首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The structural information on glycosyltransferases has revealed that the sugar-donor specificity of these enzymes can be broadened to include modified sugars with a chemical handle that can be utilized for conjugation chemistry. Substitution of Tyr289 to Leu in the catalytic pocket of bovine beta-1,4-galactosyltransferase generates a novel glycosyltransferase that can transfer not only Gal but also GalNAc or a C2-modified galactose that has a chemical handle, from the corresponding UDP-derivatives, to the non-reducing end GlcNAc residue of a glycoconjugate. Similarly, the wild-type polypeptide-N-acetyl-galactosaminyltransferase, which naturally transfers GalNAc from UDP-GalNAc, can also transfer C2-modified galactose with a chemical handle from its UDP-derivative to the Ser/Thr residue of a polypeptide acceptor substrate that is tagged as a fusion peptide to a non-glycoprotein. The potential of wild-type and mutant glycosyltransferases to produce glycoconjugates carrying sugar moieties with chemical handle makes it possible to conjugate biomolecules with orthogonal reacting groups at specific sites. This methodology assists in the assembly of bio-nanoparticles that are useful for developing targeted drug-delivery systems and contrast agents for magnetic resonance imaging.  相似文献   

2.
Brokx RD  Revers L  Zhang Q  Yang S  Mal TK  Ikura M  Gariépy J 《Biochemistry》2003,42(47):13817-13825
The human glycoprotein MUC1 mucin plays a critical role in cancer progression. Breast, ovarian, and colon cancer cells often display unique cell-surface antigens corresponding to aberrantly glycosylated forms of the MUC1 tandem repeat. In this report, (15)N- and (13)C-labeled forms of a recombinant MUC1 construct containing five tandem repeats were used as substrates to define the order and kinetics of addition of N-acetylgalactosamine (GalNAc) moieties by a recombinant active form of the human enzyme UDP-GalNAc:polypeptide N-acetylgalactosaminyltransferase I (ppGalNAc-T1; residues 40-559). Heteronuclear NMR experiments were performed to assign resonances associated with the two serines (Ser5 and Ser15) and three threonines (Thr6, Thr14, and Thr19) present in the 20-residue long MUC1 repeat. The kinetics and order of addition of GalNAc moieties (Tn antigen) on the MUC1 construct by human ppGalNAc-T1 were subsequently dissected by NMR spectroscopy. Threonine 14 was shown to be rapidly glycosylated by ppGalNAc-T1 with an initial rate of 25 microM/min, followed by Thr6 (8.6 microM/min). The enzyme also modified Ser5 at a slower rate (1.7 microM/min), an event that started only after the glycosylation of Thr14 and Thr6 side chains was mostly completed. Ser15 and Thr19 remained unglycosylated by ppGalNAc-T1. Corresponding O-glycosylation sites within all five tandem repeats were simultaneously modified by ppGalNAc-T1, suggesting that each repeat behaves as an independent substrate unit. This study demonstrated that the hydroxyl oxygens of Thr14 and to a lesser extent Thr 6 represent the two dominant substrates modified by ppGalNAc-T1 within the context of a complex MUC1 peptide substrate. More importantly, the availability of defined isotopically labelled MUC1 glycopeptide substrates and the relative simplicity of their NMR spectra will facilitate the analysis of other transferases within the O-glycosylation pathways and the rational design of tumor-associated MUC1 antigens.  相似文献   

