首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Seasonal and management influences on the fungal community structure of two upland grassland soils were investigated. An upland site containing both unimproved floristically diverse (U4a) and improved mesotrophic (MG7b) grassland types was selected. Samples from both grassland types were taken at five times in one year. Soil fungal community structure was assessed using fungal automated ribosomal intergenic spacer analysis (ARISA), a DNA-profiling approach. A grassland management regime was found to strongly affect fungal community structure, with fungal ARISA profiles from unimproved and improved grassland soils differing significantly. The number of fungal ribotypes found was higher in unimproved than improved grassland soils, providing evidence that improvement may reduce the suitability of upland soil as a habitat for specific groups of fungi. Seasonal influences on fungal community structure were also noted, with samples taken in autumn (October) more correlated with change in ribotype profiles than samples from other seasons. However, seasonal variation did not obscure the measurement of differences in the fungal community structure that were due to agricultural improvement, with canonical correspondence analysis indicating grassland type had a stronger influence on fungal profiles than did season.  相似文献   

2.
Changes in soil microbial community structure due to improvement are often attributed to concurrent shifts in floristic community composition. The bacterial and fungal communities of unimproved and semi-improved (as determined by floristic classification) grassland soils were studied at five upland sites on similar geological substrata using both broad-scale (microbial activity and fungal biomass) and molecular [terminal restriction fragment length polymorphism (TRFLP), automated ribosomal intergenic spacer analysis (ARISA)] approaches. It was hypothesized that microbial community structure would be similar in soils from the same grassland type, and that grassland vegetation classifications could thus be used as predictors of microbial community structure. Microbial community measurements varied widely according to both site and grassland type, and trends in the effect of grassland improvement differed between sites. These results were consistent with those from similar studies, and indicated that floristic community composition was not a stable predictor of microbial community structure across sites. This may indicate a lack of correlation between grassland plant composition and soil microbial community structure, or that differences in soil chemistry between sites had larger impacts on soil microbial populations than plant-related effects.  相似文献   

3.
Grassland management regimens influence the structure of archaeal communities in upland pasture soils, which appear to be dominated by as yet uncultivated non-thermophilic Crenarchaeota. In an attempt to determine which grassland management factors select for particular crenarchaeal community structures, soil microcosm experiments were performed examining the effect of increased pH, application of inorganic fertilizer (ammonium nitrate) and sheep urine deposition on both archaeal and bacterial communities in unmanaged grassland soil. As grassland management typically increases pH, a further experiment examined the effect of a reduction in pH, to that typical of unimproved grassland soils, on archaeal and bacterial communities. The RT-PCR amplification of 16S rRNA followed by denaturing gradient gel electrophoresis analysis demonstrated a distinct and reproducible effect on bacterial communities after incubation for 28 or 30 days. In contrast, none of the treatments had a significant effect on the structure of the crenarchaeal community, indicating that these factors are not major drivers of crenarchaeal community structures in grassland soils.  相似文献   

4.
Bacterial diversity in unimproved and improved grassland soils was assessed by PCR amplification of bacterial 16S ribosomal DNA (rDNA) from directly extracted soil DNA, followed by sequencing of ~45 16S rDNA clones from each of three unimproved and three improved grassland samples (A. E. McCaig, L. A. Glover, and J. I. Prosser, Appl. Environ. Microbiol. 65:1721–1730, 1999) or by denaturing gradient gel electrophoresis (DGGE) of total amplification products. Semi-improved grassland soils were analyzed only by DGGE. No differences between communities were detected by calculation of diversity indices and similarity coefficients for clone data (possibly due to poor coverage). Differences were not observed between the diversities of individual unimproved and improved grassland DGGE profiles, although considerable spatial variation was observed among triplicate samples. Semi-improved grassland samples, however, were less diverse than the other grassland samples and had much lower within-group variation. DGGE banding profiles obtained from triplicate samples pooled prior to analysis indicated that there was less evenness in improved soils, suggesting that selection for specific bacterial groups occurred. Analysis of DGGE profiles by canonical variate analysis but not by principal-coordinate analysis, using unweighted data (considering only the presence and absence of bands) and weighted data (considering the relative intensity of each band), demonstrated that there were clear differences between grasslands, and the results were not affected by weighting of data. This study demonstrated that quantitative analysis of data obtained by community profiling methods, such as DGGE, can reveal differences between complex microbial communities.  相似文献   

