首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Free radical research》2013,47(3):127-137
The aim of the present study was to elucidate the role of mitochondria in the development of heart failure following ischemia/reperfusion. Although mitochondria were increasingly assumed to be responsible for the establishment of an oxidative stress situation the lack of suitable methods to prove it required new concepts for an evaluation of the validity of this hypothesis. The principal idea was to expose isolated mitochondria to metabolic conditions which are developed during ischemia/reperfusion in the cell (anoxia, lactogenesis) and study how they respond. Heart mitochondria treated in that way responded with an incomplete collaps of the transmembraneous proton gradient, thereby impairing respiration-linked ATP generation. The membrane effect affected also the proper control of e? transfer through redox-cycling ubisemiquinone. Electrons were found to leak at this site from its normal pathway to O2? suggesting that ubisemiquinone becomes an active O2? generator. It was concluded from these observations that mitochondria are likely to play a pathogenetic role in the reperfusion injury of the heart both, by an impairment of energy conservation and their transition to a potent O2?-radical generator. Furthermore, there is considerable evidence that the exogenous NADH-dehydrogenase of heart mitochondria is mainly responsible for functional changes of these organelles during ischemia/reperfusion.  相似文献   

2.
The present investigation deals with the suggested role of redox-cycling ubisemiquinones in mitochondrial 02- generation. Due to the functional complexity of electron-transferring ubiquinones in the respiratory chain, model experiments were designed to study whether ubisemiquinones will directly react with oxygen, thereby generating 02- radicals. Based on the fact that mitochondrial ubiquinone was reported to operate in an aprotic surrounding of the inner mitochondrial membrane, the reactivity of ubisemiquinones with oxygen was tested in water-free acetonitrile. Our results prove that autoxidation of ubisemiquinones requires the addition of protons to the non-polar reaction system. An experimental evaluation of the validity of this finding with respect to mitochondrial ubiquinones is impeded by the biochemical role that oxygen plays in the establishment of ubisemiquinone populations. To differentiate between a possible direct interaction of oxygen on redox-cycling ubisemiquinones and this indirect biochemical 02- effect, we have successfully introduced ferricyanide instead of oxygen to establish mitochondrial ubisemiquinone pools. Ubisemiquinones in this reaction system were not susceptible to oxygen and no 02- radicals were released unless the inner mitochondrial membrane was protonated by toluene pretreatment. Since the inner mitochondrial membrane is normally not permeable to protons (which is a prerequisite of the chemiosmotic theory of energy conservation) based on our experiments we can exclude the involvement of redox-cycling ubisemiquinones in mitochondrial 02- generation.  相似文献   

3.
In the gingival crevicular fluid (GCF) of control and chronic adult periodontitis (CAP) patients there is a spontaneous release of O2- radicals from polymorphonuclear leukocytes (PMN). The addition of the exogenous stimuli phorbol myrystate acetate (PMA) decreased the O2- formation in control GCF, while in CAP patients produced a marked enhancement of O2- generation.

The circulating PMN of control subjects did not show a spontaneous O2- formation, differently from CAP patients. On the contrary, a similar O2- production was measured when the circulating PMN were stimulated with PMA.

Moreover, the antioxidant activity measured in 10μl of cell free gingival supernatant (GS) of control and CAP patients had the same values by inhibiting 12.6% and 18.9% respectively of the O2- formation supported by a xanthine/xanthine oxidase system.

Probably, the protective or destructive effect of PMN in GCF of CAP patients depends on the variations of the rate of O2- formation in respect to the intrinsic antioxidant property of GS.  相似文献   

4.
5.
Thioctic acid (TA) and its reduced form dihydrolipoic acid (DHLA) have recently gained somc recognition as useful biological antioxidants. In particular, the ability of DHLA to inhibit lipid peroxidation has been reported. In the present study, the effects of TA and DHLA on reactive oxygen species (ROS) generated in the aqueous phase have been investigated. Xanthine plus xanthine oxidase-generated superoxide radicals (O2), detected by electron spin resonance spectroscopy (ESR) using DMPO as a spin trap. were eliminated by DHLA but not by TA. The sulhydryl content of DHLA, measured using Ellman's reagent decreased subsequent to the incubation with xanthine plus xanthine oxidase confirming the interaction between DHLA and O2-. An increase of hydrogen peroxide concentration accompanied the reaction between DHLA and O2x, suggesting the reduction of O2- by DHLA. Competition of O2- with epinephrine allowed us to estimate a second order kinetic constant of the reaction between O2- and DHLA, which was found to be a 3.3 × 105 M-1 s-1. On the other hand, the DMPO signal of hydroxyl radicals (HO ·) generated by Fenton's reagent were eliminated by both TA and DHLA. Inhibition of the Fenton reaction by TA was confirmed by a chemiluminescence measurement using luminol as a probe for HO ·. There was no electron transfer from Fe2+ to TA or from DHLA to Fe3 + detected by measuring the Fe2+ -phenanthroline complex. DHLA did not potentiate the DMPO signal of HO · indicating no prooxidant activity of DHLA. These results suggest that both TA and DHLA possess antioxidant properties. In particular. DHLA is very effective as shown by its dual capability by eliminating both O2-; and HO ·.  相似文献   

