首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Radioactive leucine was injected into the portal vein of rats followed after 15 seconds by a 180 fold excess of nonradioactive leucine. An albumin-like protein in the liver became highly labelled within 15 minutes after injection. After 150 minutes, the radioactivity in the albumin-like protein had decreased to one tenth. In the serum, radioactively labelled albumin started to appear after 15 minutes and increased there-after up to 150 minutes after injection. Radioactivity in albumin within the liver remained constant at a low level. These results suggest that the albumin-like protein is a biological precursor protein of serum albumin, i.e. a proalbumin.  相似文献   

2.
Immunologically isolated albumin from rat liver microsomes separates on DEAE-cellulose into almost equal proportions of an albumin-like protein and authentic albumin. Besides this similarity in immunological properties, both albumin species have almost the same molecular weight and amino acid composition. Furthermore, the amino acid sequences appear to be identical apart from an additional pentapeptide at the N-terminus of the albumin-like protein. It is suggested that the albumin-like protein represents a precursor which is converted to albumin by release of a pentapeptide from the N-terminus.  相似文献   

3.
1. The fractionation of intracellular albumin labelled with radioactive l-leucine was studied in rat liver by means of isoelectric focusing. 2. Isoelectric fractionation was compared with ion-exchange chromatography for purification of radioactive intracellular albumin obtained by antibody precipitation. Similar results were obtained with both methods of separation. Purified albumin contains only a minor amount of the radioactivity. The remainder is associated with albumin-like protein(s). 3. The albumin-like protein has the properties of a precursor of plasma albumin. 4. The distribution and turnover of radioactive albumin in rough and smooth microsomal fractions and in a Golgi-rich fraction were studied. 5. It is concluded that newly synthesized albumin, as such, appears only momentarily if at all in any intracellular structure before its appearance in the plasma. 6. It is also concluded that the rate-limiting step in the secretion of plasma albumin is the conversion of precursor(s) into albumin. We can find no evidence to suggest that there is any significant transport of albumin, as such, during the course of secretion.  相似文献   

4.
1. A protein(s) of rat liver (precipitated from soluble extracts of the microsomal fraction by anti-albumin) yields albumin after limited hydrolysis by trypsin. 2. Evidence that the product of limited tryptic hydrolysis is albumin, is based upon ion-exchange chromatography, electrofocusing and peptide `mapping'. 3. The albumin `precursor' is recognized by anti-albumin and is apparently not distinguished from albumin by anti-albumin. 4. A small peptide is liberated from the presumptive albumin precursor during limited tryptic hydrolysis. This peptide is labelled by arginine, but not by leucine, lysine or methionine. 5. These results support our previous suggestion based on kinetic evidence that the albumin-like protein(s), in the anti-albumin precipitate from rat liver, is an albumin precursor.  相似文献   

5.
Uptake of long-chain fatty acid methyl esters by mammalian cells   总被引:8,自引:0,他引:8  
Albumin-bound long-chain fatty acid methyl esters (ME) were taken up and utilized by Ehrlich ascites tumor cells and slices of rat heart, liver, and kidney. Much more ME than albumin was taken up by the tumor cells, indicating that ME dissociated from the carrier protein during their uptake. 70-80% of the radioactivity associated with the cells after 1 min of incubation at 37 degrees C remained as ME. The results of studies with metabolic inhibitors and glucose suggest that uptake of ME is an energy-independent process. Changes in incubation medium pH between 7.8 and 6.5 did not markedly alter uptake of ME. Cells incubated with FFA and methanol did not synthesize ME. These findings indicate that ME are taken up intact, and they suggest that the presence of an anionic carboxyl group is not essential for the binding of a long-chain aliphatic hydrocarbon to a mammalian cell. When incubation with labeled ME was continued for 1 hr, increasing amounts of radioactivity were recovered in FFA, phospholipids, neutral lipid esters, and CO(2). ME radioactivity associated with the cells after a brief initial incubation was released in the form of ME and FFA when the cells were incubated subsequently in a medium containing albumin. If the second incubation medium contained no albumin, most of the ME radioactivity initially associated with the cells was incorporated into phospholipids, neutral lipid esters, and CO(2). These results suggest that much of the ME which is taken up, is hydrolyzed to FFA, and that the fatty acids derived from ME are available for further metabolism.  相似文献   