5.
Bacterial diversity in unimproved and improved grassland soils was assessed by PCR amplification of bacterial 16S ribosomal DNA (rDNA) from directly extracted soil DNA, followed by sequencing of ~45 16S rDNA clones from each of three unimproved and three improved grassland samples (A. E. McCaig, L. A. Glover, and J. I. Prosser, Appl. Environ. Microbiol. 65:1721-1730, 1999) or by denaturing gradient gel electrophoresis (DGGE) of total amplification products. Semi-improved grassland soils were analyzed only by DGGE. No differences between communities were detected by calculation of diversity indices and similarity coefficients for clone data (possibly due to poor coverage). Differences were not observed between the diversities of individual unimproved and improved grassland DGGE profiles, although considerable spatial variation was observed among triplicate samples. Semi-improved grassland samples, however, were less diverse than the other grassland samples and had much lower within-group variation. DGGE banding profiles obtained from triplicate samples pooled prior to analysis indicated that there was less evenness in improved soils, suggesting that selection for specific bacterial groups occurred. Analysis of DGGE profiles by canonical variate analysis but not by principal-coordinate analysis, using unweighted data (considering only the presence and absence of bands) and weighted data (considering the relative intensity of each band), demonstrated that there were clear differences between grasslands, and the results were not affected by weighting of data. This study demonstrated that quantitative analysis of data obtained by community profiling methods, such as DGGE, can reveal differences between complex microbial communities.  相似文献   

6.
The complex structure of soil and the heterogeneity of resources available to microorganisms have implications for sampling regimens when the structure and diversity of microbial communities are analyzed. To assess the heterogeneity in community structure, archaeal communities, which typically contain sequences belonging to the nonthermophilic Crenarchaeota, were examined at two contrasting spatial scales by using PCR-denaturing gradient gel electrophoresis (DGGE) analysis followed by unweighted pair group method with arithmetic mean analysis of 16S rRNA- and ribosomal DNA-derived profiles. A macroscale analysis was carried out with soil cores taken at 2-m intervals along triplicate 8-m transects from both managed (improved) and natural (unimproved) grassland rhizosphere soils. A microscale analysis was carried out with a single soil core by assessing the effects of both sample size (10, 1, and 0.1 g) and distance between samples. The much reduced complexity of archaeal profiles compared to the complexity typical of the bacterial community facilitated visual comparison of profiles based on band presence and revealed different levels of heterogeneity between sets of samples. At the macroscale level, heterogeneity over the transect could not be related to grassland type. Substantial heterogeneity was observed across both improved and unimproved transects, except for one improved transect that exhibited substantial homogeneity, so that profiles for a single core were largely representative of the entire transect. At the smaller scale, the heterogeneity of the archaeal community structure varied with sample size within a single 8- by 8-cm core. The archaeal DGGE profiles for replicate 10-g soil samples were similar, while those for 1-g samples and 0.1-g samples showed greater heterogeneity. In addition, there was no relationship between the archaeal profiles and the distance between 1- or 0.1-g samples, although relationships between community structure and distance of separation may occur at a smaller scale. Our findings demonstrate the care required when workers attempt to obtain a representative picture of microbial community structure in the soil environment.  相似文献   

7.
A microcosm-based approach was used to study impacts of plant and chemical factors on the fungal community structure of an upland acidic grassland soil. Seven plant species typical of both unimproved and fertilized grasslands were either left unamended or treated with lime, nitrogen or lime plus nitrogen. Fungal community structure was assessed by a molecular approach, fungal automated ribosomal intergenic spacer analysis (FARISA), while fungal biomass was estimated by measuring soil ergosterol content. Addition of nitrogen (with or without lime) had the largest effect, decreasing soil pH, fungal biomass and fungal ribotype number, but there was little corresponding change in fungal community structure. Although different plant species were associated with some changes in fungal biomass, this did not result in significant differences in fungal community structure between plant species. Addition of lime alone caused no changes in fungal biomass, ribotype number or community structure. Overall, fungal community structure appeared to be more significantly affected through interactions between plant species and chemical treatments, as opposed to being directly affected by changes in individual improvement factors. These results were in contrast to those found for the bacterial communities of the same soils, which changed substantially in response to chemical (lime and nitrogen) additions.  相似文献   

