首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Chun TH  Hotary KB  Sabeh F  Saltiel AR  Allen ED  Weiss SJ 《Cell》2006,125(3):577-591
White adipose tissue (WAT) serves as the primary energy depot in the body by storing fat. During development, fat cell precursors (i.e., preadipocytes) undergo a hypertrophic response as they mature into lipid-laden adipocytes. However, the mechanisms that regulate adipocyte size and mass remain undefined. Herein, we demonstrate that the membrane-anchored metalloproteinase, MT1-MMP, coordinates adipocyte differentiation in vivo. In the absence of the protease, WAT development is aborted, leaving tissues populated by mini-adipocytes which render null mice lipodystrophic. While MT1-MMP preadipocytes display a cell autonomous defect in vivo, null progenitors retain the ability to differentiate into functional adipocytes during 2-dimensional (2-D) culture. By contrast, within the context of the 3-dimensional (3-D) ECM, normal adipocyte maturation requires a burst in MT1-MMP-mediated proteolysis that modulates pericellular collagen rigidity in a fashion that controls adipogenesis. Hence, MT1-MMP acts as a 3-D-specific adipogenic factor that directs the dynamic adipocyte-ECM interactions critical to WAT development.  相似文献   

2.
Adipocytes forming fat pad in vivo are surrounded by well developed basement membranes. Synthesis of basement membrane is enhanced during in vitro differentiation of preadipocyte line. In order to know the role of basement membrane in adipogenesis in vivo, we injected 3T3-F442A preadipocytes subcutaneously into nude mice together with or without the reconstituted basement membrane, Matrigel. Histological sections of the fat pads newly formed by injecting the cell alone showed dense population of immature adipocytes and microvessels within 2 weeks and they matured rapidly. In contrast, injection of the cells together with Matrigel showed sparse adipocytes after 2 weeks and they matured slowly over the period of 6 weeks. Quantification of the process by measuring the weight, DNA content, triglyceride content and glycerophosphate dehydrogenase (GPDH) activity of the fat pads showed that injection of the cell alone resulted in early maturation of adipose tissue with fewer adipocytes while the presence of Matrigel decelerated but potentiated the maturation of adipose tissue with 2 fold contents of DNA, triglyceride and GPDH activity. We thus showed that reconstituted basement membrane (Matrigel) supported the survival and maturation of adipocytes. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

3.
The expression and potential functional role of aggrecan in adipogenesis and adipose tissue development was investigated in murine models of obesity. Aggrecan, as well as the two aggrecanases ADAMTS-4 and ADAMTS-5 (A Disintegrin And Metalloproteinase with Thrombospondin motif) mRNAs, are expressed in subcutaneous (SC) and gonadal (GON) adipose tissues of mice. Their presence was confirmed by western blotting using adipose tissue extracts. In mice with nutritionally induced obesity (high fat diet) as well as in lean controls, aggrecan mRNA expression was downregulated whereas ADAMTS-4 and ADAMTS-5 were upregulated with time. In mice with genetically determined obesity (ob/ob), ADAMTS-5 mRNA was upregulated in both SC and GON adipose tissues, as compared to wild-type (WT) mice (p<0.001). Enhanced aggrecanase expression levels in these tissues were associated with significantly elevated levels of G1-NITEGE, a degradation product of aggrecan. Thus, aggrecan levels were high at the early stages of adipose tissue development in mice, whereas its production decreased and its degradation increased during development of obesity. A functional role of aggrecan in promoting early stages of adipogenesis is supported by the findings that it stimulated the in vitro differentiation of 3T3-F442A preadipocytes and the de novo in vivo accumulation of fat in Matrigel plaques injected into WT mice. Proteoglycans in the extracellular matrix of adipose tissue, such as aggrecan, may contribute to the regulation of lipid uptake and obesity in mice.  相似文献   

