首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Left ventricular (LV) dysfunction caused by myocardial infarction (MI) is accompanied by endothelial dysfunction, most notably a loss of nitric oxide (NO) availability. We tested the hypothesis that endothelial dysfunction contributes to impaired tissue perfusion during increased metabolic demands as produced by exercise, and we determined the contribution of NO to regulation of regional systemic, pulmonary, and coronary vasomotor tone in exercising swine with LV dysfunction produced by a 2- to 3-wk-old MI. LV dysfunction resulted in blunted systemic and coronary vasodilator responses to ATP, whereas the responses to nitroprusside were maintained. Exercise resulted in blunted systemic and pulmonary vasodilator responses in MI that resembled the vasodilator responses in normal (N) swine following blockade of NO synthase with N(omega)-nitro-L-arginine (L-NNA, 20 mg/kg iv). However, L-NNA resulted in similar decreases in systemic (43 +/- 3% in N swine and 49 +/- 4% in MI swine), pulmonary (45 +/- 5% in N swine and 49 +/- 4% in MI swine), and coronary (28 +/- 4% in N and 35 +/- 3% in MI) vascular conductances in N and MI swine under resting conditions; similar effects were observed during treadmill exercise. Selective inhibition of inducible NO synthase with aminoguanidine (20 mg/kg iv) had no effect on vascular tone in MI. These findings indicate that while agonist-induced vasodilation is already blunted early after myocardial infarction, the contribution of endothelial NO synthase-derived NO to regulation of vascular tone under basal conditions and during exercise is maintained.  相似文献   

2.
Endothelial dysfunction in the setting of cardiovascular risk factors, such as hypercholesterolaemia, hypertension, diabetes mellitus and chronic smoking, as well as in the setting of heart failure, has been shown to be at least partly dependent on the production of reactive oxygen species in endothelial and/or smooth muscle cells and the adventitia, and the subsequent decrease in vascular bioavailability of NO. Superoxide-producing enzymes involved in increased oxidative stress within vascular tissue include NAD(P)H-oxidase, xanthine oxidase and endothelial nitric oxide synthase in an uncoupled state. Recent studies indicate that endothelial dysfunction of peripheral and coronary resistance and conductance vessels represents a strong and independent risk factor for future cardiovascular events. Ways to reduce endothelial dysfunction include risk-factor modification and treatment with substances that have been shown to reduce oxidative stress and, simultaneously, to stimulate endothelial NO production, such as inhibitors of angiotensin-converting enzyme or the statins. In contrast, in conditions where increased production of reactive oxygen species, such as superoxide, in vascular tissue is established, treatment with NO, e.g. via administration of nitroglycerin, results in a rapid development of endothelial dysfunction, which may worsen the prognosis in patients with established coronary artery disease.  相似文献   

3.
Whereas altered nitric oxide (NO.) formation from endothelial nitric oxide synthase (NOS) causes impaired vascular reactivity in a number of cardiovascular diseases, questions remain regarding how endothelial injury results in impaired NO. formation. It is unknown if loss of NOS expression or activity is required or if other factors are involved. Detergent treatment has been used to induce endothelial dysfunction. Therefore, NOS and NO. synthesis were characterized in a rat heart model of endothelial injury and dysfunction induced by the detergent Triton X-100. Cardiac NO. formation was directly measured by electron paramagnetic resonance spectroscopy. NOS activity was determined by the L-[(14)C]arginine conversion assay. Western blots and immunohistology were applied to define the amounts of NOS present in heart tissue before and after Triton treatment. Immunoelectron microscopy was performed to assess intracellular NOS distribution. A short bolus of Triton X-100, 0.25%, abolished responses to histamine and calcium ionophore while preserving response to nitroprusside. Complete blockade of NO. generation occurred after Triton treatment, but NOS activity assayed with addition of exogenous substrate and cofactors was unchanged, and identical 135-kDa NOS bands were seen on Western blots, indicating that NOS was not removed from the heart or structurally damaged by Triton. Immunohistochemistry showed no change in NOS localization after Triton treatment, and immunoelectron microscopy revealed similar NOS distribution in the plasma membrane and intracellular membranes. These results demonstrate that the endothelial dysfunction was due to decreased NO. synthesis but was not caused by loss or denaturation of NOS. Thus endothelial dysfunction due to mild endothelial membrane injury may occur in the presence of active NOS and is triggered by loss of NOS substrates or cofactors.  相似文献   