8.
The effects of different concentrations of synthetic sheep urine and plant species on ammonia-oxidizing bacterial (AOB) communities in an upland grassland soil were investigated using a microcosm approach. Plant species characteristic of unimproved and improved agricultural pastures (Agrostis capillaris and Lolium perenne, respectively) were planted in soil microcosms, and different levels of synthetic sheep urine were applied, with harvests 10 and 50 days following urine application. Shifts in the community structure of the AOB were investigated using terminal restriction fragment length polymorphism of amoA amplicons. Species richness and diversity were significantly altered by synthetic sheep urine addition and time depending on plant species type. Principal coordinate analysis revealed that AOB community structure was largely dependent on interactions between sheep urine deposition, plant species, and time after urine application, while significant changes in AOB structure were also revealed by similarity percentage analysis. The results of this study suggested that high levels of sheep urine, combined with floristic changes that are characteristic of agricultural intensification, can contribute to temporal and spatial changes in the structure of key bacterial communities in upland grassland soil. Changes in AOB community structure could potentially affect important soil processes, such as nitrification, with subsequent implications for nutrient cycling in agricultural systems.  相似文献   

9.
The impact of soil management practices on ammonia oxidizer diversity and spatial heterogeneity was determined in improved (addition of N fertilizer), unimproved (no additions), and semi-improved (intermediate management) grassland pastures at the Sourhope Research Station in Scotland. Ammonia oxidizer diversity within each grassland soil was assessed by PCR amplification of microbial community DNA with both ammonia oxidizer-specific, 16S rRNA gene (rDNA) and functional, amoA, gene primers. PCR products were analysed by denaturing gradient gel electrophoresis, phylogenetic analysis of partial 16S rDNA and amoA sequences, and hybridization with ammonia oxidizer-specific oligonucleotide probes. Ammonia oxidizer populations in unimproved soils were more diverse than those in improved soils and were dominated by organisms representing Nitrosospira clusters 1 and 3 and Nitrosomonas cluster 7 (closely related phylogenetically to Nitrosomonas europaea). Improved soils were only dominated by Nitrosospira cluster 3 and Nitrosomonas cluster 7. These differences were also reflected in functional gene (amoA) diversity, with amoA gene sequences of both Nitrosomonas and Nitrosospira species detected. Replicate 0.5-g samples of unimproved soil demonstrated significant spatial heterogeneity in 16S rDNA-defined ammonia oxidizer clusters, which was reflected in heterogeneity in ammonium concentration and pH. Heterogeneity in soil characteristics and ammonia oxidizer diversity were lower in improved soils. The results therefore demonstrate significant effects of soil management on diversity and heterogeneity of ammonia oxidizer populations that are related to similar changes in relevant soil characteristics.  相似文献   

10.
Spatial Analysis of Archaeal Community Structure in Grassland Soil   总被引:8,自引:4,他引:4       下载免费PDF全文
The complex structure of soil and the heterogeneity of resources available to microorganisms have implications for sampling regimens when the structure and diversity of microbial communities are analyzed. To assess the heterogeneity in community structure, archaeal communities, which typically contain sequences belonging to the nonthermophilic Crenarchaeota, were examined at two contrasting spatial scales by using PCR-denaturing gradient gel electrophoresis (DGGE) analysis followed by unweighted pair group method with arithmetic mean analysis of 16S rRNA- and ribosomal DNA-derived profiles. A macroscale analysis was carried out with soil cores taken at 2-m intervals along triplicate 8-m transects from both managed (improved) and natural (unimproved) grassland rhizosphere soils. A microscale analysis was carried out with a single soil core by assessing the effects of both sample size (10, 1, and 0.1 g) and distance between samples. The much reduced complexity of archaeal profiles compared to the complexity typical of the bacterial community facilitated visual comparison of profiles based on band presence and revealed different levels of heterogeneity between sets of samples. At the macroscale level, heterogeneity over the transect could not be related to grassland type. Substantial heterogeneity was observed across both improved and unimproved transects, except for one improved transect that exhibited substantial homogeneity, so that profiles for a single core were largely representative of the entire transect. At the smaller scale, the heterogeneity of the archaeal community structure varied with sample size within a single 8- by 8-cm core. The archaeal DGGE profiles for replicate 10-g soil samples were similar, while those for 1-g samples and 0.1-g samples showed greater heterogeneity. In addition, there was no relationship between the archaeal profiles and the distance between 1- or 0.1-g samples, although relationships between community structure and distance of separation may occur at a smaller scale. Our findings demonstrate the care required when workers attempt to obtain a representative picture of microbial community structure in the soil environment.  相似文献   

