剂Clotrimazole (CLT) (1μmol/L)可以明显抑制细胞的RVD过程,而大电导钙激活性钾通道(BK)和小电导钙激活性钾通道(SK)的特异阻断剂iberiotoxin (100 nmol/L)和apamin (100 nmol/L)对RVD过程无任何抑制作用.RT-PCR的结果也显示, 人小肠上皮细胞只有IK表达, 而无SK和BK的表达.结论:人小肠上皮细胞具有RVD功能,RVD过程的完成有赖于氯通道和钾通道的平行激活, 而其中参与容积调节的钾通道是中等电导钙激活型钾通道IK.  相似文献   

12.
Calcium-activated nonselective (CAN) cation channels are expressed in various excitable and nonexcitable cells supporting important cellular responses such as neuronal bursting activity, fluid secretion, and cardiac rhythmicity. We have cloned and characterized a second form of TRPM4, TRPM4b, a member of the TRP channel family, as a molecular candidate of a CAN channel. TRPM4b encodes a cation channel of 25 pS unitary conductance that is directly activated by [Ca2+]i with an apparent K(D) of approximately 400 nM. It conducts monovalent cations such as Na+ and K+ without significant permeation of Ca2+. TRPM4b is activated following receptor-mediated Ca2+ mobilization, representing a regulatory mechanism that controls the magnitude of Ca2+ influx by modulating the membrane potential and, with it, the driving force for Ca2+ entry through other Ca2+-permeable pathways.  相似文献   

13.
Parallel activation ofCa2+-dependent K+ channels and volume-sensitiveCl channels is known to be responsible for KCl effluxduring regulatory volume decrease (RVD) in human epithelial Intestine407 cells. The present study was performed to identify theK+ channel type. RT-PCR demonstrated mRNA expression ofCa2+-activated, intermediate conductance K+(IK), but not small conductance K+ (SK1) or largeconductance K+ (BK) channels in this cell line. Whole cellrecordings showed that ionomycin or hypotonic stress activated inwardlyrectifying K+ currents that were reversibly blocked by IKchannel blockers [clotrimazole (CLT) and charybdotoxin] but not by SKand BK channel blockers (apamin and iberiotoxin). Inside-out recordingsrevealed the existence of CLT-sensitive single K+-channelactivity, which exhibited an intermediate unitary conductance (30 pS at100 mV). The channel was activated by cytosolic Ca2+ ininside-out patches and by a hypotonic challenge in cell-attached patches. The RVD was suppressed by CLT, but not by apamin oriberiotoxin. Thus we conclude that the IK channel is involved in theRVD process in these human epithelial cells.

  相似文献   

14.
15.
Cathepsins are implicated in a multitude of physiological and pathophysiological processes. The aim of the present study was to investigate the function of cathepsin L (catL) in the proteolytic network of human lung epithelial cells and its role in the regulation of apoptosis. We found that catL-deficient A549 cells as well as lung tissue extracts of catL(-/-) mice express increased amounts of single-chain cathepsin D (catD). Degradation experiments indicate that catL specifically degrades the single-chain isoform of catD. Furthermore, we found that catL-deficient cells showed increased sensitivity to apoptosis. Finally, we demonstrate that the inhibition of catD activity by pepstatin A decreased the number of apoptotic cells in catL-deficient A549 cells after anti-Fas treatment. In conclusion, catL is involved in catD processing and the accumulation of catD isoforms in catL-deficient cells is associated with increased rates of spontaneous and anti-Fas-induced apoptosis.  相似文献   

16.
The channel kinases TRPM6 and TRPM7 are functionally nonredundant   总被引:1,自引:0,他引:1  
TRPM7 and its closest homologue, TRPM6, are the only known fusions of an ion channel pore with a kinase domain. Deletion of TRPM7 in DT40 B-lymphocytes causes growth arrest, Mg(2+) deficiency, and cell death within 24-48 h. Amazingly, in analogy to TRPM6-deficient patients who can live a normal life if provided with a Mg(2+)-rich diet, TRPM7-deficient DT40 B-lymphocytes show wild type cell growth if supplied with 5-10 mm Mg(2+) concentrations in their extracellular medium. Here we have investigated the functional relationship between TRPM6 and TRPM7. We show that TRPM7 deficiency in DT40 cells cannot be complemented by heterologously expressed TRPM6. Nevertheless, both channels can influence each other's biological activity. Our data demonstrate that TRPM6 requires TRPM7 for surface expression in HEK-293 cells and also that TRPM6 is capable of cross-phosphorylating TRPM7 as assessed using a phosphothreonine-specific antibody but not vice versa. TRPM6 and TRPM7 coexpression studies in DT40 B-cells indicate that TRPM6 can modulate TRPM7 function. In conclusion, although TRPM6 and TRPM7 are closely related and deficiency in either one of these molecules severely affects Mg(2+) homeostasis regulation, TRPM6 and TRPM7 do not appear to be functionally redundant but rather two unique and essential components of vertebrate ion homeostasis regulation.  相似文献   

