首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An immunohistochemical study of the cat pineal gland was performed using a rabbit polyclonal antibody directed against neuropeptide Y (NPY) and an antibody directed against the C-terminal flanking peptide of neuropeptide Y (CPON). Numerous NPY- and CPON-immunoreactive (IR) nerve fibers were demonstrated throughout the gland and in the pineal capsule. The number of IR nerve fibers in the capsule was high and from this location fibers were observed to penetrate into the gland proper via the pineal connective tissue septa, often following the blood vessels. From the connective tissue septa IR fibers intruded into the parenchyma between the pinealocytes. Many IR nerve fibers were observed in the pineal stalk and in the habenular as well as the posterior commissural areas. The number of NPY/CPON-IR nerve fibers in pineal glands from animals bilaterally ganglionectomized two weeks before sacrifice was low. The source of most of the extrasympathetic NPY/CPONergic nerve fibers is probably the brain from where they enter the pineal via the pineal stalk. However, an origin of some of the fibers from parasympathetic ganglia cannot be excluded due to the presence of a few IR fibers in the pineal capsule of ganglionectomized animals. It is concluded that the cat pineal is richly innervated with NPYergic nerve fibers mostly of sympathetic origin. The posttranslational processing of the NPY promolecule results in the presence of both NPY and CPON in intrapineal nerve fibers.  相似文献   

2.
Summary The distribution of tyrosine hydroxylase (TH)- and neuropeptide Y (NPY)-immunoreactive(IR) nerve fibers in the pineal complex was investigated in untreated rats and rats following bilateral removal of the superior cervical ganglia. In normal animals, a large number of TH- and NPY-IR nerve fibers were present in the pineal capsule, the perivascular spaces, and intraparenchymally between the pinealocytes throughout the superficial pineal and deep pineal gland. A small number of TH-IR and NPY-IR nerve fibers were found in the posterior and habenular commissures, a few fibers penetrating from the commissures into the deep pineal gland. To elucidate the origin of these fibers, the superior cervical ganglion was removed bilaterally in 10 animals, and the pineal complex was examined immunohistochemically. Two weeks after the ganglionectomy, the TH-IR and NPY-IR nerve fibers in the superficial pineal gland had almost completely disappeared. On the other hand, in the deep pineal and the pineal stalk, the TH-IR and NPY-IR fibers were still present after ganglionectomy. These data show that the deep pineal gland and the pineal stalk possess an extrasympathetic innervation by TH-IR and NPY-IR fibers. It is suggested that the extrasympathetic TH-IR and NPY-IR nerve fibers innervating the deep pineal and the pineal stalk originate from the brain.  相似文献   

3.
Summary An immunohistochemical investigation of the mink pineal gland was performed by use of antibodies raised in rabbits against neuropeptide Y (NPY) and Cys-NPY (32–36)-amide recognizing neuropeptide Y with an amidation at position 36 (NPYamide). NPY-immunoreactive nerve fibers were located predominantly in the rostral part of the pineal gland and in the pineal stalk. Immunoreactive nerve fibers were found throughout the pineal gland, but the number of fibers in the caudal part of the gland was low. The fibers were present both in the perivascular spaces and between the pinealocytes. Many NPY-immunoreactive fibers were also located in the posterior and habenular commissures; some of these fibers were connected with the fibers in the rostral part of the mink pineal gland, indicating that at least some of the NPY-immunoreactive nerve fibers are of central origin. The nerve fibers immunoreactive to amidated NPY were distributed in a similar manner. However, the number of fibers immunoreactive to NPYamide was lower than the number of fibers immunoreactive to NPY itself. After removal of the superior cervical ganglia bilaterally 22 days or 12 months before sacrifice, NPY-immunoreactive nerve fibers remained in the gland. This immunohistochemical study of the mink pineal gland therefore shows that the NPY/NPYamide-immunoreactive nerve fibers innervating the pineal gland in this spegcies are a component of the central innervation or originnate from extracerebral parasympathetic ganglia.  相似文献   