11.
The diversity and structure of bacterial and actinobacteral diversity and communities were determined in a metallophytic grassland soil from an upland site in northern England. The community profiles were subjected to multivariate analyses using correspondence and cluster analyses. The total bacterial community diversities and structures were not significantly affected by Pb and Zn concentration in the soil. However, the community structure did show changes between winter and summer samples. Raup and Crick analysis indicated that deterministic selection lead to winter profiles exhibiting significant similarity. The actinobacterial community was also unaffected by Pb and Zn concentration. However, seasonal changes were apparent as diversity were significantly lower in winter compared to summer profiles. Moreover, the community structure showed evidence of changes of structure based on the seasonal samples with winter samples showing significant similarity to each other.  相似文献   

12.
Alterations in soil bacterial communities across a transect between a semi natural upland grassland and an agriculturally improved enclosure were assessed using culture-based methods and a nucleic-acid-based method, terminal restriction fragment length polymorphism (TRFLP). While plant diversity decreased across the transect towards the improved area, numbers of 16S rDNA terminal restriction fragments increased, indicating an increase in numbers of bacterial ribotypes. Bacterial numbers, microbial activity, and potential functional diversity also followed a similar trend, increasing with decreasing plant diversity. Alterations in bacterial community structure were coincident with changes in soil physicochemical properties which also changed across the transect. Increases in soil pH, nitrate, phosphorus, potassium, and calcium occurred toward the improved grassland, while organic matter and ammonium declined. The inverse relationship between floristic diversity and bacterial ribotype numbers suggests that soil physicochemical factors may be as influential in determining bacterial diversity in soils of upland grassland communities as floristic diversity.  相似文献   

13.
A microcosm-based approach was used to study impacts of plant and chemical factors on the bacterial community structure of an upland acidic grassland soil. Seven perennial plant species typical of both natural, unimproved (Nardus stricta, Agrostis capillaris, Festuca ovina and F. rubra) and fertilized, improved (Holcus lanatus, Lolium perenne and Trifolium repens) grasslands were either left unamended or treated with lime, nitrogen, or lime plus nitrogen in a 75-day glasshouse experiment. Lime and nitrogen amendment were shown to have a greater effect on microbial activity, biomass and bacterial ribotype number than plant species. Liming increased soil pH, microbial activity and biomass, while decreasing ribotype number. Nitrogen addition decreased soil pH, microbial activity and ribotype number. Addition of lime plus nitrogen had intermediate effects, which appeared to be driven more by lime than nitrogen. Terminal restriction fragment length polymorphism (TRFLP) analysis revealed that lime and nitrogen addition altered soil bacterial community structure, while plant species had little effect. These results were further confirmed by multivariate redundancy analysis, and suggest that soil lime and nitrogen status are more important controllers of bacterial community structure than plant rhizosphere effects.  相似文献   

14.
The effect of the addition of synthetic sheep urine (SSU) and plant species on the bacterial community composition of upland acidic grasslands was studied using a microcosm approach. Low, medium, and high concentrations of SSU were applied to pots containing plant species typical of both unimproved (Agrostis capillaris) and agriculturally improved (Lolium perenne) grasslands, and harvests were carried out 10 days and 50 days after the addition of SSU. SSU application significantly increased both soil pH (P < 0.005), with pH values ranging from pH 5.4 (zero SSU) to pH 6.4 (high SSU), and microbial activity (P < 0.005), with treatment with medium and high levels of SSU displaying significantly higher microbial activity (triphenylformazan dehydrogenase activity) than treatment of soil with zero or low concentrations of SSU. Microbial biomass, however, was not significantly altered by any of the SSU applications. Plant species alone had no effect on microbial biomass or activity. Bacterial community structure was profiled using bacterial automated ribosomal intergenic spacer analysis. Multidimensional scaling plots indicated that applications of high concentrations of SSU significantly altered the bacterial community composition in the presence of plant species but at different times: 10 days after application of high concentrations of SSU, the bacterial community composition of L. perenne-planted soils differed significantly from those of any other soils, whereas in the case of A. capillaris-planted soils, the bacterial community composition was different 50 days after treatment with high concentrations of SSU. Canonical correspondence analysis also highlighted the importance of interactions between SSU addition, plant species, and time in the bacterial community structure. This study has shown that the response of plants and bacterial communities to sheep urine deposition in grasslands is dependent on both the grass species present and the concentration of SSU applied, which may have important ecological consequences for agricultural grasslands.  相似文献   