17.
The Mg2+-inhibited cation (MIC) current (IMIC) in cardiac myocytes biophysically resembles currents of heterologously expressed transient receptor potential (TRP) channels, particularly TRPM6 and TRPM7, known to be important in Mg2+ homeostasis. To understand the regulation of MIC channels in cardiac cells, we used the whole cell voltage-clamp technique to investigate the role of intracellular ATP in pig, rat, and guinea pig isolated ventricular myocytes. IMIC, studied in the presence or absence of extracellular divalent cations, was sustained for 50 min after patch rupture in ATP-dialyzed cells, whereas in ATP-depleted cells IMIC exhibited complete rundown. Equimolar substitution of internal ATP by its nonhydrolyzable analog adenosine 5'-(,-imido)triphosphate failed to prevent rundown. In ATP-depleted cells, inhibition of lipid phosphatases by fluoride + vanadate + pyrophosphate prevented IMIC rundown. In contrast, under similar conditions neither the inhibition of protein phosphatases 1, 2A, 2B or of protein tyrosine phosphatase nor the activation of protein kinase A (forskolin, 20 µM) or protein kinase C (phorbol myristate acetate, 100 nM) could prevent rundown. In ATP-loaded cells, depletion of phosphatidylinositol 4,5-bisphosphate (PIP2) by prevention of its resynthesis (10 µM wortmannin or 15 µM phenylarsine oxide) induced rundown of IMIC. Finally, loading ATP-depleted cells with exogenous PIP2 (10 µM) prevented rundown. These results suggest that PIP2, likely generated by ATP-utilizing lipid kinases, is necessary for maintaining cardiac MIC channel activity. cation channels; hydrolysis; phosphoinositides; rundown  相似文献   

18.
Cell swellingactivates an outwardly rectifying anion channel termed VSOAC(volume-sensitive organic osmolyte/anion channel). Regulation of VSOACby intracellular electrolytes was characterized in Chinese hamsterovary cells by whole cell patch clamp. Elevation of intracellular CsClconcentration from 40 to 180 mM resulted in a concentration-dependentdecrease in channel activation. Activation of VSOAC was insensitive tothe salt gradient across the plasma membrane, the intracellularconcentration of specific anions or cations, and the totalintracellular concentration of cations, anions, or electrolytes.Comparison of cells dialyzed with either CsCl orNa2SO4solutions demonstrated directly that VSOAC activation is modulated byintracellular ionic strength(µi). The relative cell volumeat which VSOAC current activation was triggered, termed the channelvolume set point, decreased with decreasing ionic strength. Atµi = 0.04, VSOAC activationoccurred spontaneously in shrunken cells. The rate of VSOAC activationwas nearly 50-fold higher in cells withµi = 0.04 vs. those withµi = 0.18. We propose thatµi modulates the volume sensorresponsible for channel activation.

  相似文献   

19.
TRPM7 is a divalent cation-permeable channel that is ubiquitously expressed. Recently, mouse TRPM7 has been shown to be sensitive to, and even permeable to, protons when heterologously expressed. Here we have demonstrated that human TRPM7 expressed either heterologously or endogenously also exhibits proton conductivity. The gene silencing of TRPM7 by small interfering RNA suppressed H+ currents in human cervical epithelial HeLa cells. In HEK293T cells transfected with human TRPM7, the inward proton conductance was suppressed by extracellular Mg2+ or Ca2+ with IC(50) values of 0.5 and 1.9 mm, respectively. Anomalous mole fraction behavior of H+ currents in the presence of Mg2+ or Ca2+ indicated that these divalent cations compete with protons for binding sites. Systematic mutation of negatively charged amino acid residues within the putative pore-forming region of human TRPM7 into the neutral amino acid alanine was tested. E1047A resulted in non-functional channels, and D1054A abolished proton conductance, whereas E1052A and D1059A only partially reduced proton conductivity. Thus, it is concluded that Asp-1054 is an essential determinant of the proton conductivity, whereas Glu-1047 might be required for channel formation, and the remaining negatively charged amino acids in the pore region (Glu-1052 and Asp-1059) may play a facilitating role in the proton conductivity of human TRPM7. It is suggested that proton conductivity of endogenous human TRPM7 plays a role in physiologically/pathologically acidic situations.  相似文献   

20.
The genetic, regulatory, and tissue-specific characterization of G-protein-coupled receptors is substantial since it contributes to the identification of the natural ligand which may influence basic physiological processes and cell function. Here we explored the genomic structure of a human orphan seven-transmembrane receptor which presents the human homologue of a receptor which has been controversially identified as a rat adrenomedullin receptor subtype. Based on the cDNA sequence a 3.4 kb genomic DNA fragment was isolated. Sequencing of the fragment and comparison studies revealed an intron of 544 bp in the 5' untranslated region, followed by a second exon encoding the receptor protein of 404 amino acids. The gene is localized on chromosome 12q. The 5' regulatory region contains several SP1, AP2, and CAAT sites as well as hypoxia responsive elements (HRE) both in the 5' and 3' regulatory region. RT-PCR with intron spanning primers demonstrated mRNA signals in various tissues, especially in lung. Characterizing the histological expression pattern in lung sections by nonisotopic in situ hybridization, a strong signal of receptor mRNA was identified in pulmonary epithelial cells of bronchi and alveoli. Analysis of the two human pulmonary epithelial cell lines, H23 and A549, showed significant mRNA induction of this receptor subtype in hypoxia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号