3.
Ca(2+)/calmodulin-dependent protein kinase phosphatase (CaMKPase) dephosphorylates and regulates multifunctional Ca(2+)/calmodulin-dependent protein kinases. In order to elucidate the mechanism of substrate recognition by CaMKPase, we chemically synthesized a variety of phosphopeptide analogs and carried out kinetic analysis using them as CaMKPase substrates. This is the first report using systematically synthesized phosphopeptides as substrates for kinetic studies on substrate specificities of protein Ser/Thr phosphatases. CaMKPase was shown to be a protein Ser/Thr phosphatase having a strong preference for a phospho-Thr residue. A Pro residue adjacent to the dephosphorylation site on the C-terminal side and acidic clusters around the dephosphorylation site had detrimental effects on dephosphorylation by CaMKPase. Deletion analysis of a model substrate peptide revealed that the minimal length of the substrate peptide was only 2 to 3 amino acid residues including the dephosphorylation site. The residues on the C-terminal side of the dephosphorylation site were not essential for dephosphorylation, whereas the residue adjacent to the dephosphorylation site on the N-terminal side was essential. Ala-scanning analysis suggested that CaMKPase did not recognize a specific motif around the dephosphorylation site. Myosin light chain phosphorylated by protein kinase C and Erk2 phosphorylated by MEK1 were poor substrates for CaMKPase, while a synthetic phosphopeptide corresponding to the sequence around the phosphorylation site of the former was not dephosphorylated by CaMKPase but that of the latter was fairly good substrate. These data suggest that substrate specificity of CaMKPase is determined by higher-order structure of the substrate protein rather than by the primary structure around its dephosphorylation site. Use of phosphopeptide substrates also revealed that poly-L-lysine, an activator for CaMKPase, activated the enzyme mainly through increase in the V(max) values.  相似文献   

4.
The neuronal protein B-50 may be involved in diverse functions including neural development, axonal regeneration, neural plasticity, and synaptic transmission. The rat B-50 sequence contains 226 amino acids which include 14 Ser and 14 Thr residues, all putative sites for phosphorylation by calcium/phospholipid-dependent protein kinase C (PKC). Phosphorylation of the protein appears to be a major factor in its biochemical and possibly its physiological activity. Therefore, we investigated rat B-50 phosphorylation and identified a single phosphorylated site at Ser41. Phosphoamino acid analysis eliminated the 14 Thr residues because only [32P]Ser was detected in an acid hydrolysate of [32P]B-50. Staphylococcus aureus protease peptide mapping produced a variety of radiolabelled [32P]B-50 products, none of which had the same molecular weights or HPLC retention times as several previously characterized fragments. Indirect confirmation of the results was provided by differential phosphorylation of major and minor forms of B-60 that have their N-termini at, or C-terminal to, the Ser41 residue and are the major products of specific B-50 proteolysis. Only those forms of B-60 that contained the Ser41 residue incorporated phosphate label. The results are discussed with reference to the substrate requirements for B-50 phosphorylation by PKC and the proposed structure of the B-50 calmodulin binding domain.  相似文献   

5.
Carbon-13 NMR spectroscopic studies of native and sequentially deglycosylated ovine submaxillary mucin (OSM) have been performed to examine the effects of glycosylation on the conformation and dynamics of the peptide core of O-linked glycoproteins. OSM is a large nonglobular glycoprotein in which nearly one-third of the amino acid residues are Ser and Thr which are glycosylated by the alpha-Neu-NAc(2-6)alpha-GalNAc- disaccharide. The beta-carbon resonances of glycosylated Ser and Thr residues in intact and asialo mucin display considerable chemical shift heterogeneity which, upon the complete removal of carbohydrate, coalesces to single sharp resonances. This chemical shift heterogeneity is due to peptide sequence variability and is proposed to reflect the presence of sequence-dependent conformations of the peptide core. These different conformations are thought to be determined by steric interactions of the GalNAc residue with adjacent peptide residues. The absence of chemical shift heterogeneity in apo mucin is taken to indicate a loss in the peptide-carbohydrate steric interactions, consistent with a more relaxed random coiled structure. On the basis of the 13C relaxation behavior (T1 and NOE) the dynamics of the alpha-carbons appear to be unique to each amino acid type and glycosylation state, with alpha-carbon mobilities decreasing in the order Gly greater than Ala = Ser greater than Thr much greater than monoglycosylated Ser/Thr approximately greater than disaccharide linked Ser/Thr.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
Random conjugation of therapeutic or diagnostic payloads to targeting proteins generates functionally heterogeneous products. Conjugation of payloads to an adapter that binds to a peptide tag engineered into a targeting protein provides an alternative strategy. To progress into clinical development, an adapter/docking tag system should include humanized components and be stable in circulation. We describe here an adapter/docking tag system based on mutated fragments of human RNase I that spontaneously bind to each other and form a conjugate with a disulfide bond between complimentary cysteine residues. This self-assembled "dock and lock" system utilizes the previously described fusion C-tag, a 1-15 aa fragment of human RNase I with the R4C amino acid substitution, and a newly engineered adapter protein (Ad-C), a 21-127-aa fragment of human RNase I with the V118C substitution. Two vastly different C-tagged recombinant proteins, human vascular endothelial growth factor (VEGF) and a 254-aa long N-terminal fragment of anthrax lethal factor (LFn), retain functional activities after spontaneous conjugation of Ad-C to N-terminal or C-terminal C-tag, respectively. Ad-C modified with pegylated phospolipid and inserted into the lipid membrane of drug-loaded liposomes (Doxil) retained the ability to conjugate C-tagged proteins, yielding targeted liposomes decorated with functionally active proteins. To further optimize the system, we engineered an adapter with an additional cysteine residue at position 88 for site-specific modification, conjugated it to C-tagged VEGF, and labeled with a near-infrared fluorescent dye Cy5.5, yielding a unique functionally active probe for in vivo molecular imaging. We expect that this self-assembled "dock and lock" system will provide new opportunities for using functionally active proteins for biomedical purposes.  相似文献   

