首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Tapon N  Ito N  Dickson BJ  Treisman JE  Hariharan IK 《Cell》2001,105(3):345-355
The inherited human disease tuberous sclerosis, characterized by hamartomatous tumors, results from mutations in either TSC1 or TSC2. We have characterized mutations in the Drosophila Tsc1 and Tsc2/gigas genes. Inactivating mutations in either gene cause an identical phenotype characterized by enhanced growth and increased cell size with no change in ploidy. Overall, mutant cells spend less time in G1. Coexpression of both Tsc1 and Tsc2 restricts tissue growth and reduces cell size and cell proliferation. This phenotype is modulated by manipulations in cyclin levels. In postmitotic mutant cells, levels of Cyclin E and Cyclin A are elevated. This correlates with a tendency for these cells to reenter the cell cycle inappropriately as is observed in the human lesions.  相似文献   

2.
Tuberous sclerosis is an autosomal dominant tumor suppressor gene syndrome affecting about 1 in 6000 individuals. Two genes have been shown to be responsible for this disease: TSC1, encoding hamartin and TSC, encoding tuberin. A variety of tumors characteristically occur in different organs of tuberous sclerosis patients and are believed to result from defects in cell cycle/cell size control. In this study, we performed two-dimensional gel electrophoresis with subsequent mass spectrometrical identification of protein spots after overexpression of TSC1 or TSC2. We found expression of PCNA and the p48 subunit of CAF-1 to be regulated by two tuberous sclerosis gene products. CAF-1 and PCNA interact as major regulators of chromatin assembly during DNA repair. We suggest that deregulation of the control of chromatin assembly might contribute to development of tumors in tuberous sclerosis patients and provide important new insights into the molecular development, especially since deregulation of chromatin assembly and DNA repair results in genomic instability, a hallmark of tumor development.  相似文献   

3.
Tuberin negatively affects BCL-2’s cell survival function   总被引:2,自引:0,他引:2  
Summary. Uncontrolled cell cycle progression and cell growth are key properties of tumor cells. The tumor suppressor genes responsible for the autosomal dominantly inherited disease tuberous sclerosis (TSC) have been demonstrated to control both, cell cycle and cell size regulation. Hamartin, encoded by TSC1, and tuberin, encoded by TSC2, form a complex, of which tuberin is assumed to be the functional component. Loss of TSC genes function triggers hamartoma development in TSC patients. However, in vivo mostly tumor cell development is rapidly terminated via apoptosis. BCL-2, the founding member of the BCL-2 family of proteins, is well known for its anti-apoptotic properties. Here we show that pro-apoptotic actinomycin D cannot interfere with BCL-2’s cell survival functions. However, we found tuberin to negatively regulate BCL-2’s anti-apoptotic effects on low serum-induced apoptosis. These findings warrant further investigations to elucidate the molecular mechanism underlying tuberin’s negative effects on cell survival.  相似文献   

4.
The genes TSC1, encoding hamartin, and TSC2, encoding tuberin are responsible for tuberous sclerosis. This autosomal dominant tumor suppressor gene syndrome affects about 1 in 6000 individuals. A variety of tumors characteristically occur in different organs of tuberous sclerosis patients and are believed to result from defects in cell cycle/cell size control. We performed a proteomics approach of two-dimensional gel electrophoresis with subsequent mass spectrometrical identification of protein spots after ectopic overexpression of human TSC1 or TSC2. We found the cellular levels of four isoforms of the 14-3-3 protein family, 14-3-3 gamma, 14-3-3, 14-3-3 sigma, and 14-3-3 zeta, to be regulated by the two tuberous sclerosis gene products. In the same experiments the protein levels of keratin 7, capZ alpha-1 subunit, ezrin, and nedasin were not affected by ectopic TSC1 or TSC2. Western blot analyses confirmed the deregulation of 14-3-3 proteins upon ectopic overexpression of TSC1 and TSC2. A TSC1 mutant not encoding the transmembrane domain and the tuberin-binding domain but harbouring most of the coiled-coil region and the ERM protein interaction domain of hamartin did not affect 14-3-3 protein levels. The here presented findings suggest that deregulation of 14-3-3 protein amounts might contribute to the development of tumors in tuberous sclerosis patients. These data provide important new insights into the molecular development of this disease especially since both, the TSC genes and the 14-3-3 proteins, are known to be involved in mammalian cell cycle control.  相似文献   