4.
Tissue engineering has shown promise for the development of constructs to facilitate large volume soft tissue augmentation in reconstructive and cosmetic plastic surgery. This article reviews the key progress to date in the field of adipose tissue engineering. In order to effectively design a soft tissue substitute, it is critical to understand the native tissue environment and function. As such, the basic physiology of adipose tissue is described and the process of adipogenesis is discussed. In this article, we have focused on tissue engineering using a cell-seeded scaffold approach, where engineered extracellular matrix substitutes are seeded with exogenous cells that may contribute to the regenerative response. The strengths and limitations of each of the possible cell sources for adipose tissue engineering, including adipose-derived stem cells, are detailed. We briefly highlight some of the results from the major studies to date, involving a range of synthetic and naturally derived scaffolds. While these studies have shown that adipose tissue regeneration is possible, more research is required to develop optimized constructs that will facilitate safe, predictable and long-term augmentation in clinical applications.Key words: tissue engineering, regenerative medicine, adipose tissue, adipose-derived stem cells, adipogenesis, cell culture, scaffolds, cell-biomaterial interactions  相似文献   

5.
6.
This study was conducted to assess the effect of eicosapentaenoic acid (20:5n‐3, EPA) on lipid accumulation in grass carp Ctenopharyngodon idella adipose tissue both in vitro and in vivo. EPA was observed to inhibit the adipocyte viability in a time and dose‐dependent manner. EPA was also found to induce reactive oxygen species accumulation in vitro. The mRNA levels of caspase 3a and caspase 3b, as well as the activity of Caspase 3 increased significantly in vitro and in vivo, whereas the value of B cell leukemia 2–Bcl‐2 associated X protein decreased significantly. Besides, the pro‐apoptotic effect was relieved by α‐tocopherol. Dietary 0.52% EPA had no apparent effect on intraperitoneal fat index. Moreover, EPA promoted the hydrolytic gene expressions in vitro and in vivo, including adipose triglyceride lipase and hormone sensitive lipase‐a. Meanwhile, the lipogenic gene expressions of liver X receptor α, sterol regulatory element binding protein‐1c and fatty‐acid synthase were down‐regulated by EPA in vitro and in vivo. However, EPA also acted to promote the marker gene expressions of adipogenesis, including peroxisome proliferator‐activated receptor γ and lipoprotein lipase in vitro and in vivo. Contents of EPA increased significantly in the treatment groups in vitro and in vivo. These results support that EPA affects multiple aspects of lipid metabolism, including hydrolysis, lipogenesis, adipogenesis and apoptosis. However, it barely functioned in decreasing the lipid accumulation of Ctenopharyngodon idella under the current culture conditions.  相似文献   

7.
BACKGROUND: It has been reported that macrophage migration inhibitory factor (MIF) stimulated insulin secretion from pancreatic islet beta-cells in an autocrine manner, which suggests its pivotal role in the glucose metabolism. According to this finding, we evaluated MIF expression in cultured adipocytes and epididymal fat pads of obese and diabetic rats to investigate its role in adipose tissue. MATERIALS AND METHODS: The murine adipocyte cell line 3T3-L1 was used to examine MIF mRNA expression and production of MIF protein in response to various concentrations of glucose and insulin. Epididymal fat pads of Otsuka Long-Evans Tokushima fatty (OLETF) and Wistar fatty rats, animal models of obesity and diabetes, were subjected to Northern blot analysis to determine MIF mRNA levels. RESULTS: MIF mRNA of 3T3-L1 adipocytes was up-regulated by costimulation with glucose and insulin. Intracellular MIF content was significantly increased by stimulation, whereas its content in the culture medium was decreased. When the cells were treated with cytochalasin B, MIF secretion in the medium was increased. Pioglitazone significantly increased MIF content in the culture medium of 3T3-L1 cells. However, MIF mRNA expression of both epididymal fat pads of OLETF and Wistar fatty rats was down-regulated despite a high plasma glucose level. The plasma MIF level of Wistar fatty rats was significantly increased by treatment with pioglitazone. CONCLUSION: We show here that the intracellular glucose level is critical to determining the MIF mRNA level as well as its protein content in adipose tissue. MIF is known to play an important role in glucose metabolism as a positive regulator of insulin secretion. In this context, it is conceivable that MIF may affect the pathophysiology of obesity and diabetes.  相似文献   