6.
The fractional protein synthesis rate (FSR) of tissue (liver, digestive tract, muscle and whole fish) proteins was measured in rainbow trout acclimated to 9 and 18 degrees C after a pulse injection of [U-14C] L-leucine. In each of the tissues two FSRs were calculated based on a different estimate of the specific radioactivity of leucine in the precursor compartment for protein synthesis. Whole fish protein synthesis (WFPS) was estimated to be 7 and 7.6 g protein per kg body weight and per day respectively at 10 and 18 degrees C. Muscle and digestive tract contributed the most (more than 30%) to WFPS. The rate of protein turnover in whole fish was very low, as in the muscle, when compared to liver and digestive tract.  相似文献   

7.
Analbuminemic rats (NAR) are a mutant strain in which splicing of the albumin mRNA is blocked due to a seven-base-pair deletion in an intron of the albumin gene. NAR liver contains a few hepatocytes that react with anti-rat albumin antibody (Alb+ hepatocytes), and these cells increase in number during aging and on treatment with hepatocarcinogens. To characterize these Alb+ hepatocytes, we examine their albumin mRNA, the biochemical specificity of their albumin, and its intracellular distribution. Signals of albumin mRNA were observed in a few hepatocytes by in situ hybridization. Moreover, a small amount of cytoplasmic albumin mRNA was detected by RNA blot analysis in the liver of aged NAR and NAR treated with 3'-methyl-4-diaminoazobenzene (DAB). Immunoelectron microscopic examination revealed the cisternae of the rough and smooth endoplasmic reticula, Golgi complexes, and secretory vesicles of the Alb+ hepatocyte of NAR being filled with material that reacted with anti-rat albumin antibody. These facts suggested that albumin was gradually synthesized in Alb+ hepatocytes but that its secretion was disturbed. The albumin-like proteins of NAR were shown by Western blot analysis to consist of three species of 68 kDa, 50 kDa, and 25 kDa proteins. The 50 kDa albumin was thought to be formed by exon-skipping splicing of the albumin mRNA precursor, which was recently reported by Shalaby and Shafritz (Proc. Natl. Acad. Sci. USA 87, 2652-2656 (1990)). The 25 kDa protein was suspected to be formed by fragmentation of the 50 kDa protein.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
The separation of intracellular serum albumin from rat liver   总被引:6,自引:4,他引:2  
1. Antibody precipitation of serum albumin from rat liver extracts yields impure preparations of the protein. 2. When rat liver is labelled with l-[1-(14)C]leucine, antibody precipitation of albumin leads to material that is contaminated with a protein or proteins of very high specific radioactivity. Only 10-25% of the radioactivity of the antibody precipitate is associated with serum albumin. 3. A chromatographic procedure is described that can be used to separate radiochemically pure serum albumin from antibody precipitates obtained from extracts of rat liver. 4. Extracellular albumin secreted by liver slices yields a precipitate with antibody which contains much less radioactive impurity. About 70-90% of the radioactivity is associated with serum albumin. Serum albumin separated by antibody precipitation from rat serum labelled in vivo was not contaminated with the radiochemical impurities associated with intracellular albumin. 5. A simple method is described of obtaining the content of serum albumin in rat liver extracts by the technique of isotope dilution and ion-exchange chromatography.  相似文献   