6.
Nitric Oxide Reversibly Suppresses Xanthine Oxidase Activity   总被引:10,自引:0,他引:10  
The effects of nitric oxide (NO) on xanthine oxidase (XOD) activity and the site(s) of the redox center(s) affected were investigated. XOD activity was determined by superoxide (O2-) generation and uric acid formation. NO reversibly and dose-dependently suppressed XOD activity in both determination methods. The suppression interval also disclosed a dose-dependent prolongation. The suppression occurred irrespective of the presence or absence of xanthine; indicating that the reaction product of NO and O2-, peroxynitrite, is not responsible for the suppression. Application of synthesized peroxynitrite did not affect XOD activity up to 2 μM. Methylene blue, which is an electron acceptor from Fe/S center, prevented the NO-induced inactivation. The results indicate that NO suppresses XOD activity through reversible alteration of the flavin prosthetic site.  相似文献   

7.
A method to determine Mn-superoxide dismutase activity by measuring directly the rate of decay of O2- in a spectrophotometer, is described. Decay of O2- generated by KO2 at pH 9.5, was monitored as the fall in absorbance (A250nm-A360nm). Mn-superoxide dismutase was determined as the activity of cyanide-resistant superoxide dismutase, calculated from the rate of O2- dismutation. Mn-superoxide dismutase could be determined in the presence of a 700 times higher Cu, Zn-superoxide dismutase activity. The alkaline pH did not cause analytical problems. The assay was used to measure both Mn- and Cu, Zn-superoxide dismutase activity in mitochondrial preparations. The assay had a detection limit of 2.8 ng/ml when Mn-superoxide dismutase from E. coli was used, and the between-day CV was 5.8%. The assay is an alternative to indirect methods for detecting superoxide dismutase activity.  相似文献   

8.
Effects of Superoxide on Nitric Oxide-Dependent N-Nitrosation Reactions   总被引:2,自引:0,他引:2  
Recent studies have demonstrated that nitric oxide (NO) in the presence of superoxide (O2-) may mediate mutagenesis via the N-nitrosation of DNA bases followed by nitrosative deamination to yield their hydroxylated derivatives. We have found that phorbol myristate acetate (PMA)-activated extravasated rat neutrophils (PMNs) will N-nitrosate 2,3-diaminonaphthalene (DAN) to yield its highly fluorescent nitrosation product 2,3- naphthotriazole (triazole) via the L-arginine dependent formation of NO. Addition of SOD enhanced triazole formation suggesting that O2- production may inhibit the N-nitrosating activity and thus the mutagenic activity of inflammatory PMNs. The objective of this study was to assess the role of superoxide as a modulator of NO-dependent N-nitrosation reactions using PM A-activated PMNs as well as a chemically defined-system that generates both NO and superoxide. We found that PMA-activation of PMNs reduced the amount of N-nitrosation of DAN by approximately 64% when compared to non- stimulated cells (450 vs. 1250 nM). Addition of SOD but not inactivated SOD or catalase to PMA-activated PMNs enhanced the formation of triazole by approximately 4-fold (1950 nM). In addition, we found that the NO-releasing spermine/NO adduct (Sp/NO; 50μM) which produces approximately 1.0 nmol NO/min generated approximately 8000 nM of triazole whereas the combination of Sp/NO and a superoxide generator (hypoxanthine/xanthine oxidase) that produces approximately 1.0 nmol O2-/min reduced triazole formation by 90% (790 nM). Addition of SOD but not catalase restored the N-nitrosating activity. We conclude that equimolar fluxes of superoxide react rapidly with NO to generate products that have only limited ability to N-nitrosate aromatic amino compounds and thus may have limited ability to promote mutagenesis via the nitrosative deamination of DNA bases.  相似文献   