5.
Tuberous sclerosis complex (TSC) is an autosomal dominant disease characterized by hamartoma formation in various organs. Two genes responsible for the disease, TSC1 and TSC2, have been identified. The TSC1 and TSC2 proteins, also called hamartin and tuberin, respectively, have been shown to regulate cell growth through inhibition of the mammalian target of rapamycin pathway. TSC1 is known to stabilize TSC2 by forming a complex with TSC2, which is a GTPase-activating protein for the Rheb small GTPase. We have identified HERC1 as a TSC2-interacting protein. HERC1 is a 532-kDa protein with an E3 ubiquitin ligase homology to E6AP carboxyl terminus (HECT) domain. We observed that the interaction of TSC1 with TSC2 appears to exclude TSC2 from interacting with HERC1. Disease mutations in TSC2, which result in its destabilization, allow binding to HERC1 in the presence of TSC1. Our study reveals a potential molecular mechanism of how TSC1 stabilizes TSC2 by excluding the HERC1 ubiquitin ligase from the TSC2 complex. Furthermore, these data reveal a possible biochemical basis of how certain disease mutations inactivate TSC2.  相似文献   

6.
7.
Tuberous sclerosis (TSC) is a tumor syndrome caused by mutation in TSC1 or TSC2 genes. TSC tumorigenesis is not always accompanied by loss of heterozygosity (LOH). Recently, extracellular signal-regulated kinase (Erk) has been found activated in TSC lesions lacking TSC1 or TSC2 LOH. Here, we show that Erk may play a critical role in TSC progression through posttranslational inactivation of TSC2. Erk-dependent phosphorylation leads to TSC1-TSC2 dissociation and markedly impairs TSC2 ability to inhibit mTOR signaling, cell proliferation, and oncogenic transformation. Importantly, expression of an Erk nonphosphorylatable TSC2 mutant in TSC2+/- tumor cells where Erk is constitutively activated blocks tumorigenecity in vivo, while wild-type TSC2 is ineffective. Our findings position the Ras/MAPK pathway upstream of the TSC complex and suggest that Erk may modulate mTOR signaling and contribute to disease progression through phosphorylation and inactivation of TSC2.  相似文献   

8.
Tuberous sclerosis complex (TSC) is a human syndrome characterized by a widespread development of benign tumors. This disease is caused by mutations in the TSC1 or TSC2 tumor suppressor genes; the molecular mechanisms underlying the activity of these have long been elusive. Recent studies of Drosophila and mammalian cells demonstrate that the TSC1-TSC2 complex functions as GTPase activating protein against Rheb - a Ras-like small GTPase, which in turn regulates TOR signaling in nutrient-stimulated cell growth. These findings provide a new paradigm for how proteins involved in nutrient sensing could function as tumor suppressors and suggest novel therapeutic targets against TSC. Here, we review these exciting developments with an emphasis on Drosophila studies and discuss how Drosophila can be a powerful model system for an understanding of the molecular mechanisms of the activity of human disease genes.  相似文献   

