首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 733 毫秒
1.
Antistasin (ATS) is a selective, tight-binding inhibitor of blood coagulation Factor Xa originally isolated from the salivary glands of the Mexican leech Haementeria officinalis. In order to provide sufficient quantities of ATS to further investigate the role of Factor Xa in blood coagulation, a recombinant version of ATS has been produced in an insect baculovirus host-vector system. In this study, we describe the purification and in vitro and in vivo characterization of a single recombinant antistasin (rATS) isoform. The purified protein constitutes a minor isoform relative to the more abundant ATS isoforms present in leech salivary gland extracts. In vitro, rATS inhibits purified human Factor Xa stoichiometrically, prolongs plasma-based clotting assays at nanomolar concentrations, and like native ATS, is cleaved at a single position by Factor Xa during the course of inhibition. An initial evaluation of the in vivo efficacy of rATS was addressed utilizing a rhesus monkey model of mild disseminated intravascular coagulation. rATS was shown to fully suppress thromboplastin-induced fibrinopeptide A generation in a dose-dependent fashion. The availability of rATS should provide a valuable tool for the critical evaluation of the specific role played by Factor Xa in coagulation.  相似文献   

2.
With the use of an enzymatic replacement method, 90%-enriched [1-13C]lysine was introduced into the reactive site of the basic pancreatic trypsin inhibitor. Characterization of the labelled inhibitor with 13C nuclear magnetic resonance (NMR), 1H NMR and chemical methods showed that while the reactive-site peptide bond Lys-15--Ala-16 was properly resynthesized, the polypeptide chain was cleaved at the peptide bond Arg-39--Ala-40 and Arg-39 was removed. Detailed 1H NMR studies showed further that, with the exception of the immediate environment of the modification site, the average spatial structure of the native inhibitor was preserved in the modified protein. Compared to the native inhibitor, the thermal stability of the globular conformation was found to be reduced, interior amide protons exchanged at a faster rate and the internal mobility of aromatic rings located outside the immediate environment of the cleaved peptide bond was essentially unchanged. These observations coincide closely with previous reports on different modifications of the inhibitor and can be explained by a recently proposed dynamic multi-state model for globular proteins. Since the fundamental structural properties of the native inhibitor and full inhibitory activity are preserved after resynthesis, the [1-13C]lys-15-labelled inhibitor with the peptide bond Arg-39--Ala-40 cleaved and Arg-39 removed should be suitable for 13C NMR studies of mechanistic aspects of proteinase-inhibitor interactions.  相似文献   

3.
Trypsin [EC 3.4.21.4] modified (reactive site cleaved) Vicia angustifolia proteinase inhibitor was prepared at pH 3 with a catalytic amount of trypsin and purified using columns of Sephadex G-50 and DEAE-Sephadex A-25. The modified inhibitor, which still retained antitryptic activity, lost its activity upon treatment with carboxypeptidase B or citraconic anhydride. End-group analyses revealed that the carboxyl-terminal Arg and the amino-terminal Ser residues were newly exposed end-groups in the modified inhibitor. It takes a much longer incubation time (about 1 h) to exhibit the maximal inhibitory activity against trypsin. Reduction and carboxymethylation of the modified inhibitor produced two fragments on Sephadex G-50 chromatography. The smaller fragment consisted of about 32 amino acid residues and possessed a new carboxyl-terminal Arg residue. The larger fragment consisted of about 80 residues and possessed a Ser residue at its amino-terminus. These results indicate that the small fragment was derived from the amino-terminal portion of the modified inhibitor and the large fragment from the carboxyl-terminal. It is also concluded that an Arg-Ser bond is the reactive site as well as the inhibitory site of the V. angustifolia inhibitor against trypsin. The sequence around the antitryptic site exhibits high degrees of homology with other double-headed inhibitors of legume origin, such as the Bowman-Birk inhibitor, lima beam inhibitor, and the major inhibitor in chick-peas.  相似文献   