7.
A recombinant fusion protein system for the production, oxidation, and purification of short peptides containing a single disulfide bond is described. The peptides are initially expressed in Escherichia coli as a fusion to an engineered mutant of the N-terminal SH2 domain of the intracellular phosphatase, SHP-2. This small protein domain confers several important properties which facilitate the production of disulfide-containing peptides: (i) it is expressed at high levels in E. coli; (ii) it can be purified via a hexahistidine tag and reverse-phase HPLC; (iii) it contains no endogenous cysteine residues, allowing the formation of an intrapeptide disulfide bond while still attached to the fusion partner; (iv) it is highly soluble in native buffers, facilitating the production of very hydrophobic peptides and the direct use of fusion products in biochemical assays; (v) it contains a unique methionine residue at the junction of the peptide and fusion partner to facilitate peptide cleavage by treatment with cyanogen bromide (CNBr). This method is useful for producing peptides, which are otherwise difficult to prepare through traditional chemical synthesis approaches, and this has been demonstrated by preparing a number of hydrophobic disulfide-containing peptides derived from phage-display libraries.  相似文献   

8.
Eukaryotic cells contain a large number of protein Ser/ Thr kinases, which play important roles in signal transduction required for cell proliferation, differentiation, and stress response and adaptation. It is also known that some prokaryotes contain a family of protein Ser/Thr kinases. A major challenge in the characterization of these kinases is how to identify their specific substrates. Here we developed such a method using a protein Ser/Thr kinase, Pkn2 from Myxococcus xanthus, a Gram-negative soil bacterium. When Pkn2 is inducibly expressed in E. coli, cells are unable to form colonies on agar plates. This lethal effect of Pkn2 was eliminated in an inactive Pkn2 mutant in which the highly conserved Lys residue was changed to Asn, indicating that phosphorylation of a cellular protein(s) in E. coli resulted in growth arrest. Several clones from an E. coli genomic library were found to suppress the lethal effect when co-expressed with pkn2. Four out of seven multi-copy suppressors were identified to encode HU, (3 for HUalpha and 1 for HUB) a histone-like DNA binding protein. Purified HUalpha was found to be specifically phosphorylated by Pkn2 at Thr-59, and the phosphorylated HUalpha became unable to bind to DNA, suggesting that the phosphorylation of endogenous HU proteins by Pkn2 contributed at least in part to the lethal effect in E. coli. The present method termed the STEK method (Suppressors of Toxic Effects of Kinases) may be widely used for the substrate identification not only for prokaryotic protein Ser/Thr kinases but also for eukaryotic kinases.  相似文献   

9.
An active preparation of human phospholipase A2 (PLA2) was made after expression as an insoluble fusion protein in Escherichia coli. The new key elements required for PLA2 isolation were the maintenance of the fusion protein in solution after the initial solubilization and the use of a tryptophan cleavage procedure for regeneration of native PLA2 from the fusion protein. The fusion protein was composed of a beta-galactosidase leader peptide incorporating six consecutive threonine residues to aid in insoluble inclusion body formation, followed by a tryptophan adjacent to the N-terminus of PLA2. The fusion protein was purified from cell lysates, and the leader peptide was cleaved on the C-terminal side of the tryptophan residue with N-chlorosuccinimide. The released PLA2 was refolded and renatured to produce an enzyme with activity comparable to that of other phospholipases A2.  相似文献   

