首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
T Rhen  A Schroeder  J T Sakata  V Huang  D Crews 《Heredity》2011,106(4):649-660
Temperature-dependent sex determination (TSD) was first reported in 1966 in an African lizard. It has since been shown that TSD occurs in some fish, several lizards, tuataras, numerous turtles and all crocodilians. Extreme temperatures can also cause sex reversal in several amphibians and lizards with genotypic sex determination. Research in TSD species indicates that estrogen signaling is important for ovary development and that orthologs of mammalian genes have a function in gonad differentiation. Nevertheless, the mechanism that actually transduces temperature into a biological signal for ovary versus testis development is not known in any species. Classical genetics could be used to identify the loci underlying TSD, but only if there is segregating variation for TSD. Here, we use the ‘animal model'' to analyze inheritance of sexual phenotype in a 13-generation pedigree of captive leopard geckos, Eublepharis macularius, a TSD reptile. We directly show genetic variance and genotype-by-temperature interactions for sex determination. Additive genetic variation was significant at a temperature that produces a female-biased sex ratio (30 °C), but not at a temperature that produces a male-biased sex ratio (32.5 °C). Conversely, dominance variance was significant at the male-biased temperature (32.5 °C), but not at the female-biased temperature (30 °C). Non-genetic maternal effects on sex determination were negligible in comparison with additive genetic variance, dominance variance and the primary effect of temperature. These data show for the first time that there is segregating variation for TSD in a reptile and consequently that a quantitative trait locus analysis would be practicable for identifying the genes underlying TSD.  相似文献   

2.
Sex is determined genetically in some species (genotypic sex determination, or GSD) and by the environment (environmental sex determination, or ESD) in others. The two systems are generally viewed as incompatible alternatives, but we have found that sex determination in a species of montane lizard ( Bassiana duperreyi , Scincidae) in south-eastern Australia is simultaneously affected by sex chromosomes and incubation temperatures, as well as being related to egg size. This species has strongly heteromorphic sex chromosomes, and yet incubation at thermal regimes characteristic of cool natural nests generates primarily male offspring. We infer that incubation temperatures can over-ride genetically determined sex in this species, providing a unique opportunity to explore these alternative sex-determining systems within a single population.  相似文献   

3.
Sex allocation theory predicts that mothers should adjust their sex-specific reproductive investment in relation to the predicted fitness returns from sons versus daughters. Sex allocation theory has proved to be successful in some invertebrate taxa but data on vertebrates often fail to show the predicted shift in sex ratio or sex-specific resource investment. This is likely to be partly explained by simplistic assumptions of vertebrate life-history and mechanistic constraints, but also because the fundamental assumption of sex-specific fitness return on investment is rarely supported by empirical data. In short-lived species, the time of hatching or parturition can have a strong impact on the age and size at maturity. Thus, if selection favors adult sexual-size dimorphism, females can maximize their fitness by adjusting offspring sex over the reproductive season. We show that in mallee dragons, Ctenophorus fordi, date of hatching is positively related to female reproductive output but has little, if any, effect on male reproductive success, suggesting selection for a seasonal shift in offspring sex ratio. We used a combination of field and laboratory data collected over two years to test if female dragons adjust their sex allocation over the season to ensure an adaptive match between time of hatching and offspring sex. Contrary to our predictions, we found no effect of laying date on sex ratio, nor did we find any evidence for within-female between-clutch sex-ratio adjustment. Furthermore, there was no differential resource investment into male and female offspring within or between clutches and sex ratios did not correlate with female condition or any partner traits. Consequently, despite evidence for selection for a seasonal sex-ratio shift, female mallee dragons do not seem to exercise any control over sex determination. The results are discussed in relation to potential constraints on sex-ratio adjustment, alternative selection pressures, and the evolution of temperature-dependent sex determination.  相似文献   

4.
1. Understanding individual and population responses to climate change is emerging as an important challenge. Because many phenotypic traits are sensitive to environmental conditions, directional climate change could significantly alter trait distribution within populations and may generate an evolutionary response. 2. In species with environment-dependent sex determination, climate change may lead to skewed sex ratios at hatching or birth. However, there are virtually no empirical data on the putative link between climatic parameters and sex ratios from natural populations. 3. We monitored a natural population of viviparous lizards with temperature-dependent sex determination (Niveoscincus ocellatus) over seven field seasons. Sex ratios at birth fluctuated significantly among years and closely tracked thermal conditions in the field, with the proportion of male offspring increasing in colder years. 4. This is the first study to demonstrate the effect of local climatic conditions (e.g. temperature) on offspring sex ratio fluctuations in a free-living population of a viviparous ectotherm. A succession of warmer-than-usual years (as predicted under many climate-change scenarios) likely would generate female-biased sex ratios at birth, while an increase in interannual variation (as also predicted under climate change scenarios) could lead to significant fluctuations in cohort sex ratios. If cohort sex ratio bias at birth leads to adult sex ratio bias, long-term directional changes in thermal conditions may have important effects on population dynamics in this species.  相似文献   