8.
9.
In an effort to identify novel candidate regulators of adipogenesis, gene profiling of differentiating 3T3-L1 preadipocytes was analyzed using a novel algorithm. We report here the characterization of xanthine oxidoreductase (XOR) as a novel regulator of adipogenesis. XOR lies downstream of C/EBPbeta and upstream of PPARgamma, in the cascade of factors that control adipogenesis, and it regulates PPARgamma activity. In vitro, knockdown of XOR inhibits adipogenesis and PPARgamma activity while constitutive overexpression increases activity of the PPARgamma receptor in both adipocytes and preadipocytes. In vivo, XOR -/- mice demonstrate 50% reduction in adipose mass versus wild-type littermates while obese ob/ob mice exhibit increased concentrations of XOR mRNA and urate in the adipose tissue. We propose that XOR is a novel regulator of adipogenesis and of PPARgamma activity and essential for the regulation of fat accretion. Our results identify XOR as a potential therapeutic target for metabolic abnormalities beyond hyperuricemia.  相似文献   

10.
《Cytokine》2015,73(2):220-223
Leucine-rich glioma inactivated 3 (LGI3) is a secreted protein member of LGI family. We previously reported that LGI3 increased in obese adipose tissues and suppressed adipogenesis through its receptor, ADAM23. We proposed that LGI3 may be a pro-inflammatory adipokine secreted predominantly by preadipocytes and macrophages. In this study, we showed that LGI3 and tumor necrosis factor-α (TNF-α) upregulated each other in 3T3-L1 cells. Treatment of 3T3-L1 preadipocytes with LGI3 protein increased TNF-α mRNA and protein. LGI3 treatment led to NF-κB activation and binding to an NF-κB binding site (−523 to −514) in TNF-α promoter. TNF-α treatment increased mRNA and protein expression of LGI3 and ADAM23. TNF-α increased NF-κB binding to a predicted binding site (−40 to −31) in LGI3 promoter. High fat diet-fed mice showed that LGI3 and TNF-α were increased and colocalized in adipose tissue inflammation. Taken together, these results suggested that mutual upregulation of LGI3 and TNF-α may play a role in adipose tissue inflammation in obesity.  相似文献   

11.
Hepatocyte growth factor (HGF) is a potent mitogenic and angiogenic factor produced in human adipose tissue. In this study, we use 3T3-F442A preadipocytes to study the contribution of HGF to angiogenesis in an in vivo fat pad development model. As observed for human adipocytes, HGF is synthesized and secreted by 3T3-F442A preadipocytes and mature adipocytes. HGF knockdown with small-interfering RNA reduced HGF mRNA expression 82.3 +/- 4.2% and protein secretion 82.9 +/- 1.4% from 3T3-F442A preadipocytes. Silencing of HGF resulted in a 70.5 +/- 19.0% reduction in endothelial progenitor cell migration to 3T3-F442A-conditioned medium in vitro. 3T3-F442A preadipocytes injected under the skin of mice form a fat pad containing mature, lipid-filled adipocytes and a functional vasculature. At 72 h postinjection, expression of the endothelial cell genes TIE-1 and platelet endothelial cell adhesion molecule (PECAM)-1 was decreased 94.4 +/- 2.2 and 91.5 +/- 2.5%, respectively, in 3T3-F442A fat pads with HGF silencing. Knockdown of HGF had no effect on differentiation of 3T3-F442A preadipocytes to mature adipocytes in vitro or in vivo. In developing fat pads under the skin of HGF overexpressing transgenic mice, TIE-1 and PECAM-1 mRNA was increased 16.5- and 21.4-fold, respectively, at 72 h postinjection. The increase in gene expression correlated with immunohistochemical evidence of endothelial cell migration in the developing fat pad. These data suggest that HGF has a central role in regulating angiogenesis in adipose tissue.  相似文献   

12.
《Organogenesis》2013,9(4):228-235
Tissue engineering has shown promise for the development of constructs to facilitate large volume soft tissue augmentation in reconstructive and cosmetic plastic surgery. This article reviews the key progress to date in the field of adipose tissue engineering. In order to effectively design a soft tissue substitute, it is critical to understand the native tissue environment and function. As such, the basic physiology of adipose tissue is described and the process of adipogenesis is discussed. In this article, we have focused on tissue engineering using a cell-seeded scaffold approach, where engineered extracellular matrix substitutes are seeded with exogenous cells that may contribute to the regenerative response. The strengths and limitations of each of the possible cell sources for adipose tissue engineering, including adipose-derived stem cells, are detailed. We briefly highlight some of the results from the major studies to date, involving a range of synthetic and naturally derived scaffolds. While these studies have shown that adipose tissue regeneration is possible, more research is required to develop optimized constructs that will facilitate safe, predictable, and long-term augmentation in clinical applications.  相似文献   

