首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hepatoma tissue culture (HTC) cell nuclei were digested with either DNase I or micrococcal nuclease and the nucleohistone digestion products fractionated by gel electrophoresis or exclusion chromatography. Under appropriate conditions, gel electrophoresis demonstrates that for both nucleases, only cleavages within the nucleosome spacer regions and not within the nucleosome core lead to freely migrating nucleohistone particles. These particles consist of nucleosome cores, nucleosomes and nucleosome oligomers. Following DNase I digestion and fractionation by exclusion chromatography, analysis of the histones indicates a direct relationship between increased spacer region susceptibility to nuclease and increased nucleosomal histone acetylation. Evidently digestion sites outside the regions of DNA protected by core histones can reflect the degree of acetylation of core histones. Such a relationship is not found when micrococcal nuclease is used to digest the samples.  相似文献   

2.
We digested polyoma virus nucleoprotein complex, isolated from disrupted virions, with micrococcal nuclease and DNase I. The results were compared with digestions of chromatin from mouse nuclei. The nucleosome "core" structures were similar, but the spacing of the nucleosomes in the isolated polymoma nucleoprotein complexes was irregular, whereas in mouse chromatin it was regular. The average nucleosome repeat length in each case was 190 to 200 base pairs. This figure suggests that, unless there are substantial stretches of free DNA, the polyoma nucleoprotein complex contains about 26 nucleosomes. The commonly used method of preparing the nucleoprotein complex by disruption of virions at pH 10.2 may lead to significant damage to the structure. Such damage may be more clearly revealed by the susceptibility of the DNA to nuclease digestion than by the usual criteria of sedimentation velocity and buoyant density.  相似文献   

3.
4.
Chromatin assembly in isolated mammalian nuclei.   总被引:4,自引:1,他引:3       下载免费PDF全文
Cellular DNA replication was stimulated in confluent monolayers of CV-1 monkey kidney cells following infection with SV40. Nuclei were isolated from CV-1 cells labeled with [3H]thymidine and then incubated in the presence of [alpha-32P]deoxyribonucleoside triphosphates under conditions that support DNA replication. To determine whether or not the cellular DNA synthesized in vitro was assembled into nucleosomes the DNA was digested in situ with either micrococcal nuclease or pancreatic DNase I, and the products were examined by electrophoretic and sedimentation analysis. The distribution of DNA fragment lengths on agarose gels following micrococcal nuclease digestion was more heterogeneous for newly replicated than for the bulk of the DNA. Nonetheless, the state of cellular DNA synthesized in vitro (32P-labeled) was found to be identical with that of the DNA in the bulk of the chromatin (3H-labeled) by the following criteria: (i) The extent of protection against digestion by micrococcal nuclease of DNase I. (ii) The size of the nucleosomes (180 base pairs) and core particles (145 base pairs). (iii) The number and sizes of DNA fragments produced by micrococcal nuclease in a limit digest. (iv) The sedimentation behavior on neutral sucrose gradients of nucleoprotein particles released by micrococcal nuclease. (v) The number and sizes of DNA fragments produced by DNase I digestion. These results demonstrate that cellular DNA replicated in isolated nuclei is organized into typical nucleosomes. Consequently, subcellular systems can be used to study the relationship between DNA replication and the assembly of chromatin under physiological conditions.  相似文献   

5.
6.
7.
8.
Assembly of an active chromatin structure during replication.   总被引:19,自引:5,他引:14       下载免费PDF全文
MSB cells were pulse labeled with 3H-thymidine and the isolated nuclei digested with either staphylococcal nuclease (to about 40% acid solubility) or DNase I (to 15% acid solubility). The purified, nuclease resistant single-copy DNA was then hybridized to nuclear RNA (nRNA). The results of these experiments show that actively transcribed genes are assembled into nucleosome-like structures within 5-10 nucleosomes of the replication fork and that they also acquire a conformation characteristic of actively transcribed nucleosomes (ie, a DNase I sensitive structure) within 20 nucleosomes of the fork. Assuming DNA sequence specific interactions are required for establishing a DNase I sensitive conformation on active genes during each round of replication, our results indicate that a specific recognition event can occur very rapidly and very specifically in eukaryotic cells. The results are discussed in terms of the possible mechanisms responsible for propagating active, chromosomal conformations from mother cells to daughter cells.  相似文献   

9.
DNase I, trypsin, and micrococcal nuclease are used to further probe the structure of nascent deoxyribonucleoprotein (DNP) fractions which appear after in vivo 20-s pulse labeling of sea urchin embryos with [3H]thymidine. We present evidence that the large nascent DNP which protects the approximately 300-base pair large nascent DNA consists of at least one nucleosome core. This is based on fractionation in denaturing polyacrylamide gels of DNA extracted from large nascent DNP fractions of a micrococcal nuclease + DNase I digest of nuclei. The data also suggest the existence of a DNase I-hypersensitive site(s) within the large nascent DNP; this is consistent with the hypothesis that the latter consists of closely packed dinucleosome cores. Histone H1 and non-histone proteins do not account for the previously reported unusual hyperresistance of the large nascent DNA against micrococcal nuclease. The protection offered this approximately 300-base pair nascent DNA was not eliminated by an 0.2-microgram/ml trypsin pretreatment which removes the above proteins from the chromatin. However, 5-10 micrograms/ml of trypsin, which remove a portion of the NH2 termini of the four core histones of nucleosomes, eliminate the hyperresistance of the large nascent DNA to subsequent micrococcal nuclease digestion, while nascent and bulk monomer DNAs remain unaffected. This indicates histone-histone and/or histone-DNA interactions within the large nascent DNP which differ from those of nascent and bulk mononucleosome cores.  相似文献   

