首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Binding specificity of integration host factor (IHF) to oligo DNAs has been studied by circular dichroism (CD) spectroscopy and filter binding experiment. CD difference spectra of IHF-DNA complexes demonstrated that a conformational change in DNA was induced by binding of IHF when DNA had a consensus sequence for the binding sites of IHF, but that such conformational change was not observed for consensus DNA 20 mer as well as nonconsensus DNA 45 mer. Dissociation constants for IHF-DNA complexes determined by filter binding assay showed that IHF has indeed stronger affinity to DNA with the consensus binding site than to nonconsensus DNA, but the difference in its affinity between consensus and nonconsensus DNAs was rather small, 3.4-fold. It was, therefore, concluded that the flanking regions of the consensus sequence are important for the specific binding of IHF and that its binding specificity is well characterized by the induced conformational change in DNA rather than by dissociation constants for IHF-DNA complexes.  相似文献   

2.
The integration host factor (IHF) is an abundant nucleoid-associated protein and an essential co-factor for phage λ site-specific recombination and gene regulation in E. coli. Introduction of a sharp DNA kink at specific cognate sites is critical for these functions. Interestingly, the intracellular concentration of IHF is much higher than the concentration needed for site-specific interactions, suggesting that non-specific binding of IHF to DNA plays a role in the physical organization of bacterial chromatin. However, it is unclear how non-specific DNA association contributes to DNA organization. By using a combination of single DNA manipulation and atomic force microscopy imaging methods, we show here that distinct modes of non-specific DNA binding of IHF result in complex global DNA conformations. Changes in KCl and IHF concentrations, as well as tension applied to DNA, dramatically influence the degree of DNA-bending. In addition, IHF can crosslink DNA into a highly compact DNA meshwork that is observed in the presence of magnesium at low concentration of monovalent ions and high IHF-DNA stoichiometries. Our findings provide important insights into how IHF contributes to bacterial chromatin organization, gene regulation, and biofilm formation.  相似文献   

3.
Integration host factor (IHF) is a bacterial protein that binds and severely bends a specific DNA target. IHF binding sites are approximately 30 to 35 bp long and are apparently divided into two domains. While the 3' domain is conserved, the 5' domain is degenerate but is typically AT rich. As a result of physical constraints that IHF must impose on DNA in order to bind, it is believed that this 5' domain must possess structural characteristics conducive for both binding and bending with little regard for specific contacts between the protein and the DNA. We have examined the sequence requirements of the 5' binding domain of the IHF binding target. Using a SELEX procedure, we randomized and selected variants of a natural IHF site. We then analyzed these variants to determine how the 5' binding domain affects the structure, affinity, and function of an IHF-DNA complex in a native system. Despite finding individual sequences that varied over 100-fold in affinity for IHF, we found no apparent correlation between affinity and function.  相似文献   

4.
5.
DNA binding proteins that induce structural changes in DNA are common in both prokaryotes and eukaryotes. Integration host factor (IHF) is a multi-functional DNA binding and bending protein of Escherichia coli that can mediate protein-protein and protein-DNA interactions by bending DNA. Previously we have shown that the presence of a dA+dT element 5'-proximal to an IHF consensus sequence can affect the binding of IHF to a particular site. In this study the contribution of various sequence elements to the formation of IHF-DNA complexes was examined. We show that IHF bends DNA more when it binds to a site containing a dA+dT element upstream of its core consensus element than to a site lacking a dA+dT element. We demonstrate that IHF can be specifically crosslinked to DNA with binding sites either containing or lacking this dA+dT element. These results indicate the importance of flanking DNA and a dA+dT element in the binding and bending of a site by IHF.  相似文献   

6.
The interaction of E. coli IHF protein with its specific binding sites   总被引:70,自引:0,他引:70  
C C Yang  H A Nash 《Cell》1989,57(5):869-880
We have used two kinds of footprinting techniques, dimethylsulfate interference and hydroxyl radical protection, to explore the way that IHF recognizes its specific target sequences. Our results lead us to conclude that IHF recognizes DNA primarily through contacts with the minor groove, an unprecedented mode for a sequence-specific binding protein. We have also determined that, although IHF is a small protein that protects a large region of DNA, only a single IHF protomer is present at each binding site. IHF bends the DNA to which it binds. We have combined this fact plus our footprinting and stoichiometry data together with the crystal structure of a related protein, the nonspecific DNA binding protein HU, to propose a model for the way in which IHF binds to its DNA target.  相似文献   

7.
T T Stenzel  P Patel  D Bastia 《Cell》1987,49(5):709-717
The integration host factor (IHF) of Escherichia coli is necessary for maintenance of pSC101. The protein binds specifically to the replication origin of the plasmid, in the AT-rich region located immediately adjacent to the left, weak binding site for the plasmid-encoded initiator protein. DNAase I and OH- radical footprinting experiments showed that IHF protects 49 bp of the DNA at the origin region. Methylation protection analyses revealed that IHF contacts purine residues in both the major and minor grooves of the DNA. Electrophoretic analyses showed that IHF binds to bent DNA, and the protein binding further enhances the degree of DNA bending. Site-directed mutagenesis of three of the contact points not only abolished binding of the protein to the DNA but also inactivated the replication origin. Therefore, binding of IHF to the ori sequence most probably is necessary for initiation of plasmid replication.  相似文献   