9.
After a single injection of formaldehyde-treated 131 I-albumin into the heart, the incorporation of the labelled protein by liver (% of total injected radioactivity/% of body weight of the organ) was far greater than in other organs. In kidney and spleen it was respectively six and three times greater than in lungs, intestine, testis and fatty body. No radioactivity was found in brain. The radioactivity in liver and kidney reached a peak 30 minutes after the injection, and quickly decreased during the following four hours. In the 27,000 g × ten minute particles recovered from liver homogenates of animals sacrificed at various times after injection, the rate of 131 I-albumin hydrolysis in vitro and the percentage of trichloroacetic acid soluble radioactivity at zero time of incubation showed different stages of intraparticulate hydrolytic activity. The incorporation and intraparticulate hydrolysis in toad kidney was very low if compared with that of toad liver or mouse kidney; however the catheptic specific activity in toad kidney doubles that of mouse kidney. Isolated toad liver was perfused with total blood, containing 131 I-albumin, for five hours at 22°C in a special chamber. In this conditions, 16% of the labelled albumin was hydrolyzed by the liver.  相似文献   

10.
H Kappus  H M Bolt  H Remmer 《Steroids》1973,22(2):203-225
During incubation of 6,7-3H-ethynylestradiol with rat liver microsomes up to 20 % of the radioactivity was bound irreversibly to the microsomal proteins. Incubations in presence of albumin resulted in a further radioactive labelling of the albumin. The irreversible nature of the steroid-protein bond was established by solvent extraction and charcoal treatment. Further evidence was obtained after hydrolyzing the microsomal protein with trypsin and submitting the labelled tryptic peptides to ion exchange chromatography and electrophoresis. The labelled albumin was applied to sephadex gel filtration which showed the association of the ethynylestradiol radioactivity to the albumin peak.The binding reaction required supply of NADPH, could be stimulated by pretreatment of the animals with phenobarbital and was inhibited by CO and SKF 525 A. On these characteristics the concept was based that, in analogy to the well known binding of estradiol and estrone, 2hydroxylation is also an essential prerequisite for the binding of ethynylestradiol. The concept was confirmed by trapping off the 2-hydroxy-ethynylestradiol with glutathione, which led to a decrease of the ethynylestradiol-protein binding.Further evidence resulted from experiments in vivo, dosing rats with 6,7-3H-ethynylestradiol and 6,7-3H-estradiol 48 hrs prior to sacrifice and examining the amount of radioactivity irreversibly bound to the liver endoplasmic reticulum. 3H-ethynylestradiol caused a radioactive labelling of microsomes twice as much as that after 3H-estradiol.  相似文献   

11.
The significance of changes in rates of synthesis, export, and degradation of proteins during liver regeneration was assessed. (a) Proteins were pulse labeled by the intravenous injection of radioactive leucine and, 5 min later, pactamycin (an inhibitor of the initiation of protein synthesis). One-half of the protein radioactivity was lost from the normal liver within 3 hours. From the radioactivity of the plasma proteins at that time and a study of the disappearance of these proteins from the circulation, it was calculated that 28% of the newly synthesized proteins were exported. Serum albumin accounted for a third of the exported proteins. Thirty-six hours after partial hepatectomy the proportion of albumin to total protein synthesis remained constant, while that of the other plasma proteins increased by 50%. The fraction of the newly synthesized proteins retained by the liver after 3 hours decreased by 20%. (b) During the first 36 hours of liver regeneration the average rates of protein degradation slowed down to one-half the normal values. This was determined either by the loss of radioactivity from total protein (or the guanidino-C of protein-bound arginine) in livers labeled with [14C]bicarbonate, or calculated as the balance between protein synthesis and net protein gain. (c) From these results, and those of our previous study of the protein synthetic machinery of normal and regenerating livers (Scornik, O.A. (1974)J. Biol. Chem. 249, 3876-3883), we conclude that changes in the rate of protein degradation are the single most important factor determining the increase in protein content during liver compensatory growth.  相似文献   

