首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary Knowledge about the parental origin of new mutations and the occurrence of germline mosaicism is important for estimating recurrence risks in Duchenne (DMD) and Becker muscular dystrophy (BMD). However, there are problems in resolving these issues partly because not all mutations can as yet be directly detected, and additionally because genetic ratios are very sensitive to ascertainment bias. In the present study, therefore, analysis was restricted to currently detectable mutations (deletions and duplications) in particular types of families which tend to be rare. In order to obtain sufficient data we pooled results from 25 European centers. In mothers of affected patients who were the first in their family with a dystrophin gene deletion or duplication, the ratio between the paternal and the maternal origin of this new mutation was 32:49 (binomial test P = 0.075) for DMD. In five BMD families the ratio between paternal and maternal origin of new mutations was 32. Recurrence risk because of maternal germline mosaicism was studied in sisters or subsequent sibs of isolated cases with an apparently new detectable mutation. In 12 out of 59 (0.20; 95% CI 0.10–0.31) transmissions of the risk haplotype the DMD mutation was transmitted as well. No recurrences were found in nine BMD families.  相似文献   

2.
Summary We have identified a Duchenne muscular dystrophy (DMD) pedigree with an unexpected pattern of inheritance. Using marker restriction fragment length polymorphisms detected by probes that lie within and outside the DMD gene, we could demonstrate that the maternal grandfather has transmitted two distinct types of X chromosomes to his offspring. This original observation may be explained by postulating that the DMD mutation must have occurred during mitosis in early germline proliferation, leading to a germline mosaicism within this male ancestor.  相似文献   

3.
Duchenne muscular dystrophy (DMD) and other types of muscular dystrophies are caused by the loss or alteration of different members of the dystrophin protein complex. Understanding the molecular mechanisms by which dystrophin-associated protein abnormalities contribute to the onset of muscular dystrophy may identify new therapeutic approaches to these human disorders. By examining gene expression alterations in mouse skeletal muscle lacking α-dystrobrevin (Dtna−/−), we identified a highly significant reduction of the cholesterol trafficking protein, Niemann-Pick C1 (NPC1). Mutations in NPC1 cause a progressive neurodegenerative, lysosomal storage disorder. Transgenic expression of NPC1 in skeletal muscle ameliorates muscular dystrophy in the Dtna−/− mouse (which has a relatively mild dystrophic phenotype) and in the mdx mouse, a model for DMD. These results identify a new compensatory gene for muscular dystrophy and reveal a potential new therapeutic target for DMD.  相似文献   

4.
Population data on benign and severe forms of X-linked muscular dystrophy   总被引:3,自引:0,他引:3  
Summary Epidemiological data on Becker muscular dystrophy (BMD) and Duchenne muscular dystrophy (DMD) from a large sample of the Italian population are reported. For BMD the incidence rate was found to be 5.5x10-5 liveborn males (lbm) and the prevalence rate, 13.1x10-6; the mutation rate was estimated to be about 6.0x10-6. For DMD the incidence and prevalence rates were found to be respectively 26x10-5 lbm and 31.6x10-6. The DMD mutation rate obtained by the Haldane formula was 86.6x10-6 and by the semi-direct method, 65.6x10-6. The results are discussed in the light of possible allelism of BMD and DMD.  相似文献   

5.
Plasma nitric oxide (NO) levels in Duchenne muscular dystrophy (DMD) patients were significantly lower than those observed in both healthy controls and in patients with other neuromuscular disorders. The correlation between NO level and ejection fraction was significant (r=–0.384, p=0.0391) in the DMD group. Disruption of NO systems may contribute to the development of muscular dystrophy and have implications for therapeutic strategies.  相似文献   

6.
Summary The proportion of sporadic cases of Duchenne muscular dystrophy has been estimated by classical segregation analysis in a pooled sample of 1885 sibships from 7 different countries. A significant departure from the theoretical expectations based on mutation-selection equilibrium is observed (segregation frequency = 0.439 ± 0.017; frequency of sporadic cases = 0.229 ± 0.026, at the maximum likelihood). The occurrence of germinal mosaicism in some of the mothers of Duchenne cases may account for this peculiar finding, although a possible role of inequality of mutation rates in the two sexes cannot be ruled out.  相似文献   