4.
A prominent innervation of the pineal gland of the European hamster with nerve fibres containing neuropeptide Y (NPY) and tyrosine hydroxylase (TH) was demonstrated by means of immunohistochemistry. Nearly all the TH- and NPY-immunoreactive nerve fibres in the superficial pineal gland disappeared after bilateral superior cervical ganglionectomy, showing that the majority of NPY- and TH-immunoreactive nerve fibres belonged to the sympathetic nervous system. Since, in the European hamster, preliminary studies of the NPY-fibre density in the pineal gland had indicated seasonal changes, the density of NPY-immunoreactive nerve fibre profiles was ascertained in the superficial pineal gland in a series of animals between the first part of November and late April. The highest density of NPY-immunoreactive nerve fibre profiles was observed during midwinter. On the other hand, during the same period of the year, the number of sympathetic TH-immunoreactive sympathetic nerve fibre profiles did not exhibit seasonal variation, nor did substitution of testosterone, during the sexually inactive period, affect the density of NPY-containing nerve fibres in the gland. Our results show the presence of a testosterone-independent annual variation in the content of NPY in the sympathetic nerve fibres innervating the pineal gland of the European hamster. This variation can be correlated with the changes in the daily pattern of melatonin production observed by others in the same species at this period of the year.  相似文献   

5.
Summary Postnatal development of the innervation of the pineal gland in situ as well as the reinnervation of pineal grafts by tyrosine hydroxylase (TH)- and neuropeptide Y (NPY)-immunoreactive nerve fibers were examined using the avidin-biotin-peroxidase immunohistochemical technique. TH-immunoreactive nerve fibers appeared in the pineal gland on the second postnatal day (P2) in both hamsters and gerbils. NPY-immunoreactive nerve fibers first appeared in the pineal gland of gerbils on P2 and in the hamsters on P3. By the seventh postnatal day (P7), the pineal glands of both hamsters and gerbils were richly innervated by TH- and NPY-fibers that appeared as smooth fibers or fibers with sporadic varicosities. By the age of 4 weeks, the innervation of the pineal glands of hamsters and gerbils by TH-and NPY-fibers was fully developed. Abundant TH- and NPY-fibers formed a dense meshwork in the parenchyma of the superficial and deep pineals. The great majority of the fibers bore a large number of varicosities. More NPY-fibers were found in the pineal glands of gerbils than hamsters. NPY fibers were distributed evenly throughout the pineal glands of the gerbil, but they were more often located in the central region of the superficial pineal of the hamster. For the pineal grafts, superficial pineals from neonatal and 4-week-old hamsters were transplanted to different sites in the third cerebral ventricle (infundibular recess, posterior third ventricle) or beneath the renal capsule. The pineal grafts from 4-week-old donors appeared to undergo severe degeneration and eventually disappeared. The pineal grafts from neonatal hamsters, however, successfully survived and became well integrated into their new locations. Abundant TH-and NPY-fibers in the host brain were found surrounding the pineal grafts placed in the third cerebral ventricle, but were only rarely seen entering the parenchyma of the grafts. A few TH-fibers were demonstrated in the renal grafts 4 weeks after transplantation. These studies describe the postnatal development of the innervation of the pineal glands in situ by TH-and NPY-nerve fibers, and demonstrate a lack of reinnervation of cerebroventricular pineal grafts by TH and NPY fibers from adjacent host brain.Portions of the results of this paper were previously reported in abstract form at the 1990 Meeting of The American Association of Anatomists (Anat Rec 226:57A)  相似文献   

6.
The distribution of galanin (Gal) in sympathetic vascular neurons of adult and juvenile brush-tailed possums (Trichosurus vulpecula), was examined using double-labelling immunohistochemistry. This was compared with the distribution of neuropeptide Y (NPY) in the same tissues. Immunoreactivity (IR) to galanin was present in the majority (64-99%) of nerve cell bodies in paravertebral sympathetic ganglia, where it mostly co-existed with IR to the catecholamine-synthesizing enzyme, tyrosine hydroxylase (TH). Gal-IR also was present in most, if not all, TH-IR perivascular axons supplying systemic arteries and veins. NPY-IR was less common than Gal-IR in all sympathetic ganglia and perivascular axons examined. Some sympathetic, TH-IR axons supplying the abdominal aorta and renal artery contained both Gal-IR and NPY-IR, while TH-IR axons supplying cephalic and thoracic vessels contained Gal-IR but not NPY-IR. Limited observations on sympathetic neurons in two species of wallabies indicated that Gal-IR also was more common than NPY-IR in other marsupial species, but the incidence of NPY-IR was higher in these wallabies than in the brush-tailed possum. Together with previous studies, this work suggests that the coexistence of galanin and NPY may be the primitive condition for sympathetic neurons in tetrapods. The differential expression of these peptides in specific populations of sympathetic neurons may have important functional consequences in the autonomic control of the circulation.  相似文献   