4.
Ionizing radiation has been implicated in the development of significant cardiovascular complications. Since radiation exposure is associated with space exploration, astronauts are potentially at increased risk of accelerated cardiovascular disease. This study investigated the effect of high atomic number, high-energy (HZE) iron-ion radiation on vascular and endothelial function as a model of space radiation. Rats were exposed to a single whole-body dose of iron-ion radiation at doses of 0, 0.5 or 1 Gy. In vivo aortic stiffness and ex vivo aortic tension responses were measured 6 and 8 months after exposure as indicators of chronic vascular injury. Rats exposed to 1 Gy iron ions demonstrated significantly increased aortic stiffness, as measured by pulse wave velocity. Aortic rings from irradiated rats exhibited impaired endothelial-dependent relaxation consistent with endothelial dysfunction. Acute xanthine oxidase (XO) inhibition or reactive oxygen species (ROS) scavenging restored endothelial-dependent responses to normal. In addition, XO activity was significantly elevated in rat aorta 4 months after whole-body irradiation. Furthermore, XO inhibition, initiated immediately after radiation exposure and continued until euthanasia, completely inhibited radiation-dependent XO activation. ROS production was elevated after 1 Gy irradiation while production of nitric oxide (NO) was significantly impaired. XO inhibition restored NO and ROS production. Finally, dietary XO inhibition preserved normal endothelial function and vascular stiffness after radiation exposure. These results demonstrate that radiation induced XO-dependent ROS production and nitroso-redox imbalance, leading to chronic vascular dysfunction. As a result, XO is a potential target for radioprotection. Enhancing the understanding of vascular radiation injury could lead to the development of effective methods to ameliorate radiation-induced vascular damage.  相似文献   

5.
Ghrelin, a 28-aminoacid peptide, was isolated from the human and rat stomach and identified in 1999 as an endogenous ligand for the growth hormone secretagogue-receptor (GHS-R). In addition to stimulating appetite and regulating energy balance, ghrelin and its receptor GHS-R1a have a direct effect on the cardiovascular system. In recent years, it has been shown that ghrelin exerts cardioprotective effects, including the modulation of sympathetic activity and hypertension, enhancement of the vascular activity and angiogenesis, inhibition of arrhythmias, reduction in heart failure and inhibition of cardiac remodeling after myocardial infarction (MI). The cardiovascular protective effect of ghrelin may be associated with anti-inflammation, anti-apoptosis, inhibited sympathetic nerve activation, regulated autophagy, and endothelial dysfunction. However, the molecular mechanisms underlying the effects of ghrelin on the cardiovascular system have not been fully elucidated, and no specific therapeutic agent has been established. It is important to further explore the pharmacological potential of ghrelin pathway modulation for the treatment of cardiovascular diseases.  相似文献   

6.
Recent clinical studies such as HOPE, SECURE, and APRES show that angiotensin-converting enzyme (ACE) inhibitors like ramipril improve the prognosis of patients with a high risk of atherothrombotic cardiovascular events. Atherosclerosis, as a chronic inflammatory condition of the vascular system, can turn into an acute clinical event through the rupture of a vulnerable atherosclerotic plaque followed by thrombosis. ACE inhibition has a beneficial effect on the atherogenic setting and on fibrinolysis. Endothelial dysfunction is the end of a common process in which cardiovascular risk factors contribute to inflammation and atherogenesis. By inhibiting the formation of angiotensin II, ACE inhibitors prevent any damaging effects on endothelial function, vascular smooth muscle cells, and inflammatory vascular processes. An increase in the release of NO under ACE inhibition has a protective effect. Local renin-angiotensin systems in the tissue are involved in the inflammatory processes in the atherosclerotic plaque. Circulating ACE-containing monocytes, which adhere to endothelial cell lesions, differentiate within the vascular wall to ACE-containing macrophages or foam cells with increased local synthesis of ACE and angiotensin II. Within the vascular wall, angiotensin II decisively contributes to the instability of the plaque by stimulating growth factors, adhesion molecules, chemotactic proteins, cytokines, oxidized LDL, and matrix metalloproteinases. Suppression of the increased ACE activity within the plaque can lead to the stabilization and deactivation of the plaque by reducing inflammation in the vascular wall, thus lessening the risk of rupture and thrombosis and the resultant acute clinical cardiovascular events. The remarkable improvement in the long-term prognosis of atherosclerotic patients with increased cardiovascular risk might be the clinical result of the contribution made by ACE inhibition in the vascular wall.  相似文献   