7.
Dystrophin is the 427-kDa protein product of the Duchenne muscular dystrophy gene (DMD). The function of this protein remains to be elucidated. We have recently reported that dystrophin is phosphorylated,in vivo, in rat skeletal muscle primary cell culture (RE Milner, JL Busaan, CFB Holmes, JH Wang, M Michalak (1993) J Biol Chem 268: 21901–21905). This observation suggests that protein phosphorylation may have some role in modulating the function of dystrophin or its interaction with membrane associate dystroglycan. We report here that the carboxyl-terminal of dystrophin is phosphorylated by the MAP kinase p44mpk (mitogen-activated protein kinase), from the sea star oocytes and by soluble extracts of rabbit skeletal muscle. Importantly we showed that native dystrophin in isolated sarcolemmal vesicles is phosphorylated by sea star p44mpk. Partial purification and immunological analysis show that a mammalian kinase related to p44mpk is present in the skeletal muscle extracts and that it contributes to phosphorylation of the carboxyl-terminal of dystrophin. This kinase phosphorylates dystrophin on a threonine residue(s). We conclude that phosphorylation of dystrophin may play an important role in the function of this cytoskeletal protein.Abbreviations MAP kinase mitogen-activated protein kinase - DMD Duchenne muscular dystrophy - GST Glutathione S-transferase - PAGE polyacrylamide gel electrophoresis - EDTA ethylenediaminetetraacetic acid - EGTA ethylene glycol bis(-aminoethyl ether)-N,N,N,N-tetraacetic acid - MOPS 4-morpholinepropanesulfonic acid  相似文献   

8.
Duchenne muscular dystrophy (DMD) is the most frequent muscular disorder in infancy. The inheritance is X-linked recessive with mutations in the dystrophin gene (about 65% deletions, about 7% duplications, about 26% point mutations, and about 2% unknown mutations). The genetic model is complex. The sex ratio of the mutations is unequal. Point mutations and duplications arise in spermatogenesis, whereas deletions arise in oogenesis. About 33% of all patients are new mutations; however, most new mutations are germline mosaic. Becker muscular dystrophy is allelic to DMD.  相似文献   

9.
10.
The X-chromosome activity states of 11 manifesting carriers of dystrophinopathies, all with normal karyotypes, were estimated by restriction fragment length polymorphism (RFLP)-methylation analysis with the probes M27 (DXS255), p2-19(DXS605) and pSPT/PGK (PGK1) to test the role of skewed X-inactivation ratios as the cause of their affected phenotypes. In eight cases preferential inactivation of the putative X chromosome carrying the normal dystrophin allele in 90% of their peripheral lymphocytes was observed, two cases showed non-appparent deviant ratios (6040 and 7030) from the theoretically expected values around the mean of 50% and in one case the three markers employed yielded no information. The analysis of the X-inactivation ratio in six mother-daughter pairs, all non-manifesting Duchenne muscular dystrophy (DMD) carriers, and in the close female relatives of the patients showed: (a) neither of the two X chromosomes was preferentially inactivated with respect to their parental origin; (b) a high concordance among the activation ratios of mothers and daughters, a result difficult to explain just in terms of random X-chromosome inactivation.  相似文献   

11.

Background

Duchenne muscular dystrophy (DMD) is the most common fatal form of muscular dystrophy characterized by striated muscle wasting and dysfunction. Patients with DMD have a very high incidence of heart failure, which is increasingly the cause of death in DMD patients. We hypothesize that in the in vivo system, the dystrophic cardiac muscle displays bioenergetic deficits prior to any functional or structural deficits. To address this we developed a complete non invasive 31P magnetic resonance spectroscopy (31P MRS) approach to measure myocardial bioenergetics in the heart in vivo.

Methods and Results

Six control and nine mdx mice at 5 months of age were used for the study. A standard 3D -Image Selected In vivo Spectroscopy (3D-ISIS) sequence was used to provide complete gradient controlled three-dimensional localization for heart 31P MRS. These studies demonstrated dystrophic hearts have a significant reduction in PCr/ATP ratio compare to normal (1.59±0.13 vs 2.37±0.25, p<0.05).

Conclusion

Our present study provides the direct evidence of significant cardiac bioenergetic deficits in the in vivo dystrophic mouse. These data suggest that energetic defects precede the development of significant hemodynamic or structural changes. The methods provide a clinically relevant approach to use myocardial energetics as an early marker of disease in the dystrophic heart. The new method in detecting the in vivo bioenergetics abnormality as an early non-invasive marker of emerging dystrophic cardiomyopathy is critical in management of patients with DMD, and optimized therapies aimed at slowing or reversing the cardiomyopathy.  相似文献   