4.
Peanut inhibitor B-III was found to form two types of complexes with trypsin, T2I and TI, by gel filtration HPLC. Two cleaved peptide bonds, Arg(10)-Arg(11) and Arg(38)-Ser(39), in the trypsin modified inhibitor (TM-B-III*R*S) (J. Biochem. 93, 479-485 (1983] were resynthesized by the complex formation with 2 mol of trypsin. These results suggest that the two peptide bonds may be the reactive sites for trypsin. TM-B-III*R*S inhibited bovine trypsin as well as native B-III but had little chymotrypsin inhibitory activity. The two peptide bonds, Arg(10)-Arg(11) and Arg(38)-Ser(39), in B-III were cleaved partly by prolonged incubation with a catalytic amount of chymotrypsin. But gel filtration HPLC of the chymotrypsin-inhibitor complex showed the formation of only CI complex. Incubation of TM-B-III*R*S with an equimolar amount of chymotrypsin resulted in the resynthesis of only the Arg(10)-Arg(11) bond. These findings suggest that Arg(10)-Arg(11) may be a true reactive site for chymotrypsin. An inhibition mechanism of B-III against trypsin and chymotrypsin was proposed from the results obtained by the present studies.  相似文献   

5.
A synthetic gene coding for the 55-amino acid protein hirustasin, a novel tissue kallikrein inhibitor from the leech Hirudo medicinalis, was generated by polymerase chain reaction using overlapping oligonucleotides, fused to the yeast alpha-factor leader sequence and expressed in Saccharomyces cerevisiae. Recombinant hirustasin was secreted mainly as incompletely processed fusion protein, but could be processed in vitro using a soluble variant of the yeast yscF protease. The processed hirustasin was purified to better than 97% purity. N-terminal sequence analysis and electrospray ionization mass spectrometry confirmed a correctly processed N-terminus and the expected amino acid sequence and molecular mass. The biological activity of recombinant hirustasin was identical to that of the authentic leech protein. Crystallized hirustasin alone and in complex with tissue kallikrein diffracted beyond 1.4 A and 2.4 A, respectively. In order to define the reactive site of the inhibitor, the interaction of hirustasin with kallikrein, chymotrypsin, and trypsin was investigated by monitoring complex formation in solution as well as proteolytic cleavage of the inhibitor. During incubation with high, nearly equimolar concentration of tissue kallikrein, hirustasin was cleaved mainly at the peptide bond between Arg 30 and Ile 31, the putative reactive site, to yield a modified inhibitor. In the corresponding complex with chymotrypsin, mainly uncleaved hirustasin was found and cleaved hirustasin species accumulated only slowly. Incubation with trypsin led to several proteolytic cleavages in hirustasin with the primary scissile peptide bond located between Arg 30 and Ile 31. Hirustasin appears to fall into the class of protease inhibitors displaying temporary inhibition.  相似文献   

6.
Most proteinase inhibitors from plant seeds are assumed to contribute to broad-spectrum protection against pests and pathogens. In oat (Avena sativa L.) grain the main serine proteinase inhibitors were found to be serpins, which utilize a unique mechanism of irreversible inhibition. Four distinct inhibitors of the serpin superfamily were detected by native PAGE as major seed albumins and purified by thiophilic adsorption and anion exchange chromatography. The four serpins OSZa-d are the first proteinase inhibitors characterized from this cereal. An amino acid sequence close to the blocked N-terminus, a reactive centre loop sequence, and the second order association rate constant (ka') for irreversible complex formation with pancreas serine proteinases at 24 degrees C were determined for each inhibitor. OSZa and OSZb, both with the reactive centre scissile bond P1-P1' Thr downward arrow Ser, were efficient inhibitors of pancreas elastase (ka' > 105M-1 s-1). Only OSZb was also an inhibitor of chymotrypsin at the same site (ka' = 0.9 x 105M-1 s-1). OSZc was a fast inhibitor of trypsin at P1-P1' Arg downward arrow Ser (ka' = 4 x 106M-1 s-1); however, the OSZc-trypsin complex was short-lived with a first order dissociation rate constant kd = 1.4 x 10-4 s-1. OSZc was also an inhibitor of chymotrypsin (ka' > 106M-1 s-1), presumably at the overlapping site P2-P1 Ala downward arrow Arg, but > 90% of the serpin was cleaved as substrate. OSZd was cleaved by chymotrypsin at the putative reactive centre bond P1-P1' Tyr downward arrow Ser, and no inhibition was detected. Together the oat grain serpins have a broader inhibitory specificity against digestive serine proteinases than represented by the major serpins of wheat, rye or barley grain. Presumably the serpins compensate for the low content of reversible inhibitors of serine proteinases in oats in protection of the grain against pests or pathogens.  相似文献   