7.
Diet and endothelial function   总被引:1,自引:0,他引:1  
Endothelial dysfunction is one of the earliest events in atherogenesis. A consequence of endothelial damage is a lower availability of nitric oxide (NO), the most potent endogenous vasodilator. NO inhibits platelet aggregation, smooth muscle cell proliferation and adhesion of monocytes to endothelial cells. Endothelial dysfunction is present in patients with cardiovascular disease and/or coronary risk factors, such as hypertension, dyslipidemia, diabetes, smoking or hyperhomocysteinemia. At present, soluble markers and high resolution ultrasound of the brachial artery, have provided simple tools for the study of endothelial function and the effects of several interventions. It has been demonstrated that dietary factors may induce significant changes on vascular reactivity. Nutrients, such as fish oil, antioxidants, L-arginine, folic acid and soy protein have shown an improvement in endothelial function that can mediate, at least partially, the cardioprotective effects of these substances. Attention has been focused on dietary patterns in populations with lower prevalence of cardiovascular disease. There is some evidence suggesting that Mediterranean diet characterized by high consumption of vegetables, fish, olive oil and moderate wine consumption may have a positive effect on endothelial function. These results give us evidence on the significant role of diet on endothelial function and its impact on the pathogenesis of atherosclerosis.  相似文献   

8.
Nitric oxide (NO) is an important mediator in both health and disease. In addition to its effects on vascular tone and platelet function, it plays roles in inflammation and pain perception that may be of relevance in osteoarthritis. Many patients with osteoarthritis take nonsteroidal anti-inflammatory drugs (NSAIDs) long term for pain control. Over recent years concern has been raised about the possible cardiovascular side effects of NSAIDs. The reasons for this possible increased cardiovascular risk with NSAIDs are not yet entirely clear, although changes in blood pressure, renal salt handling and platelet function may contribute. Recently, drugs that chemically link a NSAID with a NO donating moiety (cyclo-oxygenase-inhibiting NO-donating drugs [CINODs]) were developed. NO is an important mediator of endothelial function, acting as a vasodilator and an inhibitor of platelet aggregation, and having anti-inflammatory properties. The potential benefits of CINODs include the combination of effective analgesic and anti-inflammatory actions with NO release, which might counterbalance any adverse cardiovascular effects of NSAIDs. Effects of CINODs in animal studies include inhibition of vasopressor responses, blood pressure reduction in hypertensive rats and inhibition of platelet aggregation. CINODs may also reduce ischemic damage to compromised myocardial tissue. In addition, endothelial dysfunction is a recognized feature of inflammatory arthritides, and therefore a drug that might provide slow release of NO to the vasculature while treating pain is an attractive prospect in these conditions. Further studies of the effects of CINODs in humans are required, but these agents represent a potential exciting advance in the management of osteoarthritis.  相似文献   