15.
The impact of soil management practices on ammonia oxidizer diversity and spatial heterogeneity was determined in improved (addition of N fertilizer), unimproved (no additions), and semi-improved (intermediate management) grassland pastures at the Sourhope Research Station in Scotland. Ammonia oxidizer diversity within each grassland soil was assessed by PCR amplification of microbial community DNA with both ammonia oxidizer-specific, 16S rRNA gene (rDNA) and functional, amoA, gene primers. PCR products were analysed by denaturing gradient gel electrophoresis, phylogenetic analysis of partial 16S rDNA and amoA sequences, and hybridization with ammonia oxidizer-specific oligonucleotide probes. Ammonia oxidizer populations in unimproved soils were more diverse than those in improved soils and were dominated by organisms representing Nitrosospira clusters 1 and 3 and Nitrosomonas cluster 7 (closely related phylogenetically to Nitrosomonas europaea). Improved soils were only dominated by Nitrosospira cluster 3 and Nitrosomonas cluster 7. These differences were also reflected in functional gene (amoA) diversity, with amoA gene sequences of both Nitrosomonas and Nitrosospira species detected. Replicate 0.5-g samples of unimproved soil demonstrated significant spatial heterogeneity in 16S rDNA-defined ammonia oxidizer clusters, which was reflected in heterogeneity in ammonium concentration and pH. Heterogeneity in soil characteristics and ammonia oxidizer diversity were lower in improved soils. The results therefore demonstrate significant effects of soil management on diversity and heterogeneity of ammonia oxidizer populations that are related to similar changes in relevant soil characteristics.  相似文献   

16.
为了分析内蒙古草原不同植物物种对土壤微生物群落的影响, 采用实时荧光定量PCR (real-time PCR)以及末端限制性片段长度多态性分析(terminal restriction fragment length polymorphism, T-RFLP)等分子生物学技术, 测定了退化-恢复样地上几种典型植物的根际土壤和非根际土壤中细菌和真菌的数量及群落结构。结果表明, 不同植物物种对根际和非根际细菌及根际真菌数量均有显著影响。根际土壤中的细菌和真菌数量普遍高于非根际土壤, 尤其以真菌更为明显。对T-RFLP数据进行多响应置换过程(multi-response permutation procedures, MRPP)分析和主成分分析(principal component analysis, PCA), 结果表明, 大多数物种的根际细菌及真菌的群落结构与非根际有明显差异, 并且所有物种的真菌群落可以按根际和非根际明显分为两大类群。此外, 细菌和真菌群落结构在一定程度上存在按物种聚类的现象, 以细菌较为明显。这些结果揭示了不同植物对土壤微生物群落的影响特征, 对理解内蒙古草原地区退化及恢复过程中植被演替引起的土壤性质和功能的变化有一定的帮助。  相似文献   

17.
Williams  Berwyn L.  Grayston  Susan J.  Reid  Eileen J. 《Plant and Soil》2000,225(1-2):175-185
The impact of urine on the microbial biomass, activity and community structure was compared in the soil beneath two pastures in the Scottish uplands; Fasset, a natural Agrostis capillaris–Festuca ovina–Galium saxatile grassland and Strathfinella, a semi-natural grassland, improved with fertiliser addition. Community level physiological profiles (CLPP) were used to characterise the microbial communities. The utilisation of sugars, oligosaccharides, alcohols, carboxylic acids, long chain aliphatic acids, acidic, basic and neutral amino acids, amide N, phenolic acids and long chain aliphatic acids was used to compare the soils and the impact of synthetic urine addition. In the untreated soils, the utilisation of all the substrates decreased from the first week in May through to October. Averaged over all times and urine treatment, the potential utilisation of all substrates except for phenolic acids, long chain aliphatic acids and carboxylic acids was greater in the improved and more intensively grazed Strathfinella site. When averaged over all sample times, urine increased the utilisation of sugars, oligosaccharides, basic amino acids and amide N and the increases were greater in the unimproved, less intensively grazed, Fasset soil than that at Strathfinella. The effect of urine tended to be greatest during the period between 2 and 5 weeks after urine addition when utilisation of alcohols, acidic and neutral amino acids was also increased. Microbial biomass C in the control soils was 155.9 and 112.7 g C m−2 at Fasset and Strathfinella, respectively. Values did not change significantly with time and were unchanged by the addition of urine. However, urine addition significantly increased basal respiration rates at Fasset and decreased them at Strathfinella. Urine also increased bacterial numbers in both soils, but had no consistent effect on fungi or yeasts. The significance of these findings for studies of soil microbial community structure and activity in grazed upland grasslands is discussed. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