7.
Singly modified soybean trypsin inhibitors (STIs), Tia* [Tia cleaved at Arg(63)-Ile(64)] and Tib* [Tib cleaved at Arg(63)-Ile(64)], were prepared by limited proteolysis with trypsin at pH 3.0. These singly modified inhibitors were further modified to yield doubly modified inhibitors, Tia** and Tib**, by limited proteolysis with subtilisin BPN', which cleaved the Met(84)-Leu(85) bonds of Tia* and Tib*, respectively. The doubly modified inhibitors could be separated into two parts: protein moiety A and peptide moiety a (IRFIAEGHPLSLKFDS-FAVIM) for Tia**, and protein moiety B and peptide moiety b (IRFIAEGNPLRLKFDS-FAVIM) for Tib**. These protein and peptide moieties showed no trypsin inhibitory activities alone. However, the inhibitors can be reconstituted through the mutual exchange of the protein and peptide moieties isolated from STIs. The reconstituted inhibitor which has tyrosine at position 62 and histidine at position 71 shows the highest inhibitory activity. Its Ki value for bovine trypsin is around 10(-10) M, which is almost the same as that of Tia for bovine trypsin. The inhibitor possessing either tyrosine at position 62 or histidine at position 71 exhibits a Ki value of around 10(-9) M, which is between those of Tia and Tib. The inhibitor having phenylalanine and asparagine at positions 62 and 71, respectively, shows the weakest inhibitory activity of around 10(-8) M similar to that of Tib for bovine trypsin.  相似文献   

8.
Human plasma kallikrein (huPK) is a proteinase that participates in several biological processes. Although various inhibitors control its activity, members of the Kazal family have not been identified as huPK inhibitors. In order to map the enzyme active site, we synthesized peptides based on the reactive site (PRILSPV) of a natural Kazal-type inhibitor found in Cayman plasma, which is not an huPK inhibitor. As expected, the leader peptide (Abz-SAPRILSPVQ-EDDnp) was not cleaved by huPK. Modifications to the leader peptide at P'1, P'3 and P'4 positions were made according to the sequence of a phage display-generated recombinant Kazal inhibitor (PYTLKWV) that presented huPK-binding ability. Novel peptides were identified as substrates for huPK and related enzymes. Both porcine pancreatic and human plasma kallikreins cleaved peptides at Arg or Lys bonds, whereas human pancreatic kallikrein cleaved bonds involving Arg or a pair of hydrophobic amino acid residues. Peptide hydrolysis by pancreatic kallikrein was not significantly altered by amino acid replacements. The peptide Abz-SAPRILSWVQ-EDDnp was the best substrate and a competitive inhibitor for huPK, indicating that Trp residue at the P'4 position is important for enzyme action.  相似文献   