12.
The intracellular movement, following uptake of 125I-labelled denatured serum albumin into nonparenchymal liver cells, was followed by means of subcellular fractionation. Isolated nonparenchymal rat liver cells were prepared by means of differential centrifugation. The cells were homogenized in a sonifier and the cytoplasmic extract subjected to isopycnic centrifugation in a sucrose gradient. The intracellular movement of the labelled albumin was followed by comparing the distribution profile of radioactivity in the sucrose gradient with those of marker enzymes for plasma membrane and lysosomes. The distribution profiles for radioactivity after the cells had been exposed to the labelled denatured albumin for different time periods indicated that the radioactivity was first associated with subcellular fractions of lower modal densities than the lysosomes. With time of incubation the radioactivity moved towards higher densities. After prolonged incubations in the absence of extracellular labelled denatured albumin the radioactivity peak coincided with that of the lysosomal marker β-acetylglucosaminidase. When the cells were treated with the lysosomal inhibitor leupeptin, degradation of the labelled albumin was decreased, resulting in a massive intracellular accumulation of radioactivity. The radioactivity peak coincided with the peak of activity for the lysosomal marker β-acetylglucosaminidase, suggesting lysosomal degradation.  相似文献   

13.
Conditions were defined under which rates of protein synthesis and degradation could be estimated in alveolar macrophages isolated from rabbits by pulmonary lavage and incubated in the presence of plasma concentrations of amino acids and 5.6 mM-glucose. Phenylalanine was validated as suitable precursor for use in these studies: it was not metabolized appreciably, except in the pathways of protein synthesis and degradation; it entered the cells rapidly; it maintained a stable intracellular concentration; and it was incorporated into protein at measurable rates. When extracellular phenylalanine was raised to a concentration sufficient to minimize dilution of the specific radioactivity of the precursor for protein synthesis with amino acid derived from protein degradation, the specific radioactivity of phenylalanyl-tRNA was only 60% of that of the extracellular amino acid. This relationship was unchanged in cells where proteolysis increased 2.5-fold after uptake and degradation of exogenous bovine serum albumin. In contrast, albumin prevented the decrease in phenylalanine incorporation observed in macrophages deprived of an exogenous source of amino acids. These observations suggested that macrophages preferentially re-utilized amino acids derived from the degradation of endogenous, but not from exogenous (albumin), protein. However, when the extracellular supply of amino acids was restricted, substrates derived from albumin catabolism could support the protein-synthetic pathway.  相似文献   

14.
Previous studies examined the bioavailability and first-pass biotransformation of 3-hydroxy[(3)H]benzo[a]pyrene ([(3)H]-3-OHBaP) in an isolated perfused catfish intestinal model. This work showed that 3-OHBaP, or a metabolite formed in intestine, bound covalently to blood protein. In this study, the blood adducts were characterized in vitro by incubating bovine ferric hemoglobin or albumin with [(3)H]-3OHBaP under various conditions. Incubation of 2 microM [(3)H]-3-OHBaP with hemoglobin for 1 h resulted in 7.49 pmol bound/mg protein, while albumin binding was 1.37 pmol/mg protein. Mild acid hydrolysis released only 5% of the radioactivity from 3-OHBaP-hemoglobin adducts. After gel filtration, the 3-OHBaP-hemoglobin adducts were examined by HPLC analysis. A single peak of radioactivity was detected at the same retention time as the heme component of hemoglobin. Unbound 3-OHBaP was oxidized to BaP-3,6-dione during incubation with ferric hemoglobin. Treatment of hemoglobin with ascorbic acid decreased the formation of hemoglobin adducts by 33%, while hydrogen peroxide treatment increased adduct formation by 44%. Incubation of [(3)H]-BaP-3-beta-D-glucuronide (BaP-3G) with hemoglobin and beta-glucuronidase resulted in greater binding to hemoglobin than incubation with [(3)H]-3-OHBaP alone. The hemoglobin adduct obtained from [(3)H]-BaP-3G also co-migrated with heme. These results indicate that an oxidative process is involved in formation of the heme adduct and that 3-OHBaP or BaP-3G might be a precursor of the bound metabolite.  相似文献   