18.
Semi-natural grassland soils are frequently fertilised for agricultural improvement. This practice often comes at a loss of the indigenous flora while fast-growing nitrogen-responsive species, such as Lolium perenne, take over. Since soil microbial communities depend on plant root exudates for carbon and nitrogen sources, this shift in vegetation is thought to influence soil microbial community structure. In this study, we investigated the influence of different plant species, fertilisation and L. perenne ingression on microbial communities in soils from three semi-natural Irish grasslands. Bacterial and fungal community compositions were determined by automated ribosomal intergenic spacer analysis, and community changes were linked to environmental factors by multivariate statistical analysis. Soil type had a strong effect on bacterial and fungal communities, mainly correlated to soil pH, as well as soil carbon and nitrogen status. Within each soil type, plant species composition was the main influencing factor followed by nitrogen fertilisation and finally Lolium ingression in the acidic upland and mesotrophic grassland. In the alkaline grassland, however, Lolium ingression had a stronger effect than fertilisation. Our results suggest that a change in plant species diversity strongly influences the microbial community structure, which may subsequently lead to significant changes in ecosystem functioning.  相似文献   

19.
The effect of the addition of synthetic sheep urine (SSU) and plant species on the bacterial community composition of upland acidic grasslands was studied using a microcosm approach. Low, medium, and high concentrations of SSU were applied to pots containing plant species typical of both unimproved (Agrostis capillaris) and agriculturally improved (Lolium perenne) grasslands, and harvests were carried out 10 days and 50 days after the addition of SSU. SSU application significantly increased both soil pH (P < 0.005), with pH values ranging from pH 5.4 (zero SSU) to pH 6.4 (high SSU), and microbial activity (P < 0.005), with treatment with medium and high levels of SSU displaying significantly higher microbial activity (triphenylformazan dehydrogenase activity) than treatment of soil with zero or low concentrations of SSU. Microbial biomass, however, was not significantly altered by any of the SSU applications. Plant species alone had no effect on microbial biomass or activity. Bacterial community structure was profiled using bacterial automated ribosomal intergenic spacer analysis. Multidimensional scaling plots indicated that applications of high concentrations of SSU significantly altered the bacterial community composition in the presence of plant species but at different times: 10 days after application of high concentrations of SSU, the bacterial community composition of L. perenne-planted soils differed significantly from those of any other soils, whereas in the case of A. capillaris-planted soils, the bacterial community composition was different 50 days after treatment with high concentrations of SSU. Canonical correspondence analysis also highlighted the importance of interactions between SSU addition, plant species, and time in the bacterial community structure. This study has shown that the response of plants and bacterial communities to sheep urine deposition in grasslands is dependent on both the grass species present and the concentration of SSU applied, which may have important ecological consequences for agricultural grasslands.  相似文献   

20.
Zhou X Q  Wang Y F  Hao Y B 《农业工程》2012,32(4):180-183
In the Three Gorges Reservoir Region of China, periodic flooding has led to plant destruction, causing much ecological damage. Re-vegetation with submergence-tolerant species is a possible solution to this problem. At present, many submergence-tolerant species have been selected for such restoration efforts, but it is unclear why these species can survive complete submergence while other species cannot. In this study, we investigated the response of two species – submergence-tolerant Salix variegata Franch. and submergence-intolerant Cinnamomum camphora (L.) Presl. – to flooding. Plants were submerged to 2 m for 3, 9, 15, and 30 days, after which malondialdehyde (MDA) (a membrane injury product) and superoxide anion content, as well as superoxide dismutase (SOD) and peroxidase (POD) activity, was measured. We found that (1) MDA levels increased in submerged C. camphora seedlings but remained constant in S. variegata; (2) superoxide anion content and SOD activity in the two species responded similarly to submergence; and (3) POD activity in S. variegata seedlings was much higher than in C. camphora. These results demonstrate that plant tolerance to submergence is related to membrane stability, and that POD activity is an important factor in this tolerance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号