7.
Summary Histochemical, immunocytochemical, and radioenzymatic techniques were used to examine the neurotransmitter-related properties of the innervation of thoracic hairy skin in rats during adulthood and postnatal development. In the adult, catecholamine-containing fibers were associated with blood vessels and piloerector muscles, and ran in nerve bundles throughout the dermis. The distribution of tyrosine hydroxylase (TH)-immunoreactive (IR) fibers was identical. Neuronal fibers displaying neuropeptide Y (NPY) immunoreactivity were seen in association with blood vessels. Double-labeling studies suggested that most, if not all, NPY-IR fibers were also TH-IR and likewise most, if not all, vessel-associated TH-IR fibers were also NPY-IR. Calcitonin gene-related peptide (CGRP)-IR fibers were observed near and penetrating into the epidermis, in close association with hair follicles and blood vessels, and in nerve bundles. A similar distribution of substance P (SP)-IR fibers was evident. In adult animals treated as neonates with the sympathetic neurotoxin 6-hydroxydopamine, a virtual absence of TH-IR and NPY-IR fibers was observed, whereas the distribution of CGRP-IR and SP-IR fibers appeared unaltered. During postnatal development, a generalized increase in the number, fluorescence intensity, and varicose morphology of neuronal fibers displaying catecholamine fluorescence, NPY-IR, CGRP-IR, and SP-IR was observed. By postnatal day 21, the distribution of the above fibers had reached essentially adult levels, although the density of epidermal-associated CGRP-IR and SP-IR fibers was significantly greater than in the adult. The following were not evident in thoracic hairy skin at any timepoint examined: choline acetyltransferase activity, acetylcholinesterase histochemical staining or immunoreactivity, fibers displaying immunoreactivity to vasoactive intestinal peptide, cholecystokinin, or leucine-enkephalin. The present study demonstrates that the thoracic hairy skin in developing and adult rats receives an abundant sympathetic catecholaminergic and sensory innervation, but not a cholinergic innervation.  相似文献   

8.
Summary Monoaminergic nerve fibers were studied in the pineal organ of the monkey, Macaca fuscata, by use of fluorescence and immunohistochemical procedures. Abundant formations of noradrenergic nerve fibers were observed in the pineal organ. They entered the parenchyma in the form of several coarse bundles via the capsule in the distal portion of the organ and spread throughout the organ after branching into smaller units. The density of the autonomic innervation decreased gradually toward the proximal portion of the organ. In the distal portion, numerous nerve fibers formed perivascular plexuses around the blood vessels and some fibers ran as bundles unrelated to the blood vessels in the stroma. Fine varicose fibers and bundles derived from these plexuses penetrated among the pinealocytes. However, only a few intraparenchymal fluorescent fibers were detected in the proximal third of the gland. With the use of serotonin antiserum serotonin-immunoreactive nerve fibers were clearly restricted to the ventroproximal part of the pineal organ. Although the somata of the pinealocytes showed intense immunoreactivity, their processes were not stained. In one exceptional case, clusters of pinealocytes displaying very intense immunoreactivity were found in an area extending from the distal margin of the ventral portion of the pineal stalk to the proximal portion of the pineal organ proper; these cells were bipolar or multipolar and endowed with well-stained processes.  相似文献   

9.
The present study demonstrates the occurrence of PACAP-immunoreactive (PACAP-IR) nerve fibers in different compartments of the pig pineal gland, including glandular capsule (where they form a very dense network) and subependymal tissue close to the pineal recess (moderate to dense meshwork of varicose fibers). Furthermore, several varicose fibers penetrate from the capsule into the connective tissue septa and then into the parenchyma, where they form unequally distributed, fine network and, in some cases, basket-like structures around pinealocytes. Some of the PACAP-IR nerve fibers, observed both in the habenular and posterior epithalamic areas, extend to the pineal gland. PACAP-IR cells could be demonstrated neither in the pineal gland, nor in epithalamic areas.  相似文献   