13.
14.
Stress hormone is known to play a vital role in lipolysis and adipogenesis in fat cells. The present study was carried out to evaluate the effect of epinephrine on adipogenesis in the 3T3-L1 cells. The investigation on adipogenesis was done in both mono and co-cultured 3T3-L1 cells. 3T3-L1 preadipocytes and C2C12 cells were grown independently on transwell plates and transferred to differentiation medium. Following differentiation, C2C12 cells transferred to 3T3-L1 plate and treated with medium containing 10 μg/ml of epinephrine. Adipogenic markers such as fatty acid binding protein 4, peroxisome proliferator activating receptor, CCAAT/enhancer-binding protein, adiponectin, lipoprotein lipase and fatty acid synthase mRNA expressions were evaluated in the 3T3-L1 cells. Epinephrine treatment reduced adipogenesis, evidenced by reducing adipogenic marker mRNA expression in the 3T3-L1 cells. In addition, glycerol accumulation and oil red-O staining supported the reduced rate of adipogenesis. Taking all together, it is concluded that the stress hormone, epinephrine reduces the rate of adipogenesis in the mono and co-cultured 3T3-L1 cells. In addition, the rate of adipogenesis is much reduced in the co-cultured 3T3-L1 cells compared monocultured 3T3-L1 cells.  相似文献   

15.
Since evidence has appeared that tumor necrosis factor-alpha (TNF) is involved in the loss of body fat in the course of wasting diseases, a large number of studies have investigated the physiological role of this cytokine in adipose tissue. TNF treatment of several in vitro models of adipogenesis clearly showed that TNF is a potent inhibitor of adipose differentiation. This antiadipogenic property is accompanied by suppression of developmental and metabolic markers of fat cell differentiation, such as peroxisome proliferator-activated receptor (PPAR)-gamma2, lipoprotein lipase (LPL), glycerol-3-phosphate dehydrogenase (GPDH) and GLUT4. Moreover, TNF promotes lipolysis in mature adipocytes and, subsequently, a reversion of the adipocyte phenotype. Recent studies demonstrated that TNF directly interferes with the insulin signaling cascade at early steps and, thus, impairs insulin-stimulated glucose transport. Further progress in understanding the role of TNF in adipose tissue was made when endogenous TNF mRNA expression was demonstrated in adipose tissue. Obesity was found to represent a state of overexpression of the TNF system. Such findings support the hypothesis that TNF is a mediator of obesity-linked insulin resistance. However, this concept is mainly based on animal data and is so far only partially supported by studies in humans. Taken together, the results of a variety of experimental and clinical studies suggest that TNF may act as an important auto/paracrine regulator of fat cell function which serves to limit adipose tissue expansion, probably by inducing insulin resistance which may in turn cause metabolic disturbances. Elucidation of the molecular mechanisms of TNF production and action in adipose tissue may help to find new approaches for the treatment of insulin resistance in humans.  相似文献   

16.
17.
Objective: Some cytokines and mediators of inflammation can alter adiposity through their effects on adipocyte number. To probe the molecular basis of obesity, this study determined whether galectin‐3 was present in adipose tissue and investigated its effects on fat cell number. Research Methods and Procedures: In the first study, obesity‐prone C57BL/6J mice were fed with high‐fat (58%) diet. Epididymal fat pads were collected at Day 0, Day 60, and Day 120 after the start of high‐fat feeding. Results: Levels of adipocyte galectin‐3 protein, determined using Western blot analysis, increased as the mice became obese. Galectin‐3 mRNA and protein were then detected in human adipose tissue, primarily in the preadipocyte fraction. It was found that recombinant human galectin‐3 stimulated proliferation of primary cultured preadipocytes as well as DNA synthesis through lectin‐carbohydrate interaction. Discussion: Galectin‐3, which has been known to play a versatile role especially in immune cells, might play a role also in adipose tissue and be associated with the pathophysiology of obesity.  相似文献   