10.
Phosphorylation sites of protamines by protein kinase C and cAMP-dependent protein kinase (protein kinase A) were studied. Using clupeine Y1 as a substrate, protein kinase C phosphorylates both Ser and Thr residues, whereas protein kinase A phosphorylates only Ser residue(s). Protein kinase C phosphorylates all Ser and Thr residues of clupeine Y2 and Z, however protein kinase A phosphorylates mainly Ser9 and slightly Thr5 in clupeine Y2 and Ser6 and Ser10 in clupeine Z. These results suggest that protein kinase C recognizes more sites than those of protein kinase A and may participate in protamine phosphorylation in vivo.  相似文献   

11.
The 3-methylcytidine (m3C) modification is widely found in eukaryotic species of tRNA(Ser), tRNA(Thr), and tRNA(Arg); at residue 32 in the anti-codon loop; and at residue e2 in the variable stem of tRNA(Ser). Little is known about the function of this modification or about the specificity of the corresponding methyltransferase, since the gene has not been identified. We have used a primer extension assay to screen a battery of methyltransferase candidate knockout strains in the yeast Saccharomyces cerevisiae, and find that tRNA(Thr(IGU)) from abp140-Δ strains lacks m3C. Curiously, Abp140p is composed of a poorly conserved N-terminal ORF fused by a programed +1 frameshift in budding yeasts to a C-terminal ORF containing an S-adenosylmethionine (SAM) domain that is highly conserved among eukaryotes. We show that ABP140 is required for m3C modification of substrate tRNAs, since primer extension is similarly affected for all tRNA species expected to have m3C and since quantitative analysis shows explicitly that tRNA(Thr(IGU)) from an abp140-Δ strain lacks m3C. We also show that Abp140p (now named Trm140p) purified after expression in yeast or Escherichia coli has m3C methyltransferase activity, which is specific for tRNA(Thr(IGU)) and not tRNA(Phe) and occurs specifically at C??. We suggest that the C-terminal ORF of Trm140p is necessary and sufficient for activity in vivo and in vitro, based on analysis of constructs deleted for most or all of the N-terminal ORF. We also suggest that m3C has a role in translation, since trm140-Δ trm1-Δ strains (also lacking m2,2G??) are sensitive to low concentrations of cycloheximide.  相似文献   

12.
13.
Apactin is an 80-kDa type I membrane glycoprotein derived from pro-Muclin, a precursor that also gives rise to the zymogen granule protein Muclin. Previous work showed that apactin is efficiently removed from the regulated secretory pathway and targeted to the actin-rich apical plasma membrane of the pancreatic acinar cell. The cytosolic tail (C-Tail) of apactin consists of 16 amino acids, has Thr casein kinase II and Ser protein kinase C phosphorylation sites, and a C-terminal PDZ-binding domain. Secretory stimulation of acinar cells causes a decrease in Thr phosphorylation and an increase in Ser phosphorylation of apactin. Fusion peptides of the C-Tail domain pulldown actin, ezrin, and EBP50/NHERF in a phosphorylation-dependent manner. HIV TAT-C-Tail fusion peptides were used as dominant negative constructs on living pancreatic cells to study effects on the actin cytoskeleton. During secretory stimulation, TAT-C-Tail-Thr/Asp phosphomimetic peptide caused an increase in actin-coated zymogen granules at the apical surface, while TAT-C-Tail-S/D phosphomimetic peptide caused a broadening of the actin cytoskeleton. These data indicate that stimulation-mediated Thr dephosphorylation allows decreased association of apactin with EBP50/NHERF and fosters actin remodeling to coat zymogen granules. Stimulation-mediated Ser phosphorylation increases apactin association with the actin cytoskeleton, maintaining tight bundling of actin microfilaments at the apical surface. Thus, apactin is involved in remodeling the apical cytoskeleton during regulated exocytosis in a manner controlled by phosphorylation of the apactin C-Tail.  相似文献   