9.
The role of nitric oxide in cardiovascular diseases   总被引:18,自引:0,他引:18  
Nitric oxide (NO) is a gaseous lipophilic free radical cellular messenger generated by three distinct isoforms of nitric oxide synthases (NOS), neuronal (nNOS), inducible (iNOS) and endothelial NOS (eNOS). NO plays an important role in the protection against the onset and progression of cardiovascular disease. Cardiovascular disease is associated with a number of different disorders including hypercholesterolaemia, hypertension and diabetes. The underlying pathology for most cardiovascular diseases is atherosclerosis, which is in turn associated with endothelial dysfunctional. The cardioprotective roles of NO include regulation of blood pressure and vascular tone, inhibition of platelet aggregation and leukocyte adhesion, and prevention smooth muscle cell proliferation. Reduced bioavailability of NO is thought to be one of the central factors common to cardiovascular disease, although it is unclear whether this is a cause of, or result of, endothelial dysfunction. Disturbances in NO bioavailability leads to a loss of the cardio protective actions and in some case may even increase disease progression. In this chapter the cellular and biochemical mechanisms leading to reduced NO bioavailability are discussed and evidence for the prevalence of these mechanisms in cardiovascular disease evaluated.  相似文献   

10.
Irradiation of the heart and vasculature can cause a spectrum of cardiovascular complications, including increased risk of myocardial infarction or coronary heart disease. Although irradiation is implicated in oxidant stress and chronic inflammation, the underlying molecular mechanisms have not been elucidated. We tested the hypothesis that irradiation-initiated upregulation of xanthine oxidase (XO), a primary source of cardiovascular reactive oxygen species, contributes to endothelial dysfunction and increased vascular stiffness. Twenty-two, 3-month-old Sprague–Dawley male rats were gamma-irradiated at the following doses: 0, 50, 160, and 500 cGy. Rats exposed to 500 cGy showed a significant increase in endothelial XO expression and a twofold increase in XO activity, compared to the 0 cGy controls. Endothelial function was investigated ex vivo through vascular tension dose–responses to the endothelial dependent vasodilator, acetylcholine. Endothelial-dependent relaxation in aorta of the 500 cGy exposed rats was significantly attenuated from the control group. Remarkably, specific inhibition of XO with oxypurinol restored the relaxation response to that of the control. Furthermore, these ex vivo results are reflected in vivo through alterations in vascular stiffness, as measured by pulse wave velocity (PWV). As early as 1-day post-exposure, rats exhibited a significant increase in PWV from pre-exposure. The PWV of irradiated rats (50, 160, and 500 cGy) were greater than those of 0 cGy control rats at 1 day, 1 and 2 weeks. The sham and irradiated rats possessed equivalent pre-exposure PWV, with sham showing no change over 2 weeks. Thus, these findings suggest that early upregulation of XO contributes to oxidative stress and endothelial nitro-redox imbalance with resultant endothelial dysfunction and altered vascular mechanics. Furthermore, these data identify XO as a potential molecular target for attenuating irradiation-induced cardiovascular injury.  相似文献   

11.
Patients with chronic kidney disease (CKD) have significantly increased risk of cardiovascular disease (CVD) compared to the general population, and this is only partially explained by traditional CVD risk factors. Vascular dysfunction is an important non-traditional risk factor, characterized by vascular endothelial dysfunction (most commonly assessed as impaired endothelium-dependent dilation [EDD]) and stiffening of the large elastic arteries. While various techniques exist to assess EDD and large elastic artery stiffness, the most commonly used are brachial artery flow-mediated dilation (FMDBA) and aortic pulse-wave velocity (aPWV), respectively. Both of these noninvasive measures of vascular dysfunction are independent predictors of future cardiovascular events in patients with and without kidney disease. Patients with CKD demonstrate both impaired FMDBA, and increased aPWV. While the exact mechanisms by which vascular dysfunction develops in CKD are incompletely understood, increased oxidative stress and a subsequent reduction in nitric oxide (NO) bioavailability are important contributors. Cellular changes in oxidative stress can be assessed by collecting vascular endothelial cells from the antecubital vein and measuring protein expression of markers of oxidative stress using immunofluorescence. We provide here a discussion of these methods to measure FMDBA, aPWV, and vascular endothelial cell protein expression.  相似文献   

