首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hypoxia during the expansion of adipocytes is known to contribute both to the secretion of multiple inflammation-related adipokines as well as to obesity. We therefore investigated the nature of protein changes occurring in adipocytes during hypoxia by observation of the intracellular proteins that are expressed in 3T3-L1 adipocytes. Lysates were utilized for quantitative proteome analysis using isobaric tags for relative and absolute quantitation (iTRAQ) combined with peptide separation by multi-dimensional liquid chromatography. Antioxidants and elongation factors, as well as glycolytic enzymes were increased in hypoxic adipocytes. These changes were supported by similar changes suggested by real-time PCR. The proteins showing changes are all potential targets for revering the mechanism behind the phenomenon of induction of obese adipocytes by hypoxia. This study can therefore aid in defining the proteomic changes that occur in adipocytes in response to oxygen stress, and can further characterize adipocyte metabolism and adaptation to low oxygen conditions.  相似文献   

2.
This study was designed to identify the cell surface protein markers that can differentiate between chronic myeloid leukemia (CML) and acute promyelocytic leukemia cells (APL). The differentially expressed plasma membrane proteins were analyzed between CML cell line (K562) and APL cell line (NB4) using the comparative proteomic approach. The cell membrane proteins were enriched by labeling with a membrane-impermeable biotinylation reagent, sulfo-NHS-SS-Biotin, and subjected to liquid chromatography tandem mass spectrometry (LC-MS/MS). By comparative proteomic analysis of K562 and NB4 cells, we identified 25 membrane and 14 membrane-associated proteins. The result of LC-MS/MS combined with chemical tagging method was validated by confirming the expression and localization of one of the differentially expressed plasma membrane proteins, CD43, by FACS and confocal microscopy. Our results indicate that CD43 could be a potential candidate for differentiating CML from APL.  相似文献   

3.
Hypoxia occurs within adipose tissues as a result of adipocyte hypertrophy and is associated with adipocyte dysfunction in obesity. Here, we examined whether hypoxia affects the characteristics of adipocyte-derived exosomes. Exosomes are nanovesicles secreted from most cell types as an information carrier between donor and recipient cells, containing a variety of proteins as well as genetic materials. Cultured differentiated 3T3-L1 adipocytes were exposed to hypoxic conditions and the protein content of the exosomes produced from these cells was compared by quantitative proteomic analysis. A total of 231 proteins were identified in the adipocyte-derived exosomes. Some of these proteins showed altered expression levels under hypoxic conditions. These results were confirmed by immunoblot analysis. Especially, hypoxic adipocyte-released exosomes were enriched in enzymes related to de novo lipogenesis such as acetyl-CoA carboxylase, glucose-6-phosphate dehydrogenase, and fatty acid synthase (FASN). The total amount of proteins secreted from exosomes increased by 3–4-fold under hypoxic conditions. Moreover, hypoxia-derived exosomes promoted lipid accumulation in recipient 3T3-L1 adipocytes, compared with those produced under normoxic conditions. FASN levels were increased in undifferentiated 3T3-L1 cells treated with FASN-containing hypoxic adipocytes-derived exosomes. This is a study to characterize the proteomic profiles of adipocyte-derived exosomes. Exosomal proteins derived from hypoxic adipocytes may affect lipogenic activity in neighboring preadipocytes and adipocytes.  相似文献   