10.
H Schr?der 《Histochemistry》1986,85(4):321-325
Information on the ambient lighting conditions is conveyed from the retina to the pineal organ by a neuronal pathway involving the suprachiasmatic nucleus (SCN) which acts as a circadian pacemaker. In the hamster, circadian rhythms have been shown to be influenced by injection of neuropeptide Y (NPY) into the SCN. Since NPY-immunoreactive nerve fibres are present in the rat and guinea-pig pineal glands it appeared of interest to investigate the hamster pineal as part of the circadian rhythm generating/regulating system. For comparison kidney, small intestine and cerebral cortex were studied. Like in the other rodent species so far investigated only a few of the abundant sympathetic nerve fibres in the hamster pineal gland are NPY-immunoreactive, in contrast to the relatively rich innervation of the other organs. This speaks in favour of a possible central origin of pineal NPY-immunoreactive fibres. These may either exert vasoregulatory effects on pineal vasculature or be involved in the modulation of alpha-adrenergic receptor mediated regulation of pineal metabolism.  相似文献   

11.
Ontogeny of the catecholaminergic system of the preoptic area (PA) was studied in various animal species including mice, rats, cats and lower vertebrates. Until now, there has been no data about development of catecholaminergic structures in the porcine PA. To study this problem, hypothalami from six groups of animals were collected. Three groups of foetuses (70, 84 and 112 days old) and three groups of female pigs (1 day, 10 weeks and 7-8 months old) were used. Nerve structures immunoreactive for the studied substances: tyrosine hydroxylase (TH), dopamine beta-hydroxylase (DbetaH) and phenylethanoloamine-N-metylthransferase (PNMT) were observed in different periods. In PA, TH-IR (immunoreactive) structures appeared before 70th day of foetal life, DbetaH-IR between 70th and 84th day of foetal live and PNMT-IR only in 10-week old and adult animals. In the PA of 70-day old foetuses, single smooth and varicose nerve fibres immunoreactive only to TH were found. In PA of 84-day old foetuses, additionally, single nerve cell bodies immunoreactive to TH were shown and some of them also contained immunoreactivity to DbetaH. In PA of 1-day old piglets, moderate numbers of nerve fibres immunoreactive to TH and only single TH/DbetaH-IR nerve terminals were observed. TH-IR nerve cell bodies were also moderate in number and many of them contained simultaneously immunoreactivity to DbetaH. In PA of 10-week old pigs, a moderate number of immunopositive nerve fibres was observed. They contained mainly TH, but part of them stained also for TH/DbetaH. Only very few nerve fibres containing exclusively DbetaH were found. These nerve terminals were observed in a close vicinity of blood vessels. In PA, moderate numbers of TH-IR nerve cell bodies were found, some of them contained also immunoreactivity to DH but never to PNMT. Perikarya containing PNMT were TH-negative. In the PA of sexually mature sows, additional, single, large nerve cell bodies (about 35 microm in a diameter) containing TH only were found. In many cases, TH- and DbetaH-IR "basket-like" structures surrounding nerve cell bodies were seen, suggesting an influence of those fibres on the neuronal activity.  相似文献   

12.
Autonomic innervation of the prostate gland supplies the acini, and non-vascular and vascular smooth muscle. The activity of each of these tissues is enhanced by sympathetic outflow, whereas the role of the parasympathetic nervous system in this organ is unclear. In the present study, a range of methods was applied in rats to determine the location of autonomic neurons supplying this gland, the immunohistochemical properties of these neurons, the spinal connections made with the postganglionic pathways and the distribution of various axon types within the gland. Injection of the retrograde tracer, FluoroGold, into the ventral gland visualised neurons within the major pelvic ganglion and sympathetic chain. Fluorescence immunohistochemical studies on the labelled pelvic neurons showed that most were noradrenergic (also containing neuropeptide Y, NPY), the others being non-noradrenergic and containing either vasoactive intestinal peptide (VIP) or NPY. Sympathetic dyelabelled neurons were identified by the presence of varicose nerve terminals stained for synaptophysin on their somata following lesion of sacral inputs. Parasympathetic innervation of dye-labelled neurons was identified by continued innervation after hypogastric nerve lesion. Most noradrenergic prostate-projecting neurons were sympathetic, as were many of the non-noradrenergic VIP neurons. Parasympathetic prostate-projecting neurons were largely non-noradrenergic and contained either VIP or NPY. All substances found in retrogradely labelled somata were located in axons within the prostate gland but had slightly different patterns of distribution. The studies have shown that there are a significant number of non-noradrenergic sympathetic prostate-projecting neurons, which contain VIP.  相似文献   