5.
The material was analyzed on the main problems of genetics of mammalian spermatogenesis, sex determination, its reversion and other defects from the standpoint of current cytological and molecular-genetic concepts of functional activity of the parental genomes after fertilization and behavior of their chromosomes at the early embryonic stages. On the basis of this analysis, a hypothesis has been proposed, which explains a high percentage (50% or more) of early embryonic mortality in placental mammals under the conditions of natural and extracorporeal fertilization, as well as regular appearance of defects in the course of natural sex determination, including the appearance of representatives of both sex minorities. We do not make pretense to comprehensive and deep analysis of male gametogenesis and sex determination in mammals.  相似文献   

6.
7.
Sex determination in the Nile tilapia (Oreochromis niloticus) is thought to be an XX-XY (male heterogametic) system controlled by a major gene. We searched for DNA markers linked to this major locus using bulked segregant analysis. Ten microsatellite markers belonging to linkage group 8 were found to be linked to phenotypic sex. The putative Y-chromosome alleles correctly predict the sex of 95% of male and female individuals in two families. Our results suggest a major sex-determining locus within a few centimorgans of markers UNH995 and UNH104. A third family from the same population showed no evidence for linkage of this region with phenotypic sex, indicating that additional genetic and/or environmental factors regulate sex determination in some families. These markers have immediate utility for studying the strength of different Y chromosome alleles, and for identifying broodstock carrying one or more copies of the Y haplotype.  相似文献   

8.
9.
The 'large-X effect' suggests that sex chromosomes play a disproportionate role in adaptive evolution. Theoretical work indicates that this effect may be most pronounced in genetic systems with female heterogamety under both good-genes and Fisher's runaway models of sexual selection (males ZZ, females ZW). Here, I use a comparative genomic approach (alignments of several thousands of chicken-zebra finch-human-mouse-opossum orthologues) to show that avian Z-linked genes are highly overrepresented among those bird-mammalian orthologues that show evidence of accelerated rate of functional evolution in birds relative to mammals; the data suggest a twofold excess of such genes on the Z chromosome. A reciprocal analysis of genes accelerated in mammals found no evidence for an excess of X-linkage. This would be compatible with theoretical expectations for differential selection on sex-linked genes under male and female heterogamety, although the power in this case was not sufficient to statistically show that 'large-Z' was more pronounced than 'large-X'. Accelerated Z-linked genes include a variety of functional categories and are characterized by higher non-synonymous to synonymous substitution rate ratios than both accelerated autosomal and non-accelerated genes. This points at a genomic 'large-Z effect', which is widespread and of general significance for adaptive divergence in birds.  相似文献   

10.
Genetic mapping of Y-chromosomal DNA markers in Pacific salmon   总被引:11,自引:0,他引:11  
Devlin RH  Biagi CA  Smailus DE 《Genetica》2001,111(1-3):43-58
Sex chromosomes in fish provide an intriguing view of how sex-determination mechanisms evolve in vertebrates. Many fish species with single-factor sex-determination systems do not have cytogenetically-distinguishable sex chromosomes, suggesting that few sex-specific sequences or chromosomal rearrangements are present and that sex-chromosome evolution is thus at an early stage. We describe experiments examining the linkage arrangement of a Y-chromosomal GH pseudogene (GH-Y) sequence in four species of salmon (chum, Oncorhynchus keta; pink, O. gorbuscha; coho, O. kisutch; chinook, O. tshawytscha). Phylogenetic analysis indicates that GH-Y arose early in Oncorhynchus evolution, after this genus had diverged from Salmo and Salvelinus. However, GH-Y has not been detected in some Oncorhynchus species (O. nerka, O. mykiss and O. clarki), consistent with this locus being deleted in some lineages. GH-Y is tightly linked genetically to the sex-determination locus on the Y chromosome and, in chinook salmon, to another Y-linked DNA marker OtY1. GH-Y is derived from an ancestral GH2 gene, but this latter functional GH locus is autosomal or pseudoautosomal. YY chinook salmon are viable and fertile, indicating the Y chromosome is not deficient of vital genetic functions present on the X chromosome, consistent with sex chromosomes that are in an early stage of divergence.  相似文献   