9.
When an excess of human cystatin C or chicken cystatin was mixed with papain, an enzyme-inhibitor complex was formed immediately. The residual free cystatin was then progressively converted to a form with different electrophoretic mobility and chromatographic properties. The modified cystatins were isolated and sequenced, showing that there had been cleavage of a single peptide bond in each molecule: Gly11-Gly12 in cystatin C, and Gly9-Ala10 in chicken cystatin. The residues Gly11 (cystatin C) and Gly9 (chicken cystatin) are among only three residues conserved in all known sequences of inhibitory cystatins. The modified cystatins were at least 1000-fold weaker inhibitors of papain than the native cystatins. An 18-residue synthetic peptide corresponding to residues 4-21 of cystatin C did not inhibit papain but was cleaved at the same Gly-Gly bond as cystatin C. When iodoacetate or L-3-carboxy-trans-2,3-epoxypropionyl-leucylamido-(4-guanidin o)butane was added to the mixtures of either cystatin with papain, modification of the excess cystatin was blocked. Papain-cystatin complexes were stable to prolonged incubation, even in the presence of excess papain. We conclude that the peptidyl bond of the conserved glycine residue in human cystatin C and chicken cystatin probably is part of a substrate-like inhibitory reactive site of these cysteine proteinase inhibitors of the cystatin superfamily and that this may be true also for other inhibitors of this superfamily. We also propose that human cystatin C and chicken cystatin, and probably other cystatins as well, inhibit cysteine proteinases by the simultaneous interactions with such proteinases of the inhibitory reactive sites and other, so far not identified, areas of the cystatins. The cleavage of the inhibitory reactive site glycyl bond in mixtures of papain with excess quantities of cystatins is apparently due to the activity of a small percentage of atypical cysteine proteinase molecules in the papain preparation that form only very loose complexes with cystatins under the conditions employed and degrade the free cystatin molecules.  相似文献   

10.
P14C/N39C is the disulfide variant of the ovomucoid third domain from silver pheasant (OMSVP3) introducing an engineered Cys14? Cys39 bond near the reactive site on the basis of the sequence homology between OMSVP3 and ascidian trypsin inhibitor. This variant exhibits a narrower inhibitory specificity. We have examined the effects of introducing a Cys14? Cys39 bond into the flexible N‐terminal loop of OMSVP3 on the thermodynamics of the reactive site peptide bond hydrolysis, as well as the thermal stability of reactive site intact inhibitors. P14C/N39C can be selectively cleaved by Streptomyces griseus protease B at the reactive site of OMSVP3 to form a reactive site modified inhibitor. The conversion rate of intact to modified P14C/N39C is much faster than that for wild type under any pH condition. The pH‐independent hydrolysis constant (Khyd°) is estimated to be approximately 5.5 for P14C/N39C, which is higher than the value of 1.6 for natural OMSVP3. The reactive site modified form of P14C/N39C is thermodynamically more stable than the intact one. Thermal denaturation experiments using intact inhibitors show that the temperature at the midpoint of unfolding at pH 2.0 is 59 °C for P14C/N39C and 58 °C for wild type. There have been no examples, except P14C/N39C, where introducing an engineered disulfide causes a significant increase in Khyd°, but has no effect on the thermal stability. The site‐specific disulfide introduction into the flexible N‐terminal loop of natural Kazal‐type inhibitors would be useful to further characterize the thermodynamics of the reactive site peptide bond hydrolysis. Copyright © 2011 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

11.
We have previously described Kunitz-type serine proteinase inhibitors purified from Bauhinia seeds. Human plasma kallikrein shows different susceptibility to those inhibitors. In this communication, we describe the interaction of human plasma kallikrein with fluorogenic and non-fluorogenic peptides based on the Bauhinia inhibitors' reactive site. The hydrolysis of the substrate based on the B. variegata inhibitor reactive site sequence, Abz-VVISALPRSVFIQ-EDDnp (Km 1.42 microM, kcat 0.06 s(-1), and kcat/Km 4.23 x 10(4) M(-1) s(-1)), is more favorable than that of Abz-VMIAALPRTMFIQ-EDDnp, related to the B. ungulata sequence (Km 0.43 microM, kcat 0.00017 s(-1), and kcat/Km 3.9 x 10(2) M(-1) s(-1)). Human plasma kallikrein does not hydrolyze the substrates Abz-RPGLPVRFESPL-EDDnp and Abz-FESPLRINIIKE-EDDnp based on the B. bauhinioides inhibitor reactive site sequence, the most effective inhibitor of the enzyme. These peptides are competitive inhibitors with Ki values in the nM range. The synthetic peptide containing 19 amino acids based on the B. bauhinioides inhibitor reactive site (RPGLPVRFESPL) is poorly cleaved by kallikrein. The given substrates are highly specific for trypsin and chymotrypsin hydrolysis. Other serine proteinases such as factor Xa, factor XII, thrombin and plasmin do not hydrolyze B. bauhinioides inhibitor related substrates.  相似文献   