15.
This study was designed to examine and compare the metabolism of myristic and palmitic acids in cultured rat hepatocytes. [1-(14)C]-Labeled fatty acids were solubilized with albumin at 0.1 mmol/L in culture medium. Incubation with 24-hr cultured hepatocytes was carried out for 12 hr. Myristic acid was more rapidly (P < 0.05) taken up by the cells than was palmitic acid (86.9 +/- 0.9% and 68.3 +/- 5.7%, respectively, of the initial radioactivity was cleared from the medium after 4 hr incubation). Incorporation into cellular lipids, however, was similar after the same time (33.4 +/- 2.8% and 34.9 +/- 9.3%, respectively, of initial radioactivity). In the early phase of the incubation (30 min), myristic acid was more rapidly incorporated into cellular triglycerides than was palmitic acid (7.4 +/- 0.9% and 3.6 +/- 1.9%, respectively, of initial radioactivity). However, after 12 hr incubation, the radioactivity of cellular triglycerides, cellular phospholipids, and secreted triglycerides was significantly higher with palmitic acid as precursor. Myristic acid oxidation was significantly higher than that of palmitic acid (14.9 +/- 2.2% and 2.3 +/- 0.6%, respectively, of the initial radioactivity was incorporated into the beta-oxidation products after 4 hr). Myristic acid was also more strongly elongated to radiolabeled palmitic acid (12.2 +/- 0.8% of initial radioactivity after 12 hr) than palmitic acid was to stearic acid (5.1 +/- 1.3% of initial radioactivity after 12 hr). The combination of elongation and beta-oxidation results in the rapid disappearance of C14:0 in hepatocytes whereas C16:0 is esterified to form glycerolipids. This study provides evidence that myristic acid is more rapidly metabolized in cultured hepatocytes than is palmitic acid.  相似文献   

16.
The intracellular movement, following uptake of 125I-labelled denatured serum albumin into nonparenchymal liver cells, was followed by means of subcellular fractionation. Isolated nonparenchymal rat liver cells were prepared by means of differential centrifugation. The cells were homogenized in a sonifier and the cytoplasmic extract subjected to isopycnic centrifugation in a sucrose gradient. The intracellular movement of the labelled albumin was followed by comparing the distribution profile of radioactivity in the sucrose gradient with those of marker enzymes for plasma membrane and lysosomes. The distribution profiles for radioactivity after the cells had been exposed to the labelled denatured albumin for different time periods indicated that the radioactivity was first associated with subcellular fractions of lower modal densities than the lysosomes. With time of incubation the radioactivity moved towards higher densities. After prolonged incubations in the absence of extracellular labelled denatured albumin the radioactivity peak coincided with that of the lysosomal marker β-acetylglucosaminidase. When the cells were treated with the lysosomal inhibitor leupeptin, degradation of the labelled albumin was decreased, resulting in a massive intracellular accumulation of radioactivity. The radioactivity peak coincided with the peak of activity for the lysosomal marker β-acetylglucosaminidase, suggesting lysosomal degradation.  相似文献   

17.
Rats were injected with [(3)H]leucine, and at various times thereafter labelled albumin was isolated by electrophoresis from their livers and blood plasma. The specific radioactivity of each protein was determined by spectrophotometry and liquid-scintillation spectrometry. Intrahepatic albumin was shown to be identical with plasma albumin by its electrophoretic mobility and antigenicity. It was found that intrahepatic albumin was the direct precursor of plasma albumin. Comparison of their specific radioactivities showed that intrahepatic albumin attained a higher specific radioactivity before plasma albumin. When plasma albumin reached its maximum specific radioactivity, that of intrahepatic albumin had decreased to a similar value. Thereafter, the specific radioactivity of intrahepatic albumin remained lower than that of plasma albumin.  相似文献   