11.
Cichlid species of the genus Oreochromis vary in their genetic sex-determination systems. In this study, we used microsatellite DNA markers to characterize the sex-determination system in Oreochromis tanganicae. Markers on linkage group 3 were associated with phenotypic sex, with an inheritance pattern typical of a female heterogametic species (WZ-ZZ). Further, locus duplication was observed for two separate microsatellite markers on the sex chromosome. These results further advance our understanding of the rapidly evolving sex-determination systems among these closely related tilapia species.  相似文献   

12.
In A. vulgare sex is usually determined either by a cytoplasmic feminizing factor (F symbiotic bacteria) or by another feminizing factor (f) which behaves like a mobile element of DNA and which seems to correspond to a fragment of bacterial DNA. By inhibiting the expression of male genes carried by the Z heterochromosome, these feminizing factors induce differentiation of neo-females [ZZ(+F) or ZZ(+f)]. Such a mechanism leads to the production of progenies whose sex ratio is highly female biased. In some populations in which F and/or f factors are present, genetic females (WZ) have disappeared and all individuals (males and females) are genetic males. However in other populations, cohabitation of ZZ(+f) neo-females and females in all points similar to genetic females is observed. Such a situation may be unstable and is not likely to be explainable only by migrations of individuals from distinct populations. Owing to certain types of crosses, in particular those which involve an artificial neo-male ( = female reversed into a functional male by an implant of androgenic gland) we show here that the f factor can be transmitted as a Mendelian gene. In these progenies ZfZ females may appear: like WZ females, they breed broods whose sex ratio is unbiased. The hypothesis that the “F bacteria—A. vulgare” symbiosis may have led, after a complex co-evolutive process (F bacteria → f mobile element → insertion of f on Z heterochromosome), to the creation (from a male genotype) of a female genotype, is put forward. The consequences of such a phenomenon on the composition and the evolution of A. vulgare populations are examined.  相似文献   

13.
Temperature regimes of 17 ± 1°C and 21 ±1°C early in development of pejerrey Odontesthes bonariensis produced nearly all females, whereas at 25 ± 1°C variable, sometimes male-biased sex-ratios were obtained. The critical period of thermolabile sex determination seemed to occur between 25 and 50 days post-hatch (about 11 and 21 mm s.i.) at low temperatures (17–20°C) and between 0 and 25 days (about 7 and 15 mm) at high temperatures (22–25°C). The likelihood of expression of temperature-dependent sex determination in natural populations and the possible adaptive significance of environmental sex determination in pejerrey are discussed.  相似文献   

14.
15.
The adaptive significance of temperature-dependent sex determination (TSD) in reptiles remains unknown decades after TSD was first identified in this group. Concurrently, there is growing concern about the effect that rising temperatures may have on species with TSD, potentially producing extremely biased sex ratios or offspring of only one sex. The current state-of the-art in TSD research on sea turtles is reviewed here and, against current paradigm, it is proposed that TSD provides an advantage under warming climates. By means of coadaptation between early survival and sex ratios, sea turtles are able to maintain populations. When offspring survival declines at high temperatures, the sex that increases future fecundity (females) is produced, increasing resilience to climate warming. TSD could have helped reptiles to survive mass extinctions in the past via this model. Flaws in research on sex determination in sea turtles are also identified and it is suggested that the development of new techniques will revolutionize the field.  相似文献   

16.
Sex in many organisms is a dichotomous phenotype--individuals are either male or female. The molecular pathways underlying sex determination are governed by the genetic contribution of parents to the zygote, the environment in which the zygote develops or interaction of the two, depending on the species. Systems in which multiple interacting influences or a continuously varying influence (such as temperature) determines a dichotomous outcome have at least one threshold. We show that when sex is viewed as a threshold trait, evolution in that threshold can permit novel transitions between genotypic and temperature-dependent sex determination (TSD) and remarkably, between male (XX/XY) and female (ZZ/ZW) heterogamety. Transitions are possible without substantive genotypic innovation of novel sex-determining mutations or transpositions, so that the master sex gene and sex chromosome pair can be retained in ZW-XY transitions. We also show that evolution in the threshold can explain all observed patterns in vertebrate TSD, when coupled with evolution in embryonic survivorship limits.  相似文献   