13.
Summary Serotonin-like immunoreactivity was investigated in the pineal complex of the golden hamster by use of the indirect immunohistochemical technique. The superficial and deep portions of the pineal gland, and also the pineal stalk exhibited an intense cellular immunoreaction for serotonin. In addition, perivascular serotonin-immunoreactive nerve fibers were observed. Some serotonin-immunoreactive processes of the pinealocytes terminated on the surface of the ventricular lumen in the pineal and suprapineal recesses, indicating a receptive or secretory function of these cells. Several serotonin-immunoreactive processes connected the deep pineal with the habenular area. One week after bilateral removal of both superior cervical ganglia the serotonin immunoreaction of the entire pineal complex was greatly decreased. However, some cells in the pineal complex, of which several exhibited a neuron-like morphology, remained intensively stained after ganglionectomy. This indicates that the indoleamine content of some cells in the pineal complex of the golden hamster is independent of the sympathetic innervation.Supported by a Grant from the Italian Society for Veterinary Sciences  相似文献   

14.
Summary Inforimation on the ambient lighting conditions is conveyed from the retina to the pineal organ by a neuronal pathway involving the suprachiasmatic nucleus (SCN) which acts as a circadian pacemaker. In the hamster, circadian rhythms have been shown to be influenced by injection of neuropeptide Y (NPY) into the SCN. Since NPY-immunoreactive nerve fibres are present in the rat and guinea-pig pineal glands it appeared of interest to investigate the hamster pineal as part of the circadian rhythm generating/regulating system. For comparison kidney, small intestine and cerebral cortex were studied. Like in the other rodent species so far investigated only a few of the abundant sympathetic nerve fibres in the hamster pineal gland are NPY-immunoreactive, in contrast to the relatively rich innervation of the other organs. This speaks in favour of a possible central origin of pineal NPY-immunoreactive fibres. These may either exert vasoregulatory effects on pineal vasculature or be involved in the modulation of alpha-adrenergic receptor mediated regulation of pineal metabolism.Supported by the Deutsche Forschungsgemeinschaft, grant Schr 283/1-1  相似文献   

15.
Summary This investigation is concerned with pineal organs of human embryos 60 to 150 days old. At every stage central nerve fibres enter the pineal organ by way of the habenular commissure, but are restricted to the pineal's proximal part. On about the 60th day of the development the sympathetic nervus conarii grows into the distal pole of the pineal organ from a dorso-caudal direction and plays the predominant part in the innervation of the pineal organ. After penetrating, it soon branches out and forms a network in the pineal tissue. Much later, not until the 5th embryonic month, sympathetic nerves appear accompanying the supplying vessels in the perivascular spaces. After a short time these nerves pierce the outer limiting basement membrane and penetrate the parenchyma. Towards the end of the 5th embryonic month the axons of the sympathetic nerves form varicosities containing clear and dense core vesicles. At this point large amounts of laminated granules appear primarily in cell processes, probably of pinealocytes. Isolated granules also occur in the varicosities of axons. The granules encountered here are most likely secretory granules.Dedicated to Professor Bargmann on his 65th birthday.  相似文献   

16.
J Calvo  J Boya 《Acta anatomica》1979,103(2):212-225
The innervation of the pineal gland has been studied during the embryonic development and the first 10 days after hatching. On day 17 of embryonic development, the first nerve fibers are observed in the pineal capsule. They appear at the stalk level and rise to locate mostly on the anterior side of the capsule. Some nerve fibers leave these nerve bundles to penetrate the gland and they situate in the connective septa (18 days of development). From day 19 of development onwards, nerve fibers locate only in the parafollicular layer. Cells that may be identified as neurons are found in the pineal parenchyma.  相似文献   