12.
The past two decades have highlighted the pivotal role of the endothelium in preserving vascular homeostasis. Among others, nitric oxide (NO) is currently believed to be the main component responsible for endothelium dependent vasorelaxation and therefore for endothelial function integrity. Reduced NO bioavailability causes the so-called "endothelial dysfunction," which seems to be the common molecular disorder comprising stable atherosclerotic narrowing lesions or acute plaque rupture causing unstable angina or myocardial infarction. Compelling evidence is accumulating, stressing the role of oxidative stress in causing reduced NO bioavailability and subsequently endothelial dysfunction (ED). More recently, the role of endothelial cell (EC) apoptosis as a possible final stage of ED and plaque activation has been suggested. In vitro and in vivo evidence suggests a role of oxidative stress also as a putative mechanism finally leading to plaque denudation and activation through increased EC apoptosis. Thus, oxidative stress, irrespective of atherosclerotic disease stages, seems to represent a key phenomenon in vascular disease progression and possible prevention.  相似文献   

13.
Systemic knockout of adipose triglyceride lipase (ATGL), the pivotal enzyme of triglyceride lipolysis, results in a murine phenotype that is characterized by progredient cardiac steatosis and severe heart failure. Since cardiac and vascular dysfunction have been closely related in numerous studies we investigated endothelium-dependent and -independent vessel function of ATGL knockout mice. Aortic relaxation studies and Langendorff perfusion experiments of isolated hearts showed that ATGL knockout mice suffer from pronounced micro- and macrovascular endothelial dysfunction. Experiments with agonists directly targeting vascular smooth muscle cells revealed the functional integrity of the smooth muscle cell layer. Loss of vascular reactivity was restored ~ 50% upon treatment of ATGL knockout mice with the PPARα agonist Wy14,643, indicating that this phenomenon is partly a consequence of impaired cardiac contractility. Biochemical analysis revealed that aortic endothelial NO synthase expression and activity were significantly reduced in ATGL deficiency. Enzyme activity was fully restored in ATGL mice treated with the PPARα agonist. Biochemical analysis of perivascular adipose tissue demonstrated that ATGL knockout mice suffer from perivascular inflammatory oxidative stress which occurs independent of cardiac dysfunction and might contribute to vascular defects. Our results reveal a hitherto unrecognized link between disturbed lipid metabolism, obesity and cardiovascular disease.  相似文献   

14.
Endothelial cells synthesize and release various factors that regulate angiogenesis, inflammatory responses, hemostasis, as well as vascular tone and permeability. Endothelial dysfunction has been associated with a number of pathophysiological processes. Oxidative stress appears to be a common denominator underlying endothelial dysfunction in cardiovascular diseases. However, depending on the pathology, the vascular bed studied, the stimulant, and additional factors such as age, sex, salt intake, cholesterolemia, glycemia, and hyperhomocysteinemia, the mechanisms underlying the endothelial dysfunction can be markedly different. A reduced bioavailability of nitric oxide (NO), an alteration in the production of prostanoids, including prostacyclin, thromboxane A2, and/or isoprostanes, an impairment of endothelium-dependent hyperpolarization, as well as an increased release of endothelin-1, can individually or in association contribute to endothelial dysfunction. Therapeutic interventions do not necessarily restore a proper endothelial function and, when they do, may improve only part of these variables.  相似文献   

15.
Endothelial cells produce various factors that regulate vascular tone, vascular permeability, angiogenesis, and inflammatory responses. The dysfunction of endothelial cells is believed to be the major culprit in various cardiovascular diseases, including hypertension, atherosclerosis, heart and renal failure, coronary syndrome, thrombosis, and diabetes. Endothelial cells express multiple transient receptor potential (TRP) channel isoforms, the activity of which serves to modulate cytosolic Ca(2+) levels ([Ca(2+)](i)) and regulate membrane potential, both of which affect various physiological processes. The malfunction and dysregulation of TRP channels is associated with endothelial dysfunction, which is reflected by decreased nitric oxide (NO) bioavailability, inappropriate regulation of vascular smooth muscle tonicity, endothelial barrier dysfunction, increased oxidative damage, impaired anti-thrombogenic properties, and perturbed angiogenic competence. Evidence suggests that dysregulation of TRPC4 and -C1 results in vascular endothelial barrier dysfunction; malfunction of TRPP1 and -P2 impairs endothelial NO synthase; the reduced expression or activity of TRPC4 and -V1 impairs agonist-induced vascular relaxation; the decreased activity of TRPV4 reduces flow-induced vascular responses; and the activity of TRPC3 and -C4 is associated with oxidative stress-induced endothelial damage. In this review, we present a comprehensive summary of the literature on the role of TRP channels in endothelial cells, with an emphasis on endothelial dysfunction.  相似文献   