12.
There has been intense interest in the development of factor Xa inhibitors for the treatment of thrombotic diseases. Our laboratory has developed a series of novel non-amidine inhibitors of factor Xa. This paper presents two crystal structures of compounds from this series bound to factor Xa. The first structure is derived from the complex formed between factor Xa and compound 1. Compound 1 was the first non-amidine factor Xa inhibitor from our lab that had measurable potency in an in vitro assay of anticoagulant activity. The second compound, 2, has a molar affinity for factor Xa (K(iapp)) of 7 pM and good bioavailability. The two inhibitors bind in an L-shaped conformation with a chloroaromatic ring buried deeply in the S1 pocket. The opposite end of these compounds contains a basic substituent that extends into the S4 binding site. A chlorinated phenyl ring bridges the substituents in the S1 and S4 pockets via amide linkers. The overall conformation is similar to the previously published structures for amidine-based inhibitors complexed with factor Xa. However, there are significant differences in the interactions between the inhibitor and the protein at the atomic level. Most notably, there is no group that forms a salt bridge with the carboxylic acid at the base of the S1 pocket (Asp189). Each inhibitor forms only one well-defined hydrogen bond to the protein. There are no direct charge-charge interactions. The results indicate that electrostatic interactions play a secondary role in the binding of these potent inhibitors.  相似文献   

13.
Tao H  Zhang Z  Shi J  Shao XX  Cui D  Chi CW 《The FEBS journal》2006,273(17):3907-3914
Highly active, small-molecule furin inhibitors are attractive drug candidates to fend off bacterial exotoxins and viral infection. Based on the 22-residue, active Lys fragment of the mung bean trypsin inhibitor, a series of furin inhibitors were designed and synthesized, and their inhibitory activity towards furin and kexin was evaluated using enzyme kinetic analysis. The most potent inhibitor, containing 16 amino acid residues with a Ki value of 2.45x10(-9) m for furin and of 5.60x10(-7) m for kexin, was designed with three incremental approaches. First, two nonessential Cys residues in the Lys fragment were deleted via a Cys-to-Ser mutation to minimize peptide misfolding. Second, residues in the reactive site of the inhibitor were replaced by the consensus substrate recognition sequence of furin, namely, Arg at P1, Lys at P2, Arg at P4 and Arg at P6. In addition, the P7 residue Asp was substituted with Ala to avoid possible electrostatic interference with furin inhibition. Finally, the extra N-terminal and C-terminal residues beyond the doubly conjugated disulfide loops were further truncated. However, all resultant synthetic peptides were found to be temporary inhibitors of furin and kexin during a prolonged incubation, with the scissile peptide bond between P1 and P1' being cleaved to different extents by the enzymes. To enhance proteolytic resistance, the P1' residue Ser was mutated to D-Ser or N-methyl-Ser. The N-methyl-Ser mutant gave rise to a Ki value of 4.70x10(-8) m for furin, and retained over 80% inhibitory activity even after a 3 h incubation with the enzyme. By contrast, the d-Ser mutant was resistant to cleavage, although its inhibitory activity against furin drastically decreased. Our findings identify a useful template for the design of potent, specific and stable peptide inhibitors of furin, shedding light on the molecular determinants that dictate the inhibition of furin and kexin.  相似文献   