4.
Hypoxia in the tumor microenvironment triggers differential signaling pathways for tumor survival. In this study, we characterize the involvement of hypoxia and reactive oxygen species (ROS) generation in the antineoplastic mechanism of proopiomelanocortin (POMC) gene delivery in a mouse B16-F10 melanoma model in vivo and in vitro. Histological analysis revealed increased TUNEL-positive cells and enhanced hypoxic activities in melanoma treated with adenovirus encoding POMC (Ad-POMC) but not control vector. Because the apoptotic cells were detected mainly in regions distant from blood vessels, it was hypothesized that POMC therapy might render melanoma cells vulnerable to hypoxic insult. Using a hypoxic chamber or cobalt chloride (CoCl2), we showed that POMC gene delivery elicited apoptosis and caspase-3 activation in cultured B16-F10 cells only under hypoxic conditions. The apoptosis induced by POMC gene delivery was associated with elevated ROS generation in vitro and in vivo. Blocking ROS generation using the antioxidant N-acetyl-l-cysteine abolished the apoptosis and caspase-3 activities induced by POMC gene delivery and hypoxia. We further showed that POMC-derived melanocortins, including α-MSH, β-MSH, and ACTH, but not γ-MSH, contributed to POMC-induced apoptosis and ROS generation during hypoxia. To elucidate the source of ROS generation, application of the NADPH oxidase inhibitor diphenyleneiodonium attenuated α-MSH-induced apoptosis and ROS generation, implicating the proapoptotic role of NADPH oxidase in POMC action. Of the NADPH oxidase isoforms, only Nox4 was expressed in B16-F10 cells, and Nox4 was also elevated in Ad-POMC-treated melanoma tissues. Silencing Nox4 gene expression with Nox4 siRNA suppressed the stimulatory effect of α-MSH-induced ROS generation and cell apoptosis during hypoxia. In summary, we demonstrate that POMC gene delivery suppressed melanoma growth by inducing apoptosis, which was at least partly dependent on Nox4 upregulation.  相似文献   

5.
Identification and characterization of anion channel genes in plants represent a goal for a better understanding of their central role in cell signaling, osmoregulation, nutrition, and metabolism. Though channel activities have been well characterized in plasma membrane by electrophysiology, the corresponding molecular entities are little documented. Indeed, the hydrophobic protein equipment of plant plasma membrane still remains largely unknown, though several proteomic approaches have been reported. To identify new putative transport systems, we developed a new proteomic strategy based on mass spectrometry analyses of a plasma membrane fraction enriched in hydrophobic proteins. We produced from Arabidopsis cell suspensions a highly purified plasma membrane fraction and characterized it in detail by immunological and enzymatic tests. Using complementary methods for the extraction of hydrophobic proteins and mass spectrometry analyses on mono-dimensional gels, about 100 proteins have been identified, 95% of which had never been found in previous proteomic studies. The inventory of the plasma membrane proteome generated by this approach contains numerous plasma membrane integral proteins, one-third displaying at least four transmembrane segments. The plasma membrane localization was confirmed for several proteins, therefore validating such proteomic strategy. An in silico analysis shows a correlation between the putative functions of the identified proteins and the expected roles for plasma membrane in transport, signaling, cellular traffic, and metabolism. This analysis also reveals 10 proteins that display structural properties compatible with transport functions and will constitute interesting targets for further functional studies.  相似文献   

6.
7.
8.
Embryonic ventricular function in the chick was measured in response to graded levels of hypoxia. Myocardial contractility, as measured by cinephotoanalysis and expressed as shortening fraction, was significantly depressed after 1 hour of moderate hypoxia (6% O2) and after 5 hours of milder (16% O2 and 11% O2) levels of hypoxia (P less than .05). Microscopy confirmed associated myocyte damage with cell death noted after 5 hours of moderate hypoxic stress. Heart rate change was not related to the severity of hypoxia. The greatest level of tachycardia was noted with conditions of mildest hypoxia (16% O2). The data confirm that cardiac contractility, as measured by shortening fraction, is depressed on exposure to hypoxia, with impairment of function related to the severity of the hypoxic conditions.  相似文献   

9.
10.
Plasma membrane proteins play critical roles in cell-to-cell recognition, signal transduction and material transport. Because of their accessibility, membrane proteins constitute the major targets for protein-based drugs. Here, we described an approach, which included stable isotope labeling by amino acids in cell culture (SILAC), cell surface biotinylation, affinity peptide purification and LC-MS/MS for the identification and quantification of cell surface membrane proteins. We applied the strategy for the quantitative analysis of membrane proteins expressed by a pair of human melanoma cell lines, WM-115 and WM-266-4, which were derived initially from the primary and metastatic tumor sites of the same individual. We were able to identify more than 100 membrane and membrane-associated proteins from these two cell lines, including cell surface histones. We further confirmed the surface localization of histone H2B and three other proteins by immunocytochemical analysis with confocal microscopy. The contamination from cytoplasmic and other nonmembrane-related sources is greatly reduced by using cell surface biotinylation and affinity purification of biotinylated peptides. We also quantified the relative expression of 62 identified proteins in the two types of melanoma cells. The application to quantitative analysis of membrane proteins of primary and metastatic melanoma cells revealed great potential of the method in the comprehensive identification of tumor progression markers as well as in the discovery of new protein-based therapeutic targets.  相似文献   