9.
The Reaction of no With Superoxide   总被引:35,自引:0,他引:35  
The rate constant for the reaction of NO with ·O2- was determined to be (6.7 ± 0.9) × 109 1 mol-1 s-1, considerably higher than previously reported. Rate measurements were made from pH 5.6 to 12.5 both by monitoring the loss of ·O2- and the formation of the product -OONO. The decay rate of -OONO, in the presence of 0.1 moll-1 formate, ranges from 1.2s-1 at pH 5 to about 0.2s-1 in strong base, the latter value probably reflecting catalysis by formate.  相似文献   

10.
Pholasin, the photoprotein of the common piddock Pholas dactylus, emits an intense luminescence upon oxidation. The contribution of superoxide anion radicals and myeloperoxidase (MPO) to Pholasin luminescence in stimulated neutrophils was investigated. Data on Pholasin luminescence were compared with results of superoxide anion radical generation detected by the cytochrome c test as well as with the release of elastase and MPO. In N-formyl-methionyl-leucyl-phenylalanine (fMLP) stimulated neutrophils, most of the luminescence is caused by superoxide anion radicals, whereas MPO shows only a small effect as shown by coincubation with superoxide dismutase (SOD) as well as potassium cyanide (KCN), an inhibitor of MPO. However, both, O2- and MPO contribute to light emission in fMLP/cytochalasin B and phorbol myristoyl acetate (PMA) stimulated cells. Thus, the kinetics of O2- generation and MPO release can be very well detected by Pholasin luminescence in stimulated neutrophils.

Degranulation of azurophilic granules was assessed using an ELISA test kit for released MPO or detection of elastase activity with MeO-Suc-Ala-Ala-Pro-Val-p-nitroanilide in the supernatant of stimulated cells. Both approaches revealed concurrently similar results concerning the amount and kinetics of enzyme release with data of Pholasin luminescence. Both, cytochrome c measurements and Pholasin luminescence indicate that fMLP/cytochalasin B and PMA stimulated neutrophils produce more O2- than fMLP stimulated cells. Thus, Pholasin luminescence can be used to detect, sensitively and specifically, O2- production and MPO release from stimulated neutrophils.  相似文献   

11.
The production of singlet oxygen by H2O2 disproportionation and via the oxidation of H2O2 by NaOCl in a neutral medium was monitored by spin trapping with 2,2,6,6 tetramethyl-4-piperidone (TMPone). The singlet oxygen formed in both reactions oxidized 2,2,6,6 tetramethyl-4-piperidone to give nitroxide radicals. However the production of nitroxide radicals was relatively small considering the concentrations of H2O2 and NaOCl used in the reaction systems. Addition of electron donating agents: ascorbate, Fe2+ and desferrioxamine leads to an increase in the production of nitroxide radicals. We assumed that a very slow step of the reaction sequence, the homolytic breaking of the O-O bond of N-hydroperoxide (formed as an intermediate product during the reaction of 1O2 with TMPone) could be responsible for the relatively small production of nitroxide radicals. Electron donating agents added to the reaction system probably raise the rate of the hydroperoxide decomposition by allowing a more rapid heterolytic cleavage of the O-O bond leading to a greater production of nitroxide radicals. The largest effect was observed in the presence of desferrioxamine. Its participation in this process is proved by the concomitant appearance of desferrioxamine nitroxide radicals. The results obtained demonstrate that the method proposed by several authors and tested in this study to detect singlet oxygen is not convenient for precise quantitative studies. The reactivity of TMPone towards O2-7HO2' and 'OH has been also investigated. It has been found that both O2-7HO2' and 'OH radicals formed in a phosphate buffer solution (pH 7.4, 37°C), respectively by a xanthine-oxidase/hypoxanthine system and via H2O2 UV irradiation, do not oxidize 2,2,6,6 tetramethyl-4-piperidone to nitroxide radicals.  相似文献   

12.
Highly active superoxide (O2-)-forming NADPH oxidase was extracted from plasmamembranes of phorbol-12-myristate-13-acetate-activated pig neutrophils and was partially purified by gel filtration chromatography. Oxidase activity copurified with cytochrome b-245 in an aggregate containing phospholipids and was almost completely separated from FAD and NAD(P)H-cytochrome c reductase. A polypeptide with molecular weight of 31,500 strictly paralleled the purification of NADPH oxidase, suggesting that it is a major component of the enzyme. The enzyme complex was then dissociated by high detergent and salt concentration and cytochrome b-245 was isolated by a further gel filtration chromatography, with a 147 fold purification with respect to the initial preparation. The cytochrome b-245 showed a 31,500 molecular weight by SDS electrophoresis, indicating that it is actually the component previously identified in the partially purified enzyme. The 31,500 protein was phosphorylated in enzyme preparations from activated but not from resting neutrophils, suggesting that phosphorylation of cytochrome b-245 is involved in the activation mechanism of the O2--forming enzyme responsible for the respiratory burst in phagocytes.  相似文献   