17.
To determine the distribution of NPY and TH human choroidal innervation, choroidal whole-mounts were processed for indirect immunofluorescence. An antibody to a component of the neuronal cytoskeleton, neurofilament 200 kDa (NF-200) was used to identify neurons and axons. A double immunostaining was performed, antibodies against NF-200 being combined with antibodies against neuropeptide Y (NPY) and tyroxine hydroxylase (TH). Fibers containing both NPY and TH were distributed in three plexuses, one in the suprachoroid large-sized vessel layer, and two in the medium-sized vessel layer. Intrinsic choroidal neurons (ICNs) containing NPY and TH were observed in the suprachoroid. The TH(+) ICNs were located in the medium-sized vessel layer. Overall, NPY(+) and TH(+) ICNs were more frequent in the central temporal area, both in isolation and forming microganglia. We also detected small spindle elements intensely immunoreactive to TH(+) and distributed mainly in the suprachoroid from the equator to the periphery. In conclusion, the human choroid contains abundant NPY and TH nerve fibers related to chroroidal vascular structures; it further possesses NPY(+) and TH(+) ICNs which contribute to the choroidal self-regulation persisting after sympathetic denervation. Additionally, these ICNs may at least partially explain why the choroidal blood flow does not respond to the factors that influence systemic vascular control. The preferential location of these cells in the submacular area suggests that dysfunction or degeneration of these cells may be a factor in vascular pathologies found in ocular disease, such as diabetic macular edema or age-related macular degeneration.  相似文献   

18.
This light-microscopic (LM) immunohistochemical study has evaluated the presence and distribution of the pan-neural and neuroendocrine marker protein gene product (PGP) 9.5 in pinealocytes and nerve fibres of guinea-pig pineal gland. The pattern of PGP 9.5-immunoreactive (ir) nerve fibres has been compared with that of fibres staining for tyrosine hydroxylase (TH) or neuropeptide Y (NPY). The vast majority of pinealocytes stained for PGP 9.5, although with variable intensity. PGP 9.5 immunoreactivity was localized in pinealocytic cell bodies and processes. Double-immunofluorescence revealed that PGP 9.5 immunoreactivity was absent from glial cells identified with a monoclonal antibody against glial fibrillary acidic protein (GFAP), PGP 9.5 immunoreactivity was also present in a large number of nerve fibres and varicosities distributed throughout the pineal gland. The number of TH-ir and NPY-ir nerve fibres was lower compared with those containing PGP 9.5 immunoreactivity. All fibres staining for NPY also stained for TH. NPY-ir nerve fibres were found to be much more numerous than previously reported for this species. The double-immunofluorescence analysis indicated that almost all TH-ir nerve fibres of the pineal gland contained PGP 9.5 immunoreactivity. However, few PGP 9.5-ir nerve fibres, located in the periphery and the central part of the gland, were TH-negative. A large number of PGP 9.5-ir fibres was concentrated in the pineal stalk. In contrast, TH-ir and NPY-ir nerve fibres were rare in this part of the pineal gland. Our data provide evidence that immunohistochemistry for PGP 9.5 may be a useful tool further to differentiate central and peripheral origins of pineal innervation. Furthermore, the staining of pinealocytes for PGP 9.5 may be exploited to study the three-dimensional morphology and the architecture of pinealocytes and their processes under various experimental conditions.  相似文献   

19.
An immunohistochemical study of the pig pineal gland was carried out using monoclonal mouse antiserum against growth-associated protein GAP-43. The pineal glands were obtained from the 3, 5, 8 weeks old piglets. The immunopositive nerve fibers were observed in the pineal gland as well as in the habenular and the posterior comissural areas. They formed a dense network in the habenular area and the proximal part of the pineal gland. In the comissural area and in the apical part of the gland. single positive fibers were observed. The obtained results may suggest a difference in the plasticity of innervation between the particular regions of the pineal gland.  相似文献   

20.
An immunohistochemical study of the pig pineal gland was carried out using polyclonal rabbit antiserum raised against substance P (SP). The pineal glands were taken from the newborn, 21-day- and 7-month-old female pigs. Immunoreactive nerve fibers were observed in the pineal gland as well as in the posterior commissure and habenular areas. The bundles of SP-immunoreactive fibers were also seen in the subependymal layer of the pineal tissue. The single SP-immunoreactive nerve fibers and few small bundles of nerve fibers were located with equal density throughout the pineal gland, in the connective tissue septa and in the parenchyma. SP-immunoreactive cell bodies were observed in the medial habenular nucleus. The obtained results point to this nucleus as one of the central sources of SP innervation in the pig pineal gland. The study did not show any differences in the distribution and the density of SP-immunoreactive nerve fibers between newborn, 21-day- and 7 month-old pigs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号