首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract

In this paper, we proposed a 3-D graphical representation of RNA secondary structures. Based on this representation, we outline an approach by constructing a 3-component vector whose components are the normalized leading eigenvalues of the L/L matrices associated with RNA secondary structure. The examination of similarities/dissimilarities among the secondary structure at the 3′-terminus of different viruses illustrates the utility of the approach.  相似文献   

2.
B. Liao  T. Wang  K. Ding 《Molecular simulation》2013,39(14-15):1063-1071
In this paper, we proposed a seven-dimensional (7D) representation of ribonucleic acid (RNA) secondary structures. The use of the 7D representation is illustrated by constructing structure invariants. Comparisons with the similarity/dissimilarity results based on 7D representation for a set of RNA 3 secondary structures at the 3′-terminus of different viruses, are considered to illustrate the use of our structure invariants based on the entries in derived sequence matrices restricted to a selected width of a band along the main diagonal.  相似文献   

3.
On a six-dimensional representation of RNA secondary structures   总被引:2,自引:0,他引:2  
In this paper, we proposed a 6-D representation of RNA secondary structures. The use of the 6-D representation is illustrated by constructing structure invariants. Comparisons with the similarity/dissimilarity results based on 6-D representation for a set of RNA secondary structures, are considered to illustrate the use of our structure invariants based on the entries in derived sequence matrices restricted to a selected width of a band along the main diagonal.  相似文献   

4.
Abstract

In this paper, we proposed a 6-D representation of RNA secondary structures. The use of the 6-D representation is illustrated by constructing structure invariants. Comparisons with the similarity/dissimilarity results based on 6-D representation for a set of RNA secondary structures, are considered to illustrate the use of our structure invariants based on the entries in derived sequence matrices restricted to a selected width of a band along the main diagonal.  相似文献   

5.
 Magarshak et al. represented an RNA molecule as a complex vector and an RNA secondary structure Γ as a complex matrix S Γ in such a way that the molecule represented by was compatible with the secondary structure Γ if and only if . They only considered Watson-Crick base pairs and their representation cannot be extended to allow for GU pairs. In this paper we study a generalization of Magarshak's representation that allows for these pairs, and in particular we provide a family of algebraic structures where that generalization can be carried out. We also show that this representation can be used to compare secondary structures, through transfer matrices which transform the representation of one secondary structure into the representation of the other. Received: 10 December 2001 / Revised version: 7 May 2002 / Published online: 28 February 2003 Key words or phrases: RNA secondary structure – Algebra – Finite field  相似文献   

6.
Many noncoding RNAs (ncRNAs) function through both their sequences and secondary structures. Thus, secondary structure derivation is an important issue in today's RNA research. The state-of-the-art structure annotation tools are based on comparative analysis, which derives consensus structure of homologous ncRNAs. Despite promising results from existing ncRNA aligning and consensus structure derivation tools, there is a need for more efficient and accurate ncRNA secondary structure modeling and alignment methods. In this work, we introduce a consensus structure derivation approach based on grammar string, a novel ncRNA secondary structure representation that encodes an ncRNA's sequence and secondary structure in the parameter space of a context-free grammar (CFG) and a full RNA grammar including pseudoknots. Being a string defined on a special alphabet constructed from a grammar, grammar string converts ncRNA alignment into sequence alignment. We derive consensus secondary structures from hundreds of ncRNA families from BraliBase 2.1 and 25 families containing pseudoknots using grammar string alignment. Our experiments have shown that grammar string-based structure derivation competes favorably in consensus structure quality with Murlet and RNASampler. Source code and experimental data are available at http://www.cse.msu.edu/~yannisun/grammar-string.  相似文献   

7.
The language of RNA: a formal grammar that includes pseudoknots   总被引:9,自引:0,他引:9  
MOTIVATION: In a previous paper, we presented a polynomial time dynamic programming algorithm for predicting optimal RNA secondary structure including pseudoknots. However, a formal grammatical representation for RNA secondary structure with pseudoknots was still lacking. RESULTS: Here we show a one-to-one correspondence between that algorithm and a formal transformational grammar. This grammar class encompasses the context-free grammars and goes beyond to generate pseudoknotted structures. The pseudoknot grammar avoids the use of general context-sensitive rules by introducing a small number of auxiliary symbols used to reorder the strings generated by an otherwise context-free grammar. This formal representation of the residue correlations in RNA structure is important because it means we can build full probabilistic models of RNA secondary structure, including pseudoknots, and use them to optimally parse sequences in polynomial time.  相似文献   