10.
11.
12.
We have digested nuclei, isolated from [3H] thymidine pulse labelled cells, with nuclease S1. Short pulse labelled DNA fragments were excised by the enzyme and released upon subsequent treatment with 2 M NaCl. Only a small fraction of the label was released from the S1 digested nuclei by 0.5 M NaCl indicating that the cleavage sites were located in the DNA of the nucleosome cores. The results are not compatible with the hypothesis that the initiation of the Okazaki fragments occurs at the internucleosomal linkers.  相似文献   

13.
Nuclease sensitivity of active chromatin.   总被引:5,自引:2,他引:3       下载免费PDF全文
The active regions of chicken erythrocyte nuclei were labeled using the standard DNase I directed nick translation reaction. These nuclei were then used to study the characteristics and, in particular, the nuclease sensitivity of active genes. Although DNase I specifically attacks active genes, micrococcal nuclease solubilizes these regions to about the same degree as the total DNA. On the other hand micrococcal nuclease does selectively cut the internucleosomal regions of active genes resulting in the appearance of mononucleosomal fraction which is enriched in active gene DNA. A small percentage of the active chromatin is also released from the nucleus by low speed centrifugation following micrococcal nuclease treatment. The factors which make active genes sensitive to DNase I were shown to reside on individual nucleosomes from these regions. This was established by showing that isolated active mononucleosomes were preferentially sensitive to DNase I digestion. Although the high mobility group proteins are essential for the maintenance of DNase I sensitivity in active regions, these proteins are not necessary for the formation of the conformation which makes these genes preferentially accessible to micrococcal nuclease. The techniques employed in this paper enable one to study the chromatin structure of the entire population of actively expressed genes. Previous studies have elucidated the structure of a few special highly prevalent genes such as ovalbumin and hemoglobin. The results of this paper show that this special conformation is a general feature of all active genes irregardless of the extent of expression.  相似文献   

14.
Methylation of nucleosomal and nuclease sensitive DNA.   总被引:5,自引:3,他引:2       下载免费PDF全文
The proportion of cytosines methylated in the DNA of nucleosome oligomers and of core particles appears indistinguishable from that of total nuclear DNA from CHO cells. However the DNA in nucleoprotein which is initially released from nuclei by treatment with very low levels of micrococcal nuclease and the first 10% of material rendered acid soluble by treatment of nuclei with DNase I are enriched 2 fold in their content of 5 methylcytosine. (Cessation of hydrolysis by nuclease occurs concomitantly with precipitation of nucleosomal core particles).  相似文献   

15.
The chromatin of the lepidopteran Ephestia kuehniella was digested by micrococcal nuclease, DNase I and S1-nuclease combined with DNase I pretreatment. The resulting DNA fragments were analyzed by gel electrophoresis and compared with the DNA fragments of rat liver nuclei obtained by the same process. Extensive homology was revealed between insect and mammalian chromatin structure. The combined DNase I- S1-nuclease digestion yields double-stranded DNA fragments of lengths from 30 to 110 base-pairs. These DNA fragments are not obtained from nuclei predigested extensively with micrococcal nuclease. The results are discussed with respect to the internal structure of the chromatin subunit.  相似文献   

16.
We have examined the kinetics of nuclease digestion of chromatin from committed and uncommitted cells in experiments where the nuclei are mixed and co-digested. Cultures of the sea urchin, Arbacia punctulata, were grown to the 16-cell stage in either [3H]thymidine or [14C]thymidine and the macromere, mesomere, and micromere cell types separated. After isolation, sets of nuclei with two different blastomere types (each having different radionucleotide tagging) were mixed and co-digested with micrococcal nuclease or DNase. I. The extent of digestion was monitored by solubility in 5% perchloric acid (PCA). We find no significant differences in initial digestion rates or limit digests among the different cell types when co-digested with either nuclease. Differences in nuclease sensitivity observed when nuclei are digested separately are abolished when nuclei are probed in a mixing experiment. The results support the hypothesis that phenotypic differences in digestibility among different cell types in vitro reflect differences in chromatin-condensing factors which can diffuse between nuclei.  相似文献   