13.
本研究以双孢蘑菇Agaricus bisporus工厂化菌株A15和筛选得到的耐高温菌株A15-TH为研究对象,比较了高温胁迫对两个菌株菌丝生长的影响,并从氧化损伤修复及基础碳代谢-糖酵解途径两个角度探索双孢蘑菇对高温胁迫的响应及耐热机理.高温胁迫下,对照菌株A15的菌丝生长速度降低,菌丝分叉增加;而耐高温菌株A15-...  相似文献   

14.
Effect of nitric oxide (NO) on the respiratory burst of neutrophils was examined under different oxygen tensions. Phorbol myristate acetate (PMA) stimulated oxygen consumption and superoxide (O2-) generation in neutrophils by a mechanism which was inhibited reversibly by NO. The inhibitory effect of NO increased significantly with a decrease in oxygen tension in the medium. The inhibitory effect of NO was suppressed in medium containing oxyhemoglobin (HbO2), a NO scavenging agent. In contrast, 3-morpholinosydnonimine (SIN-1), a compound that rapidly generates peroxynitrite (ONOO-) from the released NO and O2-, slightly stimulated the PMA-induced respiratory burst. These results suggested that NO, but not ONOO, might reversibly inhibit superoxide generation by neutrophils especially at physiologically low oxygen tensions thereby decreasing oxygen toxicity particularly in and around hypoxic tissues.  相似文献   

15.
We investigated whether vitamin E plays a role in the protection against potential free radical formation and related biochemical changes in hypoxic, ischemic and Ca2+-depleted rat heart upon normal reperfusion.

In the heart of normally fed rats a decrease in the activity of superoxide dismutase and the capacity of the glutathione system, factors of the cellular protective mechanisms against free radicals, occurred upon exposure to the above mentioned treatments. This decrease was not further enhanced if vitamin E-deficient rat hearts were treated. Vitamin E-deficiency, however, led to detectable peroxidation of lipids if Ca2+-depleted or hypoxic hearts were reperfused. Lipid peroxidation was measured as the formation of thiobarbituric acid reactive material, which is readily formed during this process. Reflow after ischemia did not induce lipid peroxidation either in normal or in vitamin E-deficient rat heart.

Since changes in Ca2+ -homeostasis are thought to be primarily responsible for the Ca2+-reperfusion injury, a role for Ca2+-ions in lipid peroxidative processes, either directly or indirectly, seems indicated. Furthermore the results imply that even a sharp and extensive decrease of reduced glutathione, as seen upon Ca2+ -repletion after a period of Ca2+ -depletion, does not necessarily induce peroxidation of lipids in heart tissue. Obviously, vitamin E is very important in the protection of cardiac membranes. Replenishment of the water-soluble protective factors in the heart seems, however, more important during above mentioned treatments, especially since repair of the vitamin E-free radical is dependent on water-soluble factors.  相似文献   

16.
In most tissues mitochondria consume more than 90% of cellular oxygen. Although the greatest part of it undergoes tetravalent reduction thereby conserving free energy changes in the form of ATP. a great deal of evidence exists in the literature that also univalently reduced dioxygen is released during respiration. Redox-cycling ubiquinone was considered most frequently to be involved in this univalent e- transfer to oxygen out of sequence however, other components of the respiratory chain could not be excluded. Our investigations on this problem questioned the role of redox-cycling ubiquinone in mitochondrial O-2 formation while H2O2 is supposed to accept e- from this source. The paper provides experimental evidence that H2O2 in fact may operate as an oxidant of ubisemiquinone while dioxygen requires protons for such a reaction which are not available in the phospholipid bilayer where ubiquinone undergoes one e-redox-cycling  相似文献   