8.
MOTIVATION: To predict the consensus secondary structure, possibly including pseudoknots, of a set of RNA unaligned sequences. RESULTS: We have designed a method based on a new representation of any RNA secondary structure as a set of structural relationships between the helices of the structure. We refer to this representation as a structural pattern. In a first step, we use thermodynamic parameters to select, for each sequence, the best secondary structures according to energy minimization and we represent each of them using its corresponding structural pattern. In a second step, we search for the repeated structural patterns, i.e. the largest structural patterns that occur in at least one sequence, i.e. included in at least one of the structural patterns associated to each sequence. Thanks to an efficient encoding of structural patterns, this search comes down to identifying the largest repeated word suffixes in a dictionary. In a third step, we compute the plausibility of each repeated structural pattern by checking if it occurs more frequently in the studied sequences than in random RNA sequences. We then suppose that the consensus secondary structure corresponds to the repeated structural pattern that displays the highest plausibility. We present several experiments concerning tRNA, fragments of 16S rRNA and 10Sa RNA (including pseudoknots); in each of them, we found the putative consensus secondary structure.  相似文献   

9.
基于DNA序列的3D图形表示,通过L/L矩阵的规范化最大特征值组成的3维向量来刻画了DNA序列,并基于这种方法,用β-globin基因的第一个外显子分析了11个物种的相似性问题。  相似文献   

10.

Background  

RNAmute is an interactive Java application which, given an RNA sequence, calculates the secondary structure of all single point mutations and organizes them into categories according to their similarity to the predicted structure of the wild type. The secondary structure predictions are performed using the Vienna RNA package. A more efficient implementation of RNAmute is needed, however, to extend from the case of single point mutations to the general case of multiple point mutations, which may often be desired for computational predictions alongside mutagenesis experiments. But analyzing multiple point mutations, a process that requires traversing all possible mutations, becomes highly expensive since the running time is O(n m ) for a sequence of length n with m-point mutations. Using Vienna's RNAsubopt, we present a method that selects only those mutations, based on stability considerations, which are likely to be conformational rearranging. The approach is best examined using the dot plot representation for RNA secondary structure.  相似文献   

11.
In this paper, we propose a nongraphical representation for protein secondary structures. By counting the frequency of occurrence of all possible four-tuples (i.e., four-letter words) of a protein secondary structure sequence, we construct a set of 3x3 matrices for the corresponding protein secondary structure sequence. Furthermore, the leading eigenvalues of these matrices are computed and considered as invariants for the protein secondary structure sequences. To illustrate the utility of our approach, we apply it to a set of real data to distinguish protein structural classes. The result indicates that it can be used to complement the classification of protein secondary structures.  相似文献   

12.
A 3D model of RNA structure can provide information about its function and regulation that is not possible with just the sequence or secondary structure. Current models suffer from low accuracy and long running times and either neglect or presume knowledge of the long-range interactions which stabilize the tertiary structure. Our coarse-grained, helix-based, tertiary structure model operates with only a few degrees of freedom compared with all-atom models while preserving the ability to sample tertiary structures given a secondary structure. It strikes a balance between the precision of an all-atom tertiary structure model and the simplicity and effectiveness of a secondary structure representation. It provides a simplified tool for exploring global arrangements of helices and loops within RNA structures. We provide an example of a novel energy function relying only on the positions of stems and loops. We show that coupling our model to this energy function produces predictions as good as or better than the current state of the art tools. We propose that given the wide range of conformational space that needs to be explored, a coarse-grain approach can explore more conformations in less iterations than an all-atom model coupled to a fine-grain energy function. Finally, we emphasize the overarching theme of providing an ensemble of predicted structures, something which our tool excels at, rather than providing a handful of the lowest energy structures.  相似文献   

13.
In functional, noncoding RNA, structure is often essential to function. While the full 3D structure is very difficult to determine, the 2D structure of an RNA molecule gives good clues to its 3D structure, and for molecules of moderate length, it can be predicted with good reliability. Structure comparison is, in analogy to sequence comparison, the essential technique to infer related function. We provide a method for computing multiple alignments of RNA secondary structures under the tree alignment model, which is suitable to cluster RNA molecules purely on the structural level, i.e., sequence similarity is not required. We give a systematic generalization of the profile alignment method from strings to trees and forests. We introduce a tree profile representation of RNA secondary structure alignments which allows reasonable scoring in structure comparison. Besides the technical aspects, an RNA profile is a useful data structure to represent multiple structures of RNA sequences. Moreover, we propose a visualization of RNA consensus structures that is enriched by the full sequence information.  相似文献   

14.
15.
Abstract

In this paper, we propose a nongraphical representation for protein secondary structures. By counting the frequency of occurrence of all possible four-tuples (i.e., four-letter words) of a protein secondary structure sequence, we construct a set of 3 × 3 matrices for the corresponding protein secondary structure sequence. Furthermore, the leading eigenvalues of these matrices are computed and considered as invariants for the protein secondary structure sequences. To illustrate the utility of our approach, we apply it to a set of real data to distinguish protein structural classes. The result indicates that it can be used to complement the classification of protein secondary structures.  相似文献   