18.
Based on recent evidence that fatty acid synthase and endogenously produced fatty acid derivatives are required for adipogenesis in 3T3-L1 adipocytes, we conducted a small interfering RNA-based screen to identify other fatty acid-metabolizing enzymes that may mediate this effect. Of 24 enzymes screened, stearoyl-CoA desaturase 2 (SCD2) was found to be uniquely and absolutely required for adipogenesis. Remarkably, SCD2 also controls the maintenance of adipocyte-specific gene expression in fully differentiated 3T3-L1 adipocytes, including the expression of SCD1. Despite the high sequence similarity between SCD2 and SCD1, silencing of SCD1 did not down-regulate 3T3-L1 cell differentiation or gene expression. SCD2 mRNA expression was also uniquely elevated 44-fold in adipose tissue upon feeding mice a high fat diet, whereas SCD1 showed little response. The inhibition of adipogenesis caused by SCD2 depletion was associated with a decrease in peroxisome proliferator-activated receptor gamma (PPARgamma) mRNA and protein, whereas in mature adipocytes loss of SCD2 diminished PPARgamma protein levels, with little change in mRNA levels. In the latter case, SCD2 depletion did not change the degradation rate of PPARgamma protein but decreased the metabolic labeling of PPARgamma protein using [(35)S]methionine/cysteine, indicating protein translation was decreased. This requirement of SCD2 for optimal protein synthesis in fully differentiated adipocytes was verified by polysome profile analysis, where a shift in the mRNA to monosomes was apparent in response to SCD2 silencing. These results reveal that SCD2 is required for the induction and maintenance of PPARgamma protein levels and adipogenesis in 3T3-L1 cells.  相似文献   

19.
A strong induction of semicarbazide-sensitive amine oxidase (SSAO) has previously been reported during murine preadipocyte lineage differentiation but it remains unknown whether this emergence also occurs during adipogenesis in man. Our aim was to compare SSAO and monoamine oxidase (MAO) expression during in vitro differentiation of human preadipocytes and in adipose and stroma-vascular fractions of human fat depots. A human preadipocyte cell strain from a patient with Simpson-Golabi-Behmel syndrome was first used to follow amine oxidase expression during in vitro differentiation. Then, human preadipocytes isolated from subcutaneous adipose tissues were cultured under conditions promoting ex vivo adipose differentiation and tested for MAO and SSAO expression. Lastly, human adipose tissue was separated into mature adipocyte and stroma-vascular fractions for analyses of MAO and SSAO at mRNA, protein and activity levels. Both SSAO and MAO were increased from undifferentiated preadipocytes to lipid-laden cells in all the models: 3T3-F442A and 3T3-L1 murine lineages, human SGBS cell strain or human preadipocytes in primary culture. In human subcutaneous adipose tissue, the adipocyte-enriched fraction exhibited seven-fold higher amine oxidase activity and contained three- to seven-fold higher levels of mRNAs encoded by MAO-A, MAO-B, AOC3 and AOC2 genes than the stroma-vascular fraction. MAO-A and AOC3 genes accounted for the majority of their respective MAO and SSAO activities in human adipose tissue. Most of the SSAO and MAO found in adipose tissue originated from mature adipocytes. Although the mechanism and role of adipogenesis-related increase in amine oxidase expression remain to be established, the resulting elevated levels of amine oxidase activities found in human adipocytes may be of potential interest for therapeutic intervention in obesity.  相似文献   

20.
The prevalence of obesity and its associated metabolic diseases worldwide has focused attention on understanding the mechanisms underlying adipogenesis. The nuclear receptor PPARgamma has emerged as a central regulator of adipose tissue function and formation. Despite the identification of numerous PPARgamma targets involved in a range of processes, from lipid droplet formation to adipokine secretion, information is still lacking on targets downstream of PPARgamma that directly affect fat cell differentiation. Here we identify HRASLS3 as a novel PPARgamma regulated gene with a role in adipogenesis. HRASLS3 expression increases during the differentiation of preadipocyte cell lines and is highly expressed in white and brown adipose tissue in mice. HRASLS3 expression is induced by PPARgamma ligands in preadipocyte cell lines as well in adipose tissue in vivo. We demonstrate that the HRASLS3 promoter contains a functional PPAR response element and is a direct target for regulation by PPARgamma/RXR heterodimers. Finally, we show that overexpression of HRASLS3 augments PPARgamma-driven lipid accumulation and adipogenesis, whereas siRNA-mediated knockdown of HRASLS3 expression decreases differentiation. Together, these results identify HRASLS3 as one of the downstream effectors of PPARgamma action in adipogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号