14.
The human pim-1 proto-oncogene was expressed in Escherichia coli as a glutathione-S-transferase (GST)-fusion protein and the enzymatic properties of its kinase activity were characterized. Likewise, a Pim-1 mutant lacking intrinsic kinase activity was constructed by site-directed mutagenesis (Lys67 to Met) and expressed in E. coli. In vitro assays with the mutant Pim-1 kinase showed no contaminating kinase activity. The wild-type Pim-1 kinase-GST fusion protein showed a pH optimum of 7 to 7.5 and optimal activity was observed at either 10 mM MgCl2 or 5 mM MnCl2. Higher cation concentrations were inhibitory, as was the addition of NaCl to the assays. Previous work by this laboratory assaying several proteins and peptides showed histone H1 and the peptide Kemptide to be efficiently phosphorylated by recombinant Pim-1 kinase. Here we examine the substrate sequence specificity of Pim-1 kinase in detail. Comparison of different synthetic peptide substrates showed Pim-1 to have a strong substrate preference for the peptide Lys-Arg-Arg-Ala-Ser*-Gly-Pro with an almost sixfold higher specificity constant kcat/Km over that of the substrate Kemptide (Leu-Arg-Arg-Ala-Ser*-Leu-Gly). The presence of basic amino acid residues on the amino terminal side of the target Ser/Thr was shown to be essential for peptide substrate recognition. Furthermore, phosphopeptide analysis of calf thymus histone H1 phosphorylated in vitro by Pim-1 kinase resulted in fragments containing sequences similar to that of the preferred synthetic substrate peptide shown above. Therefore, under optimized in vitro conditions, the substrate recognition sequence for Pim-1 kinase is (Arg/Lys)3-X-Ser/Thr*-X', where X' is likely neither a basic nor a large hydrophobic residue.  相似文献   

15.
The amino acid compositions of various fragments isolated from DNase treated with 2-nitro-5-thiocyanobenzoic acid (NTCB) show peptide bond cleavages to be at Thr14, Ser40, and Ser135. Isolation and characterization of radioactive tryptic and chymotryptic peptides of [14C]cyano-DNase reveal four points of peptide bond cleavage; in addition to Thr14, Ser40, and Ser135, cleavage occurs at the amino end of Ser72. Approximately 2.8 mol of [14C]cyano group are incorporated in the completely inactivated enzyme, in which 0.6 residue of Thr14, 0.8 of Ser40, and approximately 0.3 each of Ser72 and Ser135 are modified. The inactivation by NTCB can also be obtained by reacting the enzyme with a mixture of 5,5'-dithiobis(2-nitrobenzoic acid), KCN, and iodoacetate which generates NTCB. The mixture facilitates the uses of K[14C]N, which is readily incorporated into the enzyme as the [14C]cyano derivative. The reaction of NTCB with serine or threonine resembles that with cysteine.  相似文献   

16.
Wild-type and an active site mutant (S25T) human foamy virus (HFV) proteases were expressed in fusion with maltose binding protein in Escherichia coli. The mutant enzyme contained a Ser to Thr mutation in the -Asp-Ser-Gly- active site triplet of the enzyme, which forms the "fireman's grip" between the two subunits of the homodimeric enzyme. The fusion proteins were purified by affinity chromatography on amylose resin, cleaved with factor Xa, and the processed enzymes were purified by gel filtration under denaturing condition. Refolding after purification resulted in active enzymes with comparable yields. Furthermore, both enzymes showed similar catalytic activities in an oligopeptide substrate representing an HFV Gag cleavage site. However, the S25T mutant showed increased stability in urea unfolding experiment, in a good agreement with the suggested role of the Thr residue of fireman's grip.  相似文献   