16.
We propose a novel representation of RNA secondary structure for a quick comparison of different structures. Secondary structure was viewed as a set of stems and each stem was represented by two values according to its position. Using this representation, we improved the comparative sequence analysis method results and the minimum free-energy model. In the comparative sequence analysis method, a novel algorithm independent of multiple sequence alignment was developed to improve performance. When dealing with a single-RNA sequence, the minimum free-energy model is improved by combining it with RNA class information. Secondary structure prediction experiments were done on tRNA and RNAse P RNA; sensitivity and specificity were both improved. Furthermore, software programs were developed for non-commercial use.  相似文献   

17.
As one of the earliest problems in computational biology, RNA secondary structure prediction (sometimes referred to as "RNA folding") problem has attracted attention again, thanks to the recent discoveries of many novel non-coding RNA molecules. The two common approaches to this problem are de novo prediction of RNA secondary structure based on energy minimization and the consensus folding approach (computing the common secondary structure for a set of unaligned RNA sequences). Consensus folding algorithms work well when the correct seed alignment is part of the input to the problem. However, seed alignment itself is a challenging problem for diverged RNA families. In this paper, we propose a novel framework to predict the common secondary structure for unaligned RNA sequences. By matching putative stacks in RNA sequences, we make use of both primary sequence information and thermodynamic stability for prediction at the same time. We show that our method can predict the correct common RNA secondary structures even when we are given only a limited number of unaligned RNA sequences, and it outperforms current algorithms in sensitivity and accuracy.  相似文献   

18.
Our previous studies using trans-complementation analysis of Kunjin virus (KUN) full-length cDNA clones harboring in-frame deletions in the NS3 gene demonstrated the inability of these defective complemented RNAs to be packaged into virus particles (W. J. Liu, P. L. Sedlak, N. Kondratieva, and A. A. Khromykh, J. Virol. 76:10766-10775). In this study we aimed to establish whether this requirement for NS3 in RNA packaging is determined by the secondary RNA structure of the NS3 gene or by the essential role of the translated NS3 gene product. Multiple silent mutations of three computer-predicted stable RNA structures in the NS3 coding region of KUN replicon RNA aimed at disrupting RNA secondary structure without affecting amino acid sequence did not affect RNA replication and packaging into virus-like particles in the packaging cell line, thus demonstrating that the predicted conserved RNA structures in the NS3 gene do not play a role in RNA replication and/or packaging. In contrast, double frameshift mutations in the NS3 coding region of full-length KUN RNA, producing scrambled NS3 protein but retaining secondary RNA structure, resulted in the loss of ability of these defective RNAs to be packaged into virus particles in complementation experiments in KUN replicon-expressing cells. Furthermore, the more robust complementation-packaging system based on established stable cell lines producing large amounts of complemented replicating NS3-deficient replicon RNAs and infection with KUN virus to provide structural proteins also failed to detect any secreted virus-like particles containing packaged NS3-deficient replicon RNAs. These results have now firmly established the requirement of KUN NS3 protein translated in cis for genome packaging into virus particles.  相似文献   

19.
RNA secondary structure formation is a field of considerable biological interest as well as a model system for understanding generic properties of heteropolymer folding. This system is particularly attractive because the partition function and thus all thermodynamic properties of RNA secondary structure ensembles can be calculated numerically in polynomial time for arbitrary sequences and homopolymer models admit analytical solutions. Such solutions for many different aspects of the combinatorics of RNA secondary structure formation share the property that the final solution depends on differences of statistical weights rather than on the weights alone. Here, we present a unified approach to a large class of problems in the field of RNA secondary structure formation. We prove a generic theorem for the calculation of RNA folding partition functions. Then, we show that this approach can be applied to the study of the molten-native transition, denaturation of RNA molecules, as well as to studies of the glass phase of random RNA sequences.  相似文献   

20.
Abstract

Measuring the (dis)similarity between RNA secondary structures is critical for the study of RNA secondary structures and has implications to RNA functional characterization. Although a number of methods have been developed for comparing RNA structural similarities, their applications have been limited by the complexity of the required computation. In this paper, we present a novel method for comparing the similarity of RNA secondary structures generated from the same RNA sequence, i.e., a secondary structure ensemble, using a matrix representation of the RNA structures. Relevant features of the RNA secondary structures can be easily extracted through singular value decomposition (SVD) of the representing matrices. We have mapped the feature vectors of the singular values to a kernel space, where (dis)similarities among the mapped feature vectors become more evident, making clustering of RNA secondary structures easier to handle. The pair-wise comparison of RNA structures is achieved through computing the distance between the singular value vectors in the kernel space. We have applied a fuzzy kernel clustering method, using this similarity metric, to cluster the RNA secondary structure ensembles. Our application results suggest that our fuzzy kernel clustering method is highly promising for classifications of RNA structure ensembles, because of its low computational complexity and high clustering accuracy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号