17.
Human neutrophils (PMN) activated by N-formyl-methionyl-leucyl-phenylalanine (fMLP) simultaneously release nitric oxide (.NO), superoxide anion (O2-) and its dismutation product, hydrogen peroxide (H2O2). To assess whether NO production shares common steps with the activation of the NADPH oxidase, PMN were treated with inhibitors and antagonists of intracellular signaling pathways and subsequently stimulated either with fMLP or with a phorbol ester (PMA). The G-protein inhibitor, pertussis toxin (1-10 μg/ml) decreased H2O2 yield without significantly changing. NO production in fMLP-stimulated neutrophils; no effects were observed in PMA-activated cells. The inhibition of tyrosine kinases by genistein (1-25 μg/ml) completely abolished H2O2 release by fMLP-activated neutrophils; conversely, NO production increased about 1.5- and 3-fold with fMLP and PMA, respectively. Accordingly, orthovanadate, an inhibitor of phosphotyrosine phosphatase, markedly decreased -NO production and increased O2;- release. On the other hand, inhibition of protein kinase C with staurosporine and the use of burst antagonists like adenosine, cholera toxin or dibutyryl-cAMP diminished both H2O2 and NO production. The results suggest that the activation of the tyrosine kinase pathway in stimulated human neutrophils controls positively O2- and H2O2 generation and simultaneously maintains -NO production in low levels. In contrast, activation of protein kinase C is a positive modulator for O2;-and *NO production.  相似文献   

18.
Crystals of calcium oxalate monohydrate (COM) in the renal tubule form the basis of most kidney stones. Tubular dysfunction resulting from COM-cell interactions occurs by mechanism(s) that are incompletely understood. We examined the production of reactive oxygen intermediates (ROI) by proximal (LLC-PK1) and distal (MDCK) tubular epithelial cells after treatment with COM (25–250 μg/ml) to determine whether ROI, specifically superoxide (O2•−), production was activated, and whether it was sufficient to induce oxidative stress. Employing inhibitors of cytosolic and mitochondrial systems, the source of ROI production was investigated. In addition, intracellular glutathione (total and oxidized), energy status (ATP), and NADH were measured. COM treatment for 1–24 h increased O2•− production 3–6-fold as measured by both lucigenin chemiluminescence in permeabilized cells and dihydrorhodamine fluorescence in intact cells. Using selective inhibitors we found no evidence of cytosolic production. The use of mitochondrial probes, substrates, and inhibitors indicated that increased O2•− production originated from mitochondria. Treatment with COM decreased glutathione (total and redox state), indicating a sustained oxidative insult. An increase in NADH in COM-treated cells suggested this cofactor could be responsible for elevating O2•− generation. In conclusion, COM increased mitochondrial O2•− production by epithelial cells, with a subsequent depletion of antioxidant status. These changes may contribute to the reported cellular transformations during the development of renal calculi.  相似文献   

19.
From pulse radiolysis measurements in oxygenated aqueous solution, the semioxidized tryptophan radical (Trp·— formed by the one-electron oxidation of Trp by Br2- radical—has been shown to oxidize the superoxide radical anion with a rate constant of k = 2 × 109 M−1 s−1. Proof of this reaction is found in addition of superoxide dismutase (SOD) to the system, which totally eliminates the contribution of the Trp· + O2- mechanism to Trp· decay. Little, if any, reaction of molecular oxygen with Trp· may be observed on the time scale of the pulse radiolysis experiment.  相似文献   

20.
The influence of hyperbaric oxygen (HBO) treatment on the activities of superoxide dismutase (SOD) and Na+,K+-ATPase was determined during different time periods of reperfusion in rats exposed to global cerebral ischemia. Ischemic animals were either sacrificed or exposed to the first HBO treatment 2, 24, 48 or 168 h after ischemic insult (for SOD activities measurement) or immediately, 0.5, 1, 2, 6, 24, 48, 72 or 168 h after ischemic procedure (for Na+,K+-ATPase activities measurement). Hyperbaric oxygenation procedure was repeated for seven consecutive days. The results of presented experiments demonstrated the statistically significant increase in the hippocampal SOD activity 24 and 48 h after global cerebral ischemia followed by a decrease in the enzymatic activity 168 h after ischemic insult. In the ischemic rats treated with HBO the level of hippocampal SOD activity was significantly higher after 168 h of reperfusion in comparison to the ischemic, non HBO-treated animals. In addition, it was found that global cerebral ischemia induced a statistically significant decrease of the hippocampal Na+,K+-ATPase activity starting from 1 to 168 h of reperfusion. Maximal enzymatic inhibition was obtained 24 h after the ischemic damage. Decline in Na+,K+-ATPase activity was prevented in the animals exposed to HBO treatment within the first 24 h of reperfusion. Our results suggest that global cerebral ischemia induces significant alterations in the hippocampal SOD and Na+,K+-ATPase activities during different periods of reperfusion. Enhanced SOD activity and preserved Na+,K+-ATPase activity within particular periods of reperfusion, could be indicators of a possible benefitial role of HBO treatment in severe brain ischemia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号