12.
The family of a male with Duchenne muscular dystrophy (DMD) and a deletion within the dystrophin gene has been studied. Polymerase chain reaction analysis of ectopic mRNA from peripheral blood T+B lymphocytes and the use of (CA) n repeat polymorphisms in and around the deleted region showed the proband's mother to be both a germline mosaic and a somatic mosaic for the deletion seen in her son. The mutation therefore occurred as a mitotic event early in embryogenesis.  相似文献   

13.
Nonsense mutations in the dystrophin gene are the cause of Duchenne muscular dystrophy (DMD) in 10–15% of patients. In such an event, one approach to gene therapy for DMD is the use of suppressor tRNAs to overcome the premature termination of translation of the mutant mRNA. We have carried out cotransfection of the HeLa cell culture with constructs containing a suptRNA gene (pcDNA3suptRNA) and a marker LacZ gene (pNTLacZhis) using their polymer VSST-525 complexes. It was found that the number of cells producing -galactosidase depends inversely on the dose of the suptRNA gene. A single in vivo injection of the construct providing for expression of the suptRNAochre gene into mdx mouse muscle resulted in the production of dystrophin in 2.5% of fibers. This suggests that suppressor tRNAs are applicable in gene therapy for hereditary diseases caused by nonsense mutations.  相似文献   

14.
Altered neuronal nitric oxide synthase function in Duchenne muscular dystrophy leads to impaired mitochondrial function which is thought to be one cause of muscle damage in this disease. The study tested if increased intramuscular nitric oxide concentration can improve mitochondrial energy metabolism in Duchenne muscular dystrophy using a novel therapeutic approach through the combination of L-arginine with metformin. Five ambulatory, genetically confirmed Duchenne muscular dystrophy patients aged between 7–10 years were treated with L-arginine (3 x 2.5 g/d) and metformin (2 x 250 mg/d) for 16 weeks. Treatment effects were assessed using mitochondrial protein expression analysis in muscular biopsies, indirect calorimetry, Dual-Energy X-Ray Absorptiometry, quantitative thigh muscle MRI, and clinical scores of muscle performance. There were no serious side effects and no patient dropped out. Muscle biopsy results showed pre-treatment a significantly reduced mitochondrial protein expression and increased oxidative stress in Duchenne muscular dystrophy patients compared to controls. Post-treatment a significant elevation of proteins of the mitochondrial electron transport chain was observed as well as a reduction in oxidative stress. Treatment also decreased resting energy expenditure rates and energy substrate use shifted from carbohydrates to fatty acids. These changes were associated with improved clinical scores. In conclusion pharmacological stimulation of the nitric oxide pathway leads to improved mitochondria function and clinically a slowing of disease progression in Duchenne muscular dystrophy. This study shall lead to further development of this novel therapeutic approach into a real alternative for Duchenne muscular dystrophy patients.

Trial Registration

ClinicalTrials.gov NCT02516085  相似文献   

15.
The biochemical development of whole brains from male and female miniature swine aged 2 weeks to 1 years was studied. The data were similar for both sexes. The brain-body weight ratio declined rapidly for the first 10–12 weeks after birth, then decreased at a slower rate up to 1 year. Total brain lipid weight and lipid phosphorus changed rapidly during the first 8–10 weeks of life, but thereafter changed very little. The glycolipid content rapidly increased during the first 12–14 weeks of life and then increased at a slower rate. Total brain cholesterol increased continuously over the time period studied, although the rate of increase appeared to decline with age. Monogalactosyl diacylglycerol concentration remained constant up to about 8 weeks of age, but then decreased continuously up to 1 year. The alkali-labile fatty acid composition of pig brain remained relatively constant except for increases in 181 and 226(n – 3) and a decrease in 160. The increase in percentage of 181 was most rapid during the first 10 weeks of age. These data suggest that the growth spurt or active myelination phase of miniature pig brain development ends at 8–10 weeks post partum.  相似文献   

16.
DNA samples from 21 unrelated Japanese patients with Duchenne muscular dystrophy (DMD) with nondeletion-type abnormality in the dystrophin gene and three samples from possible deletion carriers were analyzed using pulsed-field gel electrophoresis (PFGE). Among the 21 patients, 7 were found to carry partial duplications of the dystrophin gene spanning 50–400 kb. Of these 7 patients, 4 carried duplications corresponding to the major hot-spot regions for deletions (7.5–8.5 kb from the 5 end of cDNA), whereas two cases contained duplications in a region about 10 kb from the 5 end of cDNA, where causative mutations are reported to be rare. Only 1 case was found to contain a duplication of a region about 1 kb from the 5 end of cDNA, which is the reported duplication prone region. A combination of Southern blot analyses of conventional agarose gel electrophoresis and PFGE was confirmed to be useful, not only for detecting duplications and deletions, per se, but also for identifying carriers in the affected family.  相似文献   

17.