14.
The receptor for advanced glycation end products (RAGE) is a multi-ligand receptor involved in the development of diabetic complications. Although the soluble form of the extracellular domain maintains the ability to bind multi-ligands, it is unstable and degrades into several peptide species during storage. Proteolysis with thrombin or factor Xa revealed several protease sensitive sites. Most sensitive site is located between Arg228 and Val229, and peptide bond next to Arg216, Arg116, Arg114 and Trp271 are also cleaved. Seven truncated extracellular domains of RAGE were engineered in order to obtain a stable soluble fragment. RAGE 143 (Ala23-Thr143) is not only protease resistant but also shows the same ligand-binding ability as that of the full-length extracellular domain. The resultant minimum RAGE 143 works as a stable recognition devise to detect advanced glycation end products (AGEs).  相似文献   

15.
The contribution of the P1' residue at the first reactive site of peanut protease inhibitor B-III to the inhibition was analyzed by replacement of the P1' Arg(11) with other amino acids (Arg, Ser, Ala, Leu, Phe, Asp) after selective modification of the second reactive site. The Arg derivative had the same trypsin inhibitory activity as the native inhibitor (Ki = 2 X 10(-9) M). The Ser derivative inhibited more weakly (Ki = 2 X 10(-8) M). The Ala and Leu derivatives inhibited trypsin very weakly (Ki = 2 X 10(-7) M and 4 X 10(-7) M, respectively), and the Phe and Asp derivatives not at all. These results suggest that the P1' arginine residue is best for inhibitory activity at the first reactive site of B-III, although it has been suggested that a P1' serine residue at the reactive site is best for inhibitory activity of Bowman-Birk type inhibitors.  相似文献   

16.
A peanut Bowman-Birk (BBI) type protease inhibitors B-III has two regions, 1 and 2, homologous with each other. Each region contains three S-S loops and a reactive site in its outermost loop. The inhibitor was used to investigate the contribution of the S-S loops of BBI-type inhibitors to their inhibitory activity. Two steps of Edman degradation of the native inhibitor cleaved loop III (the innermost S-S loop) of region 1 of B-III, and the antichymotryptic activity of the first reactive site decreased to about 1/4 of that of native B-III. A third step of Edman degradation split loop II and the inhibitory activity at that site became extremely low (about 1/200 of the original value). These results suggest that protease inhibitor B-III maintains its active conformation by means of the three S-S loops and that the conformation is markedly changed by the splitting of loop II.  相似文献   

17.
The complete amino acid sequence of chicken ovomucoid (OMCHI) is presented. OMCHI consists of three tandem domains, each homologous to pancreatic secretory trypsin inhibitor (Kazal) and each with an actual or putative reactive site for inhibition of serine proteinases. The major reactive site for bovine beta-trypsin is the Arg89-Ala peptide bond in the second domain. The equilibrium constant for hydrolysis of this peptide bond, K0hyd, is 1.85. The first and third domains of OMCHI are relatively ineffective inhibitors of several serine proteinases against which they were tested. OMCHI is a mixture of two forms: the major form with all of the amino acid residues and a minor form with Val134-Ser135 deleted. This polymorphism is present in all chicken eggs and is the result of ambiguous excision at the 5' end of the F intron. Procedures are given for preparation of modified chicken ovomucoid, OMCHI (in which the Arg89-Ala bond is hydrolyzed), of the first domain, OMCHI1 (residues 1-68), of the second domain, OMCHI2 (residues 65-130), and of the third domain, OMCHI3 (residues 131-186). In the case of the third domain, both the Asn175 glycosylated form, OMCHI3(+), and the carbohydrate-free form, OMCHI3(-), were obtained. These isolated native domains are useful in many studies of ovomucoid behavior.  相似文献   

18.
Staphostatins, a novel family of cysteine protease inhibitors with a unique mechanism of action and distinct protein fold has recently been discovered. In this report we describe the properties of Staphylococcus epidermidis staphostatin A (EcpB), a new member of the family. As for other staphostatins, the recombinant S. epidermidis staphostatin A exerted very narrow inhibitory specificity, limited to cysteine protease from the same species. The closely related proteases from S. aureus cleaved the inhibitor at the reactive site peptide bond and inactivated it. The EcpB homologue, S. aureus staphostatin A (ScpB), was also susceptible to proteolytic cleavage at the same site by non-target cysteine proteases. Conversely, S. aureus staphostatin B (SspC) was resistant to such proteolysis. The difference in the susceptibility of individual inhibitors to proteolytic cleavage at the reactive site suggests subtle variations in the mechanism of interaction with cysteine proteases.  相似文献   