9.
Wan M  Wu X  Guan KL  Han M  Zhuang Y  Xu T 《FEBS letters》2006,580(24):5621-5627
Muscle mass is regulated by a wide range of hormonal and nutritional signals, such as insulin and IGF. Tuberous sclerosis complex (TSC) is an inherited hamartoma disease with tumor growth in numerous organs. TSC is caused by mutation in either TSC1 or TSC2 tumor suppressor genes that negatively regulate insulin-induced S6K activation and cell growth. Here we report that expression of human TSC1 (hTSC1) in mouse skeletal muscle leads to reduction of muscle mass. Expression of hTSC1 stabilizes endogenous TSC2 and leads to inhibition of the mTOR signaling. The hTSC1-mTSC2 hetero-complex and its downstream components remain sensitive to insulin stimulation and nutrition signals. This study suggests that an increase in the steady state level of resident TSC1-TSC2 complex is sufficient to reduce muscle mass and cause atrophy.  相似文献   

10.
The alpha-factor pheromone binds to specific cell surface receptors on Saccharomyces cerevisiae a cells. The pheromone is then internalized, and cell surface receptors are down-regulated. At the same time, a signal is transmitted that causes changes in gene expression and cell cycle arrest. We show that the ability of cells to internalize alpha-factor is constant throughout the cell cycle, a cells are also able to respond to pheromone throughout the cycle even though there is cell cycle modulation of the expression of two pheromone-inducible genes, FUS1 and STE2. Both of these genes are expressed less efficiently near or just after the START point of the cell cycle in response to alpha-factor. For STE2, the basal level of expression is modulated in the same manner.  相似文献   

11.
Reduced expression of the TSC2 tumour suppressor gene product, tuberin, has been reported in sporadic astrocytomas, suggesting that the TSC genes may play a role in formation of sporadic glial or glioneuronal tumours. We studied paired constitutional and tumour DNA samples from 100 patients with sporadic glial and glioneuronal tumours for loss of heterozygosity (LOH) at the TSC1 and TSC2 loci using a combination of seven previously reported and seven novel polymorphic markers. LOH was seen in 1/16 astrocytomas, 3/15 ependymomas, 5/16 gangliogliomas, 2/14 glioblastoma multiforme, 0/7 oligodendrogliomas, 0/7 tumours of mixed oligodendrocytic/astrocytic histology, 2/11 pilocytic astrocytomas and 0/1 subependymal giant cell astrocytomas informative at both loci. However, SSCP screening of all coding exons of the TSC1 or TSC2 genes in the tumours displaying LOH, and of both genes in 21 gangliogliomas, revealed no intragenic mutations. The lack of demonstrable inactivation of both alleles of either TSC gene in any of the tumours investigated suggests that they do not play a frequent role in the aetiology of sporadic glial or glioneuronal tumours.  相似文献   

12.
The Tongshu Capsule (TSC) is a prevalent form of traditional Chinese medicine widely used for its purported effects in treating mammary gland hyperplasia and inflammation. Though successful in several clinical studies, there is no clear evidence as to why TSC has a positive treatment effect, and little known about underlying mechanism that may account for it. In this study, we examined the effects of TSC and found that it has a comparatively strong growth inhibition on ERα positive breast cancer cells. TSC seems to cause G1 cell cycle arrest instead of apoptosis. Interestingly, TSC also down-regulated the expression of ERα and Cyclin D1. Consistently, TSC suppressed E2 mediated ERα downstream gene expression and cell proliferation in ERα positive breast cancer cell lines MCF7 and T47D. Depletion of ERα partially abolished the effects of TSC on the decrease of Cyclin D1 and cell viability. Our findings suggest that TSC may have therapeutic effects on ERα positive breast cancers and moreover that TSC may suppress breast epithelial cell proliferation by inhibiting the estrogen pathway.  相似文献   