11.
Growing evidence suggest that microglia may play an important role in the pathogenesis of neurodegenerative disease including Parkinson's disease, Alzheimer's disease, and so forth. The activation of microglia may cause neuronal damage through the release of reactive oxygen species and proinflammatory cytokines. However, the early response of microglial cells remains unclear before cells can secrete the proinflammatory cytokines. Here, a time course analysis showed the earliest expression of inducible nitric oxide synthase and cyclooxygenase-2 at 3 and 24 h following lipopolysaccharide (LPS) treatment. To further define initial response proteins of microglia after LPS treatment, we utilized a novel mass spectrometry-based quantitative proteomic technique termed SILAC (for stable isotope labeling by amino acids in cell culture) to compare the protein profiles of the cell culture-conditioned media of 1 h LPS-treated microglia as compared with controls. The proteomic analysis identified 77 secreted proteins using SignalP; of these, 28 proteins were associated with lysosome of cells and 13 lysosome-related proteins displayed significant changes in the relative abundance after 1 h LPS treatment. Four proteins were further evaluated with Western blot, demonstrating good agreement with quantitative proteomic data. These results suggested that microglia first released some lysosomal enzymes which may be involved in neuronal damage process. Furthermore, ammonium chloride, which inhibits microglia lysosomal enzyme activity, could prevent microglia from causing neuronal injury. Hence, in addition to the numerous novel proteins that are potentially important in microglial activation-mediated neurodegeneration revealed by the search, the study has indicated that the early release of lysosomal enzymes in microglial cells would contribute to LPS-activated inflammatory response.  相似文献   

12.
IntroductionBreastmilk contains proteins and cells which have stem cell properties. The human breastmilk stem cell mimick mesenchymal stem cells and expresses pluripotency genes. The protein level of breastmilk is high in colostrum and gradually subsides in the first year of lactation. The mesenchymal stem cells from breastmilk can be an alternative source of stem cells that can potentially affect cardiovascular therapy. This study aimed to identify the proteomic analysis of secretome mesenchymal stem-like cells under hypoxia compared to non-hypoxia from human breastmilk stem cells.Material and methodsThe human breastmilk was collected from six healthy breastfeeding women and transported to the laboratory under aseptic conditions. The breastmilk cells were isolated then cultured. After 72 h, the human breastmilk stem cells reached confluence then cleaned up and isolated in serum-free media (spheroid) to allow serial passaging every 48 h. The acquisition stem cell was made with flow cytometry. The cells were divided into hBSC secretomes under hypoxia (A) and non-hypoxia (B) and analyzed for LC-MS to identify the peptide structure.ResultsThe human breastmilk cells contained several mesenchymal stem-like cells in density 2.4 × 106 cell/mL for hypoxia and 2 × 106 cell/mL for non-hypoxia conditions. The human breastmilk stem cell surface markers derived from the third cell passage process were 93.77% for CD44, 98.69% for CD73, 88.45% for CD90, and 96.30% for CD105. The protein level of secretome mesenchymal stem -like cells under hypoxia was measured at 5.56 μg/mL and 4.28 μg/mL for non-hypoxia. The liquid chromatography-mass spectrometry analysis identified 130 and 59 peptides from hypoxia and non-hypoxia of the human breastmilk stem cell secretome sequentially. Some important proteomics structures were found in the hypoxic human breastmilk stem cell secretome, such as transforming growth factor-β, VE-cadherin, and caspase.ConclusionThe human breastmilk cells contain mesenchymal stem-like cells and a high concentration of CD44, CD73, CD90, and CD105 as surface markers at third passage culture. The hypoxic hBSC secretome produces a higher protein level compare to non-hypoxia. The transforming growth factor -β was found in the hypoxic hBSC secretome as a modulator of VEGF-mediated angiogenesis.  相似文献   