19.
Catalytic amounts of bovine beta-trypsin, bovine alpha-chymotrypsin and porcine plasmin establish a true thermodynamic equilibrium between virgin (I) (reactive site Lys15-Ala16 peptide bond intact) and modified (I) (this bond hydrolyzed) bovine trypsin/kallikrein inhibitor (Kunitz). The very slow reaction rates for attaining equilibrium are pH-dependent and differ for different enzymes. Optimal rates are for beta-trypsin at pH 3.75, for alpha-chymotrypsin at pH 5.5, and for plasmin at pH 5.0. Under conditions of optimum pH the equilibrium is reached with the highest rate by plasmin. In 10(-5)M inhibitor solutions the equilibrium concentrations of virgin and modified inhibitor are established by plasmin after almost 300 days starting from either pure virgin or pure modified inhibitor. Thus, the hydrolysis constant KHyd = [I]/[I] is determined to be 0.33 at pH 5.0. In spite of many unsuccessful attempts, this demonstrates that the reactive site peptide bond Lys15-Ala16 in the bovine trypsin inhibitor (Kunitz) can be hydrolyzed by catalytic amounts of endopeptidase. It further confirms that the hydrolyzed Lys15-Ala16 peptide bond in modified inhibitor is subject to thermodynamic control resynthesis.  相似文献   

20.
D Kowalski  M Laskowski 《Biochemistry》1976,15(6):1309-1315
Modified (Arg63-Ile64 reactive-site peptide bond hydrolyzed) soybean trypsin inhibitor (Kunitz) with all reactive amino groups, except that of Ile64, protected was described in the preceding paper (Kowalski, D., and Laskowski, M., Jr. (1976), Biochemistry, preceding paper in this issue). Treatment of this inhibitor with tert-butyloxycarbonyl-Ala- and tert-butyloxycarbonyl-Ile-N-hydroxy-succinimide esters yields inactive endo-tert-butyloxycarbonyl-Ala63A-and endo-tert-butyloxycarbonyl-Ile63A-modified inhibitors. The tert-butyloxycarbonyl groups were removed by treatment of the proteins with trifluoroacetic acid. After renaturation and purification, the resultant endo-Ala63A- and endo-Ile63A-modified inhibitors co-electrophorese with modified inhibitor both on disc gels (pH 9.4) and sodium dodecyl sulfate gels (after reduction of disulfide bonds) and show end groups corresponding to the 63A residue. These derivatives fail to form stable complexes with trypsin, extending the previous observation (Kowalski, D., and Laskowski, M., Jr. (1972), Biochemistry 11, 3451) that acylation of the P1' residue in modified inhibitors leads to inactivation. However, the incubation of endo-Ala63A- and endo-Ile63A-modified inhibitors with trypsin at pH 6.5 leads to the synthesis of the Arg63-Ala63A and Arg63-Ile63A peptide bonds in 4% yield. This is very close to the yield anticipated from a semiquantitative theory for the value of the equilibrium constant for reactive-site peptide bond. An alternative chemical method of insertion is also described. Controlled treatment of modified inhibitor with the N-carboxyanhydride of Glu produced inactive endo-Glu63A-modified inhibitor. Incubation of this inactive derivative with trypsin at pH 6.5 leads to 16% synthesis of the Arg63-Glu63A peptide bond. The higher yield of single chain protein in this case is attributed to the influence of the negative charge of the Glu63A side chain. Thus, the insertion of an amino acid residue between the P1 and P1' residues in soybean trypsin inhibitor (Kunitz) converts a trypsin inhibitor into a trypsin substrate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号