17.
Theoretical models suggest that in changing environments natural selection on two traits, maternal nesting behaviour and pivotal temperatures (those that divide the sexes) is important for maintaining viable offspring sex ratios in species with environmental sex determination (ESD). Empirical evidence, however, is lacking. In this paper, we provide such evidence from a study of clinal variation in four sex-determining traits (maternal nesting behaviour, pivotal temperatures, nesting phenology, and nest depth) in Physignathus lesueurii, a wide-ranging ESD lizard inhabiting eastern Australia. Despite marked differences in air and soil temperatures across our five study sites spanning 19° latitude and 1200 m in elevation, nest temperatures did not differ significantly among sites. Lizards compensated for climatic differences chiefly by selecting more open nest sites with higher incident radiation at cooler sites. Clinal variation in the onset of nesting also compensated for climatic differences, but to a lesser extent. There was no evidence of compensation through pivotal temperatures or nest depth. More broadly, our results extend to the egg stage the life history prediction that behaviour is the chief compensatory mechanism for climatic differences experienced by species spanning environmental extremes. Furthermore, our study was unique in revealing that nest site choice influenced mainly the daily range in nest temperatures, rather than mean temperatures, in a shallow-nesting reptile. Finally, indirect evidence suggests that the cue used by nesting lizards was radiation or temperature (through basking or assessing substrate temperatures), not visual detection of canopy openness. We conclude that maternal nesting behaviour and nesting phenology are traits subject to sex ratio selection in P. lesueurii, and thus, must be considered among the repertoire of ESD species for responding to climate change.  相似文献   

18.
Abstract.— Systems with genetic variation for the primary sex ratio are important for testing sex-ratio theory and for understanding how this variation is maintained. Evidence is presented for heritable variation of the primary sex ratio in the harpacticoid copepod Tigriopus californicus. Variation in the primary sex ratio among families cannot be accounted for by Mendelian segregation of sex chromosomes. The covariance in sex phenotype between full-sibling clutches and between mothers and offspring suggests that this variation has a polygenic basis. Averaged over four replicates, the full-sibling heritability of sex tendency is 0.13 ± 0.040; and the mother-offspring heritability of sex tendency is 0.31 ± 0.216. Genetic correlations in the sex phenotype across two temperature treatments indicate large genotype-by-temperature interactions. Future experiments need to distinguish between zygotic, parental, or cytoplasmic mechanisms of sex determination in T. californicus.  相似文献   

19.
Teleost fish are the most diverse group of vertebrates and provide opportunities to study the evolution of sex determination (SD) systems. Using genomic and functional analyses, we identified a male-specific duplication of anti-Müllerian hormone (amh) gene as the male master sex-determining (MSD) gene in Sebastes schlegelii. By resequencing 10 males and 10 females, we characterized a 5 kb-long fragment in HiC_Scaffold_12 as a male-specific region, which contained an amh gene (named amhy). We then demonstrated that amhy is a duplication of autosomal amh that was later translocated to the ancestral Y chromosome. amha and amhy shared high-nucleotide identity with the most significant difference being two insertions in intron 4 of amhy. Furthermore, amhy overexpression triggered female-to-male sex reversal in S. schlegelii, displaying its fundamental role in driving testis differentiation. We developed a PCR assay which successfully identified sexes in two species of northwest Pacific rockfish related to S. schlegelii. However, the PCR assay failed to distinguish the sexes in a separate clade of northeast Pacific rockfish. Our study provides new examples of amh as the MSD in fish and sheds light on the convergent evolution of amh duplication as the driving force of sex determination in different fish taxa.  相似文献   

20.
Environmental sex determination in a splash pool copepod   总被引:3,自引:0,他引:3  
The sex-determining mechanism has important demographic and genetic consequences by virtue of its effect on the population sex ratio. Here we investigate the effect of temperature dependent sex determination (TSD) on the primary sex ratio of the harpacticoid copepod, Tigriopus californicus . At the two experimental temperatures (15° and 22°C) used in this study, the primary sex ratio is almost always biased in favour of males. Higher temperatures induce masculinization and the change in sex ratio is not caused by differential mortality of the sexes. The mean level of TSD in the population is small (proportion of males increases by ~5% between 15° and 22°C) because only one-third of the families actually exhibit a significant sex-ratio response while the rest of the population is insensitive to temperature. A comparison of the primary sex ratio and the level of TSD between two locations reveals few differences among populations. Finally, individuals still exhibited TSD after having been maintained under constant temperature conditions in the lab for several generations. In addition the proportion of temperature-sensitive individuals remained unchanged. This suggests that the observed level of TSD is not an artefact of testing field-captured individuals in a novel laboratory environment. At this point the adaptive significance of temperature-dependent sex determination in T. californicus remains unknown.  © 2002 The Linnean Society of London, Biological Journal of the Linnean Society , 2002, 76 , 511–520.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号