17.
The interaction of partially purified calf uterine estradiol-charged estrogen receptor ([3H]ER) with rat nuclei was studied in vitro. We previously observed a significantly greater number of [3H]ER binding sites (at saturation) in nuclei of R3230AC mammary tumors from intact vs ovariectomized (ovex) rats with no difference in the affinity of [3H]ER binding for these nuclei. We now report on the nuclease sensitivity of [3H]ER binding sites in nuclei from these tumors and from normal rat tissues. Digestion of tumor nuclei with deoxyribonuclease I (DNase I) prior to incubation with [3H]ER in vitro resulted in a progressive loss of [3H]ER binding capacity, which was not accompanied by alterations in the affinity of [3H]ER for the nuclei (Kd = 1-3 nM). A significantly lower concentration (P less than 0.005) of DNase I eliminated 50% of the [3H]ER binding sites in nuclei of tumors from intact hosts (8 unit.min/ml) compared to tumors from ovex hosts (22 unit.min/ml). These results indicate that DNA regions capable of binding ER are more susceptible to DNase I digestion in tumors from intact rats than those from ovex hosts, suggesting that the endogenous hormonal milieu is responsible, at least in part, for maintenance of nuclease-sensitive DNA conformations in this hormone-responsive mammary tumor. The amount of DNase I required to eliminate 50% of [3H]ER binding to nuclei from lactating mammary gland, liver, and kidney ranged from 14 to 56 unit.min/ml. Therefore, accessibility of [3H]ER binding sites to nuclease digestion in normal rat tissue is generally less than that of R3230AC tumors.  相似文献   

18.
Structural organization of the meiotic prophase chromatin in the rat testis   总被引:3,自引:0,他引:3  
Pachytene nuclei were isolated from rat testes by the unit gravity sedimentation technique and contained histone variants H1a, H1t, TH2A, TH2B, and X2 in addition to the somatic histones H1bde, H1c, H2A, H2B, H3, and H4. The basic organization of the pachytene chromatin namely the nucleosome repeat length and the accessibility to micrococcal nuclease, was similar to that of rat liver interphase chromatin. However, when digested by DNase I, the susceptibility of pachytene chromatin was 25% more than liver chromatin under identical conditions. Nucleosome core particles were isolated from both liver and pachytene nuclei and were characterized for their DNA length and integrity of the nucleoprotein on low ionic strength nucleoprotein gels. While liver core particles contained all the somatic histones H2A, H2B, H3, and H4, in the pachytene core particles, histone variants TH2A, X2, and TH2B had replaced nearly 60% of the respective somatic histones. A comparison of the circular dichroism spectra obtained for pachytene and liver core particles indicated that the pachytene core particles were less compact than the liver core particles. Studies on the thermal denaturation properties of the two types of core particles revealed that the fraction of the pachytene core DNA melting at the premelting temperature region of 55-60 degrees C was significantly higher than that of the liver core DNA.  相似文献   

19.
The precise locations of the DNase I cutting sites in the nucleosome core have been determined by analysis of the DNA products of a DNase I digestion of 32P end-labelled mucleosome cores on a high resolution gel electrophoresis system. This system is capable of resolving fragments of mixed sequence DNA differing by one base into the region of 160 bases in length. The DNase I cutting sites in the core are found to be spaced at multiples of about 10.4 (i.e. clearly different from 10.0) bases along the DNA, but show significant variations about this value. In addition to the location of the sites, the stagger between individual sites on opposite strands has been determined and is found to be inconsistent with at least one proposed mechanism for nuclease cleavage of chromatin DNA. Finally, a calculated distribution of fragment lengths in a DNase I digest of nuclei has been determined from the data obtained from the nucleosome core and found to be in reasonable agreement with the observed distribution. The periodicity of 10.4 is discussed with respect to the number of base pairs per turn of chromatin DNA and the number of superhelical turns of DNA per nucleosome.  相似文献   

20.
P Diaz  J R Daban 《Biochemistry》1986,25(23):7736-7744
Micrococcal nuclease, DNase I, and trypsin have been employed to study the kinetics of core particle self-assembly by salt jump from 2.0 to 0.2 M NaCl. A few seconds after the initiation of the reassociation reaction, the bulk of core particle DNA becomes protected from digestion by micrococcal nuclease, whereas free DNA, under the same conditions, is completely hydrolyzed. The central and C-terminal regions of core histones are also protected from trypsin digestion immediately after the 2.0-0.2 M NaCl salt jump. Moreover, the extent of degradation produced by trypsin is the same for samples digested a few seconds after the salt jump and for samples digested 20 min after the salt jump. With DNase I, minor structural differences have been detected between samples obtained at different times during the reaction. However, even in this case our results indicate that many of the characteristic histone-DNA contacts within the core particle are made a few seconds after the initiation of the self-assembly reaction. Furthermore, core particles have been labeled with the fluorescent reagent N-(1-pyrenyl)maleimide (NPM), which was previously used as a sensitive probe for nucleosome conformation. Extensive DNase I or trypsin digestion of NPM-labeled core particles in 0.2 M NaCl does not produce significant changes in excimer fluorescence. This allows us to conclude that the covalent continuity of DNA is not required for the maintenance of the folded conformation of the core particle and that the trypsin-resistant domains of core histones play a fundamental role in the stabilization of this structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号