8.
9.
The Tn10 transpososome has symmetrical components on either side: there are two transposon ends each of which has binding sites for a monomer of transposase and an IHF heterodimer. The DNA bending activity of IHF stimulates assembly of an intermediate with tightly folded transposon ends in which transposase has additional ‘subterminal’ DNA contacts, located distal to the IHF site. These subterminal contacts are required to activate later steps in the reaction. Quantitative hydroxyl radical footprinting and gel retardation unfolding experiments show that the transpososome is fundamentally asymmetric, despite having identical components on either side. Major differences between the transposon ends define α and β sides of the complex. IHF can dissociate from the transposon arm on the β side of the complex in the absence of metal ion. However, IHF is locked onto the α side of the complex, probably by the subterminal transposase contacts, until released by a metal ion-dependent conformational change. Later in the reaction, IHF inhibits target interactions. Using a very short transposon arm, target interactions are demonstrated at a saturating IHF concentration. This suggests that inhibition of target interactions is due to steric hindrance of the target binding site by a single IHF-folded transposon arm.  相似文献   

10.
11.
The histone-like protein integration host factor (IHF) of Escherichia coli binds to specific binding sites on the chromosome or on mobile genetic elements, and is involved in many cellular processes. We have analyzed the interaction of IHF with five different binding sites in vitro and in vivo using UV laser footprinting, a technique that probes the immediate environment and conformation of a segment of DNA. Using this generally applicable technique we can directly compare the binding modes and interaction strengths of a DNA binding protein in its physiological environment within the cell to measurements performed in vitro. We conclude that the interactions between IHF and its specific binding sites are identical in vitro and in vivo. The footprinting signal is consistent with the model of IHF-binding to DNA proposed by Yang and Nash (1989). The occupancy of binding sites varies with the concentration of IHF in the cell and allows to estimate the concentration of free IHF protein in the cell.  相似文献   

12.
Integration Host Factor, IHF, is an E. coli DNA binding protein that imposes a substantial bend on DNA. Previous footprinting studies and bending assays have characterized several recognition sequences in the bacterial and lambda phage genome as unique in the way they are bound by IHF. We have chosen one of the lambda phage sites, H1, for study because it presents a small yet sequence-specific substrate for NMR analysis of the complex. A 19 base-pair duplex, H19, corresponding to the recognition sequence at the H1 site was constructed by isotopically labeling one of the strands with 15N. (1H, 15N) heteronuclear NMR experiments aided in assigning the imino proton resonances of the DNA alone and in complex with IHF. The NMR results are consistent with a mode of binding observed in the recent crystal structure of IHF bound to another of its sites from the lambda phage genome. Additionally, the dramatic change that IHF imposes on the imino proton chemical shifts is indicative of a severe deviation from canonical B-DNA structure. In order to understand the dynamic properties of the DNA in the complex with IHF, the exchange rates of the imino protons with the solvent have been measured for H19 with and without IHF bound. A drastic reduction in exchange is observed for the imino protons in the IHF bound DNA. In the DNA-protein complex, groups of adjacent base-pair exchange at the same rate, and appear to close more slowly than the rate of imino proton exchange with bulk water, since their exchange rate is independent of catalyst concentration. We infer that segments of the double helix as large as 6 bp open in a cooperative process, and remain open much longer than is typical for opening fluctuations in naked duplex DNA. We discuss these results in terms of the specific protein-DNA contacts observed in the crystal structure.  相似文献   

13.
14.
15.
The nucleoprotein complex formed on oriC, the Escherichia coli replication origin, is dynamic. During the cell cycle, high levels of the initiator DnaA and a bending protein, IHF, bind to oriC at the time of initiation of DNA replication, while binding of Fis, another bending protein, is reduced. In order to probe the structure of nucleoprotein complexes at oriC in more detail, we have developed an in situ footprinting method, termed drunken-cell footprinting, that allows enzymatic DNA modifying reagents access to intracellular nucleoprotein complexes in E.coli, after a brief exposure to ethanol. With this method, we observed in situ binding of Fis to oriC in exponentially growing cells, and binding of IHF to oriC in stationary cells, using DNase I and Bst NI endonuclease, respectively. Increased binding of DnaA to oriC in stationary phase was also noted. Because binding of DnaA and IHF results in unwinding of oriC in vitro, P1 endonuclease was used to probe for intracellular unwinding of oriC. P1 cleavage sites, localized within the 13mer unwinding region of oriC ', were dramatically enhanced in stationary phase on wild-type origins, but not on mutant versions of oriC unable to unwind. These observations suggest that most oriC copies become unwound during stationary phase, forming an initiation-like nucleoprotein complex.  相似文献   