16.
Florea SM  Blatter LA 《Cell calcium》2008,43(4):405-415
Oxidative stress imposed by the accumulation of oxygen free radicals (reactive oxygen species, ROS) has profound effects on Ca2+ homeostasis in the vascular endothelium, leading to endothelial dysfunctions and the development of cardiovascular pathologies. We tested the effect of the oxidant and ROS generator tert-butyl-hydroperoxide (tBuOOH) on Ca2+ signaling in single cultured calf pulmonary artery endothelial (CPAE) cells loaded with the fluorescent Ca2+ indicator indo-1. Acute brief (5 min) exposures to tBuOOH had no effect on basal cytosolic free Ca2+ ([Ca2+](i)), agonist (ATP)-induced Ca2+ release from the endoplasmic reticulum (ER) and on Ca(2+) store depletion-dependent capacitative Ca2+ entry (CCE). Prolonged (60 min) exposure to tBuOOH did not affect intracellular Ca2+ release, but caused a profound inhibition of CCE. After 120 min of treatment with tBuOOH not only was CCE further reduced, but also ATP-induced Ca2+ release due to a slow depletion of the stores that resulted from CCE inhibition. The antioxidant Trolox (synthetic vitamin E analog) prevented the inhibition of CCE by tBuOOH and attenuated the increase of [ROS](i), indicating that inhibition of CCE was due to the oxidant effects of tBuOOH. The data suggest that in vascular endothelial cells oxidative stress primarily affects Ca2+ influx in response to Ca2+ loss from internal stores. [Ca2+](i) is an important signal for the production and release of endothelium-derived factors such as nitric oxide (NO). Since CCE is the preferential Ca2+ source for NO synthase activation, the finding that oxidative stress inhibits CCE may explain how oxidative stress contributes to endothelial dysfunction-related cardiovascular pathologies.  相似文献   

17.
Clinical trials revealed that estrogen may result in cardiovascular risk in patients with coronary heart disease, despite earlier studies demonstrating that estrogen provided cardiovascular protection. It is possible that the preexisting condition of hypertension and the ability of estrogen to activate the renin-angiotensin system could confound its beneficial effects. Our hypothesis is that the attenuation of estrogen to agonist-induced vasoconstrictor responses through the activation of nitric oxide (NO) synthase (NOS) is impaired by hypertension. We investigated the effects of 17beta-estradiol (E(2)) replacement in normotensive Sprague-Dawley (SD) and (mRen2)27 hypertensive transgenic (TG) rats on contractile responses to three vasoconstrictors, angiotensin II (ANG II), serotonin (5-HT), and phenylephrine (PE), and on the modulatory role of vascular NO to these responses. The aorta was isolated from ovariectomized SD and TG rats treated chronically with 5 mg E(2) or placebo (P). The isometric tension of the aortic rings was measured in organ chambers, and endothelial NOS (eNOS) in the rat aorta was detected using Western blot analysis. E(2) treatment increased eNOS expression in the SD and TG aorta and reduced ANG II- and 5-HT- but not PE-induced contractions in SD and TG rats. The inhibition of NOS with N(omega)-nitro-L-arginine methyl ester enhanced ANG II-, 5-HT-, and PE-induced contractions in P-treated and ANG II and PE responses in E(2)-treated SD and TG rats. Only the responses to 5-HT were augmented in hypertensive rats. In conclusion, this study shows that the preexisting condition of hypertension augmented the vascular responsiveness of 5-HT, whereas the attenuation of estrogen by ANG II and 5-HT vascular responses was not impaired by hypertension. The adrenergic agonist was unresponsive to estrogen treatment. The contribution of NO as a factor contributing to the relative refractoriness of the vascular responses is dependent on the nature of the vasoconstrictor and/or the presence of estrogen.  相似文献   