13.
14.
The aim of this study was to investigate the changes of SDF-1α and ILK expression in mouse retinal pigment epithelium (RPE) cells in response to hypoxia, and the effect of 17-Allylamino-17-demethoxygeldanamycin (17-AAG), a heat shock protein 90 (Hsp90) inhibitor, on the hypoxia-induced expression of SDF-1α and ILK. RPE cells were cultured with 200 μmol/L cobalt chloride (CoCl2) for different times (1, 3, 6, 12, 24, 72 h) to imitate chemical hypoxia. Pretreatment of 17-AAG was 1 h prior to hypoxic insult. Cellular viability after 17-AAG treatment was assessed by MTT assay, and the changes of SDF-1α and ILK expression were examined by RT-PCR and Western blot. Up-regulation of SDF-1α and ILK expression in response to hypoxia was observed. One hour pretreatment of 17-AAG could remarkably decreased the hypoxia-induced SDF-1α and ILK expression in vitro. Our results indicated that SDF-1α and ILK involved in the hypoxic response of RPE cells, and 1 h pretreatment of 17-AAG had an inhibitive effect on the hypoxia-induced SDF-1α and ILK expression.  相似文献   

15.
To identify proteins involved in melanoma metastasis mechanisms, comparative proteomic studies were undertaken on B16F10 and B16Bl6 melanoma cell lines and their subsequent syngenic primary tumours as pulmonary metastases were present only in the mice bearing a B16Bl6 tumour. 2DE analyses followed by MALDI-TOF identification showed variations of 6 proteins in vitro and 13 proteins in vivo. Differential expressed proteins in tumours were related to energy production and storage. Two differentially expressed proteins which had not been previously associated to melanoma progression, annexin A1 (ANXA1) and creatine kinase B (CKB), were found both in cells and in tumours. To characterize ANXA1 involvement in melanoma B16 dissemination, we reduced ANXA1 protein level by siRNA and observed a significant decrease of B16Bl6 cell invasion through Matrigel coated chambers. We further demonstrated that the presence of several formyl peptide receptors (FPR1, FPRrs1 and 2) revealed by qRT-PCR, played a role in B16 invasion: incubation of B16Bl6 cells with the FPR agonist (fMLP) or antagonist (tBOC) enhanced or decreased Matrigel coated chamber invasion respectively, with a correlation of ANXA1 levels in both treatments. As ANXA1 could bind to FPRs, this should amplify invasion and enhance melanoma dissemination.  相似文献   

16.
Phaeodactylum tricornutum plastid is surrounded by four membranes, and its protein composition and function remain mysterious. In this study, the P. tricornutum plastid-enriched fraction was obtained and 2850 proteins were identified, including 92 plastid-encoded proteins, through label-free quantitative proteomic technology. Among them, 839 nuclear-encoded proteins were further determined to be plastidial proteins based on the BLAST alignments within Plant Proteome DataBase and subcellular localization prediction, in spite of the strong contamination by mitochondria-encoded proteins and putative plasma membrane proteins. According to our proteomic data, we reconstructed the metabolic pathways and highlighted the hybrid nature of this diatom plastid. Triacylglycerol (TAG) hydrolysis and glycolysis, as well as photosynthesis, glycan metabolism, and tocopherol and triterpene biosynthesis, occur in the plastid. In addition, the synthesis of long-chain acyl-CoAs, elongation, and desaturation of fatty acids (FAs), and synthesis of lipids including TAG are confined in the four-layered-membrane plastid based on the proteomic and GFP-fusion localization data. The whole process of generation of docosahexaenoic acid (22:6) from palmitic acid (16:0), via elongation and desaturation of FAs, occurs in the chloroplast endoplasmic reticulum membrane, the outermost membrane of the plastid. Desaturation that generates 16:4 from 16:0 occurs in the plastid stroma and outer envelope membrane. Quantitative analysis of glycerolipids between whole cells and isolated plastids shows similar composition, and the FA profile of TAG was not different. This study shows that the diatom plastid combines functions usually separated in photosynthetic eukaryotes, and differs from green alga and plant chloroplasts by undertaking the whole process of lipid biosynthesis.  相似文献   