17.
18.
Synthetic peptides have been used to define the consensus amino acid sequence for substrate recognition by the meiosis-activated myelin basic protein (MBP) kinase (p44mpk), which was purified from maturing sea star oocytes. This protein kinase shares many properties with the mitogen-activated microtubule-associated protein-2 kinase (p42mapk) in vertebrates. Recently, Thr-97 in the tryptic fragment KNIVTPRTPPPSQGK of bovine MBP was identified as the major site of phosphorylation by p44mpk (Sanghera, J. S., Aebersold, R., Morrison, H. D., Bures, E. J., and Pelech, S. L. (1990) FEBS Lett. 273, 223-226). Synthetic peptides modeled after this sequence revealed that the presence of a proline residue C-terminal (+1 position) to the phosphorylatable threonine (or serine) residue was critical for recognition by p44mpk. Although not essential, a proline residue located at the -2 position enhanced the Vmax of peptide phosphorylation. Basic, acidic, and non-polar residues were equally tolerated at the -1 position. The presence of an amino acid residue at position -3 also increased peptide phosphorylation. Thus, the optimum consensus sequence for phosphorylation by p44mpk was defined as Pro-X-(Ser/Thr)-Pro, where X is a variable amino acid residue, but ideally not a Pro. Peptides that included this sequence were phosphorylated by p44mpk with Vmax values approaching 1 mumol.min-1.mg-1 and with apparent Km values of approximately 1 mM). Pseudosubstrate peptides in which the phosphorylatable residue was replaced by valine or alanine were weak inhibitors of p44mpk (apparent Ki values of approximately 3 mM). Over 40 distinct protein kinases contain Pro-X-(Ser/Thr)-Pro sequences including the human receptors for insulin and epidermal growth factor, and kinases encoded by the human proto-oncogenes abl, neu, and raf-1, and Schizosaccharomyces pombe cell cycle control genes ran-1 and wee-1. Multiple putative sites were also identified in rat microtubule-associated protein-2, human retinoblastoma protein, human tau protein, and Drosophila myb protein and RNA polymerase II.  相似文献   

19.
The baculovirus expression vector system is recognized as a powerful and versatile tool for producing large quantities of recombinant proteins that cannot be obtained in Escherichia coli. Here we report (i) the purification of the recombinant cyclin-dependent kinase (CDK)-activating kinase (CAK) complex, which includes CDK7, cyclin H, and MAT1 proteins, and (ii) the functional characterization of CAK together with a detailed analysis and mapping of the phosphorylation states and sites using mass spectrometry (MS). In vitro kinase assay showed that recombinant CAK is able to phosphorylate the cyclin-dependent kinase CDK2 implicated in cell cycle progression and the carboxy-terminal domain (CTD) of the eukaryotic RNA polymerase II. An original combination of MS techniques was used for the determination of the phosphorylation sites of each constitutive subunit at both protein and peptide levels. Liquid chromatography (LC)-MS analysis of intact proteins demonstrated that none of the CAK subunits was fully modified and that the phosphorylation pattern of recombinant CAK is extremely heterogeneous. Finally, matrix-assisted laser desorption/ionization (MALDI)-MS and nanoLC-tandem mass spectrometry (MS/MS) techniques were used for the analysis of the major phosphorylation sites of each subunit, showing that all correspond to Ser/Thr phosphorylation sites. Phosphorylations occurred on Ser164 and Thr170 residues of CDK7, Thr315 residue of cyclin H, and Ser279 residue of MAT1.  相似文献   

20.
A multiplexed peptide quantification strategy using the iTRAQ reagent has been described for relative measurements of peptides in digested protein mixtures. To validate the chemical specificity of the iTRAQ reaction, we have performed a detailed study of iTRAQ reactivity with two sets of synthetic peptides. The first set of peptides had sequences of Tyr-Xaa-Ser-Glu-Gly-Leu-Ser-Lys and Tyr-Xaa-Ser-Glu-Tyr-Leu-Ser-Lys where Xaa = Ala, Pro, Trp, Tyr, or Glu and was designed to study the extent of O-acylation by iTRAQ, especially hydroxyl-containing residues in different positions. The second set of peptides included Ala-Ser-Glu-His-Ala-Xaa-Tyr-Gly where Xaa = Ser, Thr, or Tyr and was selected to investigate the effect of histidyl residues separated by one amino acid residue from seryl, tyrosyl, or threonyl residues. Our findings indicated that, in addition to variable levels of O-acylation of nonsequence-specific hydroxyl-containing residues, significant sequence-specific O-acylation of seryl, threonyl, and tyrosyl hydroxyls occurred when separated one residue removed from a histidyl residue, that is, (Tyr/Ser)-Xaa-His or His-Xaa-(Tyr/Ser/Thr). This behavior was verified by a separate spiking experiment of one of the first set of peptides into Escherichia coli protein extracts, followed by retention time targeted LC-MS/MS to demonstrate the occurrence of modifications in a complex mixture. These sequence-dependent O-acylation modifications can be confounding factors to accurate MS quantification. Reversal of peptide O-acylation by the iTRAQ reagent can be accomplished by reaction with hydroxylamine with virtually no cleavage of N-acylation and is a recommended modification of the iTRAQ protocol for many applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号