18.
Increased oxidative stress is one of the basic contributors to the development of the cardiovascular complications in diabetes. Both endothelial and vascular smooth muscle cell dysfunctions are the main sign involved in the pathogenesis of diabetic cardiovascular dysfunction. Matrix metalloproteinases (MMPs) are expressed in the vasculature, and participate in tissue remodeling under pathological conditions such as increased oxidative stress, whereas little is known about effect of hyperglycemia on regulation of MMPs in vascular system. Therefore, we aimed to evaluate the effect of an antioxidant, sodium selenate treatment (0.3 mg/kg for 4 weeks) on function of streptozotocin-diabetic rat aorta. Sodium selenate treatment improved significantly impaired isoproterenol-induced relaxation responses and contraction responses of the aortic strips, and exhibited marked protection against diabetes-induced degenerative changes in the smooth muscle cell morphology. Biochemical data showed that sodium selenate treatment induced a significant regulation of MMP-2 activity and protein loss as well as normalization of increased levels of tissue nitrite and protein thiol oxidation. In addition, this treatment restored diabetes-induced increased levels of endothelin-1, PKC, and cAMP production in the aortic tissue. Taken together, our data demonstrate that these beneficial effects of sodium selenate treatment in diabetics are related to be not only inhibition of increased oxidative stress but also prevention of both receptor- and smooth muscle-mediated dysfunction of vasculature, in part, via regulation of MMP-2. Such an observation provides evidence for potential therapeutic usage of selenium compounds for the amelioration of vascular disorders in diabetes.  相似文献   

19.
Reactive oxygen species (ROS) are essential in vascular homeostasis but may contribute to vascular dysfunction when excessively produced. Superoxide anion (O(2)(·-)) can directly affect vascular tone by reacting with K(+) channels and indirectly by reacting with nitric oxide (NO), thereby scavenging NO and causing nitroso-redox imbalance. After myocardial infarction (MI), oxidative stress increases, favoring the imbalance and resulting in coronary vasoconstriction. Consequently, we hypothesized that ROS scavenging results in coronary vasodilation, particularly after MI, and is enhanced after inhibition of NO production. Chronically instrumented swine were studied at rest and during exercise before and after scavenging of ROS with N-(2-mercaptoproprionyl)-glycine (MPG, 20 mg/kg iv) in the presence or absence of prior inhibition of endothelial NO synthase (eNOS) with N(ω)-nitro-L-arginine (L-NNA, 20 mg/kg iv). In normal swine, MPG resulted in coronary vasodilation as evidenced by an increased coronary venous O(2) tension, and trends toward increased coronary venous O(2) saturation and decreased myocardial O(2) extraction. These effects were not altered by prior inhibition of eNOS. In MI swine, MPG showed a significant vasodilator effect, which surprisingly was abolished by prior inhibition of eNOS. Moreover, eNOS dimer/monomer ratio was decreased after MI, reflecting eNOS uncoupling. In conclusion, ROS exert a small coronary vasoconstrictor influence in normal swine, which does not involve scavenging of NO. This vasoconstrictor influence of ROS is slightly enhanced after MI. Since inhibition of eNOS abolished rather than augmented the vasoconstrictor influence of ROS in swine with MI, while eNOS dimer/monomer ratio was decreased, our data imply that uncoupled eNOS may be a significant source of O(2)(·-) after MI.  相似文献   

20.
Exposure to pro-inflammatory cytokines, such as Angiotensin II, endothelin-1 or TNF leads to endothelial dysfunction, characterized by the reduced production of nitric oxide via endothelial nitric oxide synthase (eNOS). We recently identified the Ca2+ binding protein S100A1 as an essential factor required for eNOS activity. Here we report that pro-inflammatory cytokines down-regulate expression of S100A1 in primary human microvascular endothelial cells (HMVECs) via induction of microRNA-138 (miR-138), in a manner that depends on the stabilization of HIF1-α. We show that loss of S100A1 in ECs reduces stimulus-induced NO production, which can be prevented by inhibition of miR-138. Our study suggests that targeting miR-138 might be beneficial for the treatment of cardiovascular disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号