17.
Glycosphingolipid-enriched microdomains (GEM) are membrane entities that concentrate glycosylphosphatiolylinositol(GPI)-anchored, acylated and membrane proteins important for immune receptor signaling. Using rat leukemic cell line RNK-16 we have initiated proteomic studies of microdomains in natural killer (NK) cells. Isolated plasma membranes were treated with Brij 58, or Nonidet-P40, or sodium carbonate. Extracts were separated by sucrose density gradient centrifugation into very light membrane, medium light membrane and heavy fractions, and a complete protein profile was analyzed by tandem mass spectrometry. Up to 250 proteins were unambiguously identified in each analyzed fraction. The first study of the proteome of NK cell GEM revealed several new aspects including identification of molecules not expected to be expressed in rat NK cells (e.g., NAP-22) or associated with GEM (e.g., NKR-P1, CD45, CD2). Moreover, it provided clear data consolidating controversial views concerning the occurrence of major histcompatibility complex glycoproteins and RT6.1/CD73/CD38 complex in NK cells. Our results also identified a large number of receptors as candidates for future functional studies.  相似文献   

18.
During pulmonary edema, the alveolar space is exposed to a hypoxic environment. The integrity of the alveolar epithelial barrier is required for the reabsorption of alveolar fluid. Tight junctions (TJ) maintain the integrity of this barrier. We set out to determine whether hypoxia creates a dysfunctional alveolar epithelial barrier, evidenced by an increase in transepithelial electrical conductance (G(t)), due to a decrease in the abundance of TJ proteins at the plasma membrane. Alveolar epithelial cells (AEC) exposed to mild hypoxia (Po(2) = 50 mmHg) for 30 and 60 min decreased occludin abundance at the plasma membrane and significantly increased G(t). Other cell adhesion molecules such as E-cadherin and claudins were not affected by hypoxia. AEC exposed to hypoxia increased superoxide, but not hydrogen peroxide (H(2)O(2)). Overexpression of superoxide dismutase 1 (SOD1) but not SOD2 prevented the hypoxia-induced G(t) increase and occludin reduction in AEC. Also, overexpression of catalase had a similar effect as SOD1, despite not detecting any increase in H(2)O(2) during hypoxia. Blocking PKC-ζ and protein phosphatase 2A (PP2A) prevented the hypoxia-induced occludin reduction at the plasma membrane and increase in G(t). In summary, we show that superoxide, PKC-ζ, and PP2A are involved in the hypoxia-induced increase in G(t) and occludin reduction at the plasma membrane in AEC.  相似文献   

19.
20.
B cells play an essential role in the immune response. Upon activation they may differentiate into plasma cells that secrete specific antibodies against potentially pathogenic non-self antigens. To identify the cellular proteins that are important for efficient production of these antibodies we set out to study the B cell differentiation process at the proteome level. We performed an in-depth proteomic study to quantify dynamic relative protein expression patterns of several hundreds of proteins at five consecutive time points after lipopolysaccharide-induced activation of B lymphocytes. The proteome analysis was performed using a combination of stable isotope labeling using [13C6]leucine added to the murine B cell cultures, one-dimensional gel electrophoresis, and LC-MS/MS. In this study we identified 1,001 B cell proteins. We were able to quantify the expression levels of a quarter of all identified proteins (i.e. 234) at each of the five different time points. Nearly all proteins revealed changes in expression patterns. The quantitative dataset was further analyzed using an unbiased clustering method. Based on their expression profiles, we grouped the entire set of 234 quantified proteins into a limited number of 12 distinct clusters. Functionally related proteins showed a strong correlation in their temporal expression profiles. The quality of the quantitative data allowed us to even identify subclusters within functionally related classes of proteins such as in the endoplasmic reticulum proteins that are involved in antibody production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号