18.
To characterize a previously proposed hepatocyte albumin receptor, we examined the binding of native and defatted 125I-labeled rat albumin to rat liver plasma membranes. After incubation for 30 min, binding was determined from the distribution of radioactivity between membrane pellet and supernatant following initial centrifugation (15000 X g for 15 min), and after repeated cycles of washing with buffer and re-centrifugation. 125I-labeled albumin recovered in the initial membrane pellet averaged only 4% of that incubated. Moreover, this albumin was only loosely associated with the membrane, as indicated by recovery in the pellet of under 0.5% of the counts after three washes. Binding of 125I-labeled albumin to the plasma membranes was no greater than to erythrocyte ghosts, was not inhibited by excess unlabeled albumin, and was not decreased by heat denaturation of the membranes, all suggestive of a lack of specific binding. Failure to observe albumin binding to the membranes was not due to a rapid dissociation rate or 'off-time', as incubations in the presence of sufficient ultraviolet light to promote covalent binding of ligands to receptors did not increase 125I counts bound to the membrane. Finally, affinity chromatography over albumin/agarose gel of solubilized membrane proteins provided no evidence of a membrane protein with a high affinity for albumin. These studies, therefore, do not support the hypothesis that liver cell plasma membranes contain a specific albumin receptor.  相似文献   

19.
When formaldehyde-treated 131I-albumin was injected into mice, the total liver radioactivity did not change significantly from 5 minutes to 60 minutes after injection. There was a progressive increase with time in the amount of radioactivity associated with liver particles which could be released by osmotic shock; the quantity of material tightly bound to particles, but not releasable by osmotic shock, did not change. At five minutes after injection the liver particles did not release acid-soluble radioactivity into the medium when incubated at 37°. These particles contain the injected protein in osmotically releasable form not associated with proteolytic enzymes and therefore correspond to phagosomes. At 10, 30 or 60 minutes after injection, the particles degraded the protein at similar rates but the activity ceased after 90 minutes incubation when only 50 to 60% of the osmotically releasable material was hydrolyzed. This cessation of activity was shown to be due to a thermal disruption of the particles during incubation.  相似文献   

20.
Binding of manganese in human and rat plasma   总被引:5,自引:0,他引:5  
Albumin, transferrin and 'transmanganin' have all been proposed as the major Mn-binding ligand in plasma. The present investigations were initiated in order to resolve these discrepancies. Compared to other metals tested (109 Cd2+, 65Zn2+, 59Fe3+), 54Mn2+ bound poorly to purified albumin. The addition of exogenous albumin to plasma did not result in an increased 54Mn radioactivity associated with this protein. Also, incubation of 65Zn-albumin in the presence of excess Mn2+ (1 mM) did not result in the displacement of Zn from albumin or Mn binding. In contrast to these results, 54Mn was bound to purified transferrin, not as readily as Fe3+, but better than Zn2+ or Cd2+. Saturation of transferrin with Fe3+ (1.6 micrograms Fe/mg) prevented the binding of 54Mn indicating that Mn probably binds to Fe-binding sites on the protein. Polyacrylamide gel electrophoresis further demonstrated the association of 54Mn with transferrin rather than with albumin in both human and rat plasma. The amount of 54Mn radioactivity recovered with transferrin increased as incubation time was increased, probably due to oxidation of Mn2+ to Mn3+. Mn binding to transferrin reached a maximum within 5 and 12 h of incubation. About 50% of 54Mn migrated with transferrin, whereas only 5% was associated with albumin. A significant portion (20-55%) of the 54Mn radioactivity migrated with electrophoretically slow plasma components whose identity was not determined. Possibilities include alpha 2-macroglobulin, heavy gamma-globulins and/or heavy lipoproteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号