CONTEXT:

Multiplex ligation probe amplification (MLPA) is a new technique to identify deletions and duplications and can evaluate all 79 exons in dystrophin gene in patients with Duchenne muscular dystrophy (DMD). Being semi-quantitative, MLPA is also effective in detecting duplications and carrier testing of females; both of which cannot be done using multiplex PCR. It has found applications in diagnostics of many genetic disorders.

AIM:

To study the utility of MLPA in diagnosis and carrier detection for DMD.

MATERIALS AND METHODS:

Mutation analysis and carrier detection was done by multiplex PCR and MLPA and the results were compared.

RESULTS AND CONCLUSIONS:

We present data showing utility of MLPA in identifying mutations in cases with DMD/BMD. In the present study using MLPA, we identified mutations in additional 5.6% cases of DMD in whom multiplex PCR was not able to detect intragenic deletions. In addition, MLPA also correctly confirmed carrier status of two obligate carriers and revealed carrier status in 6 of 8 mothers of sporadic cases.  相似文献   

18.
Summary Dystrophin is the product of the Duchenne muscular dystrophy (DMD) gene. Dystrophin-related protein (utrophin), an autosomal homologue of dystrophin, was studied in skeletal muscle from normal fetuses aged 9–26 weeks and one stillbirth of 41 weeks' gestation, and compared with low- and high-risk DMD fetuses aged 9–20 weeks. Utrophin was present at the sarcolemma from before 9 weeks' gestation, although there was variability in intensity both within and between myotubes. Sarcolemmal immunolabelling became more uniform, and levels of utrophin increased to a maximum at approximately 17–18 weeks. Levels then declined, until by 26 weeks sarcolemmal labelling was negligible and levels were similar to adult control muscle. By 41 weeks there was virtually no sarcolemmal labelling, although immunolabelling of capillaries was bright. Similar results were obtained with normal and DMD fetal muscle. Utrophin is therefore expressed in the presence and absence of dystrophin and down-regulated before birth in normal fetal muscle fibres. Samples were not available to determine whether or when, utrophin levels decline in DMD fetal muscle. On Western blots, utrophin was shown to have a smaller relative molecular mass than adult dystrophin, but similar to the fetal isoform. Blood vessels were brightly immunolabelled at all ages, although utrophin immunolabelling of peripheral nerves increased with gestational age.  相似文献   

19.
An anaerobic fermentation process was developed for production of natural propionic, acetic and succinic acids froml-lactic acid usingSelenomonas ruminantium. Thel-lactic acid was quickly converted to a racemic mixture and there was no enantiomeric preference for further metabolism. The lactic acid was metabolized to propionic, acetic and succinic acids typically in a molar ratio of about 531. However, the ratio of propionate: succinate started high (as much as 221), before declining to as low as 51 after the first 48 h. Nutrients in corn steep liquor and yeast extract were necessary for optimal production of propionic acid. The corn steep liquor and yeast extract were heat stable at neutral pH, but some nutritional qualities were lost when heated at pH 2.4. In fed-batch fermentation on lactic acid 2.0% propionic acid was produced in 48 h and 2.3% in 68 h. A continuous culture operated at a dilution rate of 0.055 h–1 and a lactic acid feed concentration of 30 gL–1 had a propionic acid productivity of 0.59 gL–1h–1. The steady state results were: lactic acid 0.6%, propionic acid 1.1%, acetic acid 0.50%, and succinic acid 0.33%.  相似文献   

20.
Duchenne muscular dystrophy (DMD) is a progressive muscle-wasting disorder. It is caused by loss-of-function mutations in the dystrophin gene. Currently, there is no cure. A highly promising therapeutic strategy is to replace or repair the defective dystrophin gene by gene therapy. Numerous animal models of DMD have been developed over the last 30 years, ranging from invertebrate to large mammalian models. mdx mice are the most commonly employed models in DMD research and have been used to lay the groundwork for DMD gene therapy. After ~30 years of development, the field has reached the stage at which the results in mdx mice can be validated and scaled-up in symptomatic large animals. The canine DMD (cDMD) model will be excellent for these studies. In this article, we review the animal models for DMD, the pros and cons of each model system, and the history and progress of preclinical DMD gene therapy research in the animal models. We also discuss the current and emerging challenges in this field and ways to address these challenges using animal models, in particular cDMD dogs.KEY WORDS: Duchenne muscular dystrophy, Dystrophin, Animal model, Canine DMD, Gene therapy  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号