16.
The ability of the histone-like element Integration Host Factor (IHF) to interact with the algD promoter was investigated. IHF from Escherichia coli was found to bind to the algD promoter and to form multiple protein-DNA complexes in gel mobility shift DNA binding assay. The highest affinity binding site for IHF was mapped by DNaseI footprinting analysis. This site spanned nucleotides -50 to -85 relative to the algD mRNA start site and overlapped a sequence matching the IHF consensus sequence WATCAANNNNTTR in 12 out of 13 base pairs. Previous studies have shown that deletion of sequences including a portion of this site adversely affects algD promoter activity. IHF binding to the algD promoter induced DNA bending. Western blot analysis with antibodies against E. coli IHF detected a cross-reactive protein of a similar molecular mass in Pseudomonas aeruginosa, suggesting the presence of an analogous factor in this organism.  相似文献   

17.
Integration host factor (IHF) is a heterodimeric protein from Escherichia coli which specifically binds to an asymmetric consensus sequence. We have isolated the individual subunits of IHF, HimA and HimD, and show that an active IHF protein can be reconstituted from these subunits. The HimA and HimD polypeptides alone are capable of specifically recognizing the same ihf sequence. The mobilities of the protein-DNA complexes in a gel-retardation assay suggest that the proteins bind as homodimers. The stability of the HimD-DNA complex is approximately 100-fold lower than that of the IHF-DNA complex. The HimA-DNA complex is even less stable and is only observed when a large excess of HimA is used. This instability is possibly due to the inability of HimA to form stable homodimers. By domain swapping between HimA and HimD, we have constructed an IHF fusion protein which has the putative DNA-binding domains of only HimA. This fusion protein forms stable dimers and makes specific protein-DNA complexes with a high efficiency. A comparable fusion protein with only the DNA-binding domains of HimD forms less stable complexes, suggesting that sequence-specific contacts between IHF and the ihf consensus are mainly provided by the HimA subunit.  相似文献   

18.
Ma L  Sundlass NK  Raines RT  Cui Q 《Biochemistry》2011,50(2):266-275
Revealing the thermodynamic driving force of protein-DNA interactions is crucial to the understanding of factors that dictate the properties and function of protein-DNA complexes. For the binding of DNA to DNA-wrapping proteins, such as the integration host factor (IHF), Record and co-workers proposed that the disruption of a large number of preexisting salt bridges is coupled with the binding process [Holbrook, J. A., et al. (2001) J. Mol. Biol. 310, 379]. To test this proposal, we have conducted explicit solvent MD simulations (multiple ~25-50 ns trajectories for each salt concentration) to examine the behavior of charged residues in IHF, especially concerning their ability to form salt bridges at different salt concentrations. Of the 17 cationic residues noted by Record and co-workers, most are engaged in salt bridge interactions for a significant portion of the trajectories, especially in the absence of salt. This observation suggests that, from a structural point of view, their proposal is plausible. However, the complex behaviors of charged residues observed in the MD simulations also suggest that the unusual thermodynamic characteristics of IHF-DNA binding likely arise from the interplay between complex dynamics of charged residues both in and beyond the DNA binding site. Moreover, a comparison of MD simulations at different salt concentrations suggests that the strong dependence of the IHF-DNA binding enthalpy on salt concentration may not be due to a significant decrease in the number of stable salt bridges in apo IHF at high salt concentrations. In addition to the Hofmeister effects quantified in more recent studies of IHF-DNA binding, we recommend consideration of the variation of the enthalpy change of salt bridge disruption at different salt concentrations. Finally, the simulation study presented here explicitly highlights the fact that the electrostatic properties of DNA-binding proteins can be rather different in the apo and DNA-bound states, which has important implications for the design of robust methods for predicting DNA binding sites in proteins.  相似文献   

19.
20.
Initiator DnaA and DNA bending proteins, Fis and IHF, comprise prereplication complexes (pre-RC) that unwind the Escherichia coli chromosome's origin of replication, oriC. Loss of either Fis or IHF perturbs synchronous initiation from oriC copies in rapidly growing E. coli. Based on dimethylsulphate (DMS) footprinting of purified proteins, we observed a dynamic interplay among Fis, IHF and DnaA on supercoiled oriC templates. Low levels of Fis inhibited oriC unwinding by blocking both IHF and DnaA binding to low affinity sites. As the concentration of DnaA was increased, Fis repression was relieved and IHF rapidly redistributed DnaA to all unfilled binding sites on oriC. This behaviour in vitro is analogous to observed assembly of pre-RC in synchronized E. coli. We propose that as new DnaA is synthesized in E. coli, opposing activities of Fis and IHF ensure an abrupt transition from a repressed complex with unfilled weak affinity DnaA binding sites to a completely loaded unwound complex, increasing both the precision of DNA replication timing and initiation synchrony.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号