13.
Pulmonary lymphangioleiomyomatosis (LAM) is a rare lung disease caused by mutations in the tumor suppressor genes encoding Tuberous Sclerosis Complex (TSC) 1 and TSC2. The protein product of the TSC2 gene is a well-known suppressor of the mTOR pathway. Emerging evidence suggests that the pituitary hormone prolactin (Prl) has both endocrine and paracrine modes of action. Here, we have investigated components of the Prl system in models for LAM. In a TSC2 (+/-) mouse sarcoma cell line, down-regulation of TSC2 using siRNA resulted in increased levels of the Prl receptor. In human LAM cells, the Prl receptor is detectable by immunohistochemistry, and the expression of Prl in these cells stimulates STAT3 and Erk phosphorylation, as well as proliferation. A high affinity Prl receptor antagonist consisting of Prl with four amino acid substitutions reduced phosphorylation of STAT3 and Erk. Antagonist treatment further reduced the proliferative and invasive properties of LAM cells. In histological sections from LAM patients, Prl receptor immuno reactivity was observed. We conclude that the Prl receptor is expressed in LAM, and that loss of TSC2 increases Prl receptor levels. It is proposed that Prl exerts growth-stimulatory effects on LAM cells, and that antagonizing the Prl receptor can block such effects.  相似文献   

14.
Tuberous sclerosis complex (TSC) is an autosomal dominant tumor syndrome that affects approximately 1 in 6000 individuals. It is characterized by the development of tumors, named hamartomas, in the kidneys, heart, skin and brain. The latter often cause seizures, mental retardation, and a variety of developmental disorders, including autism. This disease is caused by mutations within the tumor suppressor gene TSC1 on chromosome 9q34 encoding hamartin or within TSC2 on chromosome 16p13.3 encoding tuberin. TSC patients carry a mutant TSC1 or TSC2 gene in each of their somatic cells, and loss of heterozygosity has been documented in a wide variety of TSC tumors. Recent data suggest that functional inactivation of TSC proteins might also be involved in the development of other diseases not associated with TSC, such as sporadic bladder cancer, breast cancer, ovarian carcinoma, gall bladder carcinoma, non-small-cell carcinoma of the lung, and Alzheimer's disease. Tuberin and hamartin form a heterodimer, suggesting they might affect the same processes. Tuberin is assumed to be the functional component of the complex and has been implicated in the regulation of different cellular functions. The TSC proteins regulate cell size control due to their involvement in the insulin signalling pathway. Furthermore, they are potent positive regulators of the cyclin-dependent kinase inhibitor p27, a major regulator of the mammalian cell cycle. Here we review the current knowledge on how mutations within the TSC genes could trigger deregulation of stability and localization of the tumor suppressor p27.  相似文献   

15.
The tumor-suppressor genes TSC1 and TSC2 are mutated in tuberous sclerosis, an autosomal dominant multisystem disorder. The gene products of TSC1 and TSC2 form a protein complex that inhibits the signaling of the mammalian target of rapamycin complex1 (mTORC1) pathway. mTORC1 is a crucial molecule in the regulation of cell growth, proliferation and survival. When the TSC1/TSC2 complex is not functional, uncontrolled mTORC1 activity accelerates the cell cycle and triggers tumorigenesis. Recent studies have suggested that TSC1 and TSC2 also regulate the activities of Rac1 and Rho, members of the Rho family of small GTPases, and thereby influence the ensuing actin cytoskeletal organization at focal adhesions. However, how TSC1 contributes to the establishment of cell polarity is not well understood. Here, the relationship between TSC1 and the formation of the actin cytoskeleton was analyzed in stable TSC1-expressing cell lines originally established from a Tsc1-deficient mouse renal tumor cell line. Our analyses showed that cell proliferation and migration were suppressed when TSC1 was expressed. Rac1 activity in these cells was also decreased as was formation of lamellipodia and filopodia. Furthermore, the number of basal actin stress fibers was reduced; by contrast, apical actin fibers, originating at the level of the tight junction formed a network in TSC1-expressing cells. Treatment with Rho-kinase (ROCK) inhibitor diminished the number of apical actin fibers, but rapamycin had no effect. Thus, the actin fibers were regulated by the Rho-ROCK pathway independently of mTOR. In addition, apical actin fibers appeared in TSC1-deficient cells after inhibition of Rac1 activity. These results suggest that TSC1 regulates cell polarity-associated formation of actin fibers through the spatial regulation of Rho family of small GTPases.  相似文献   

16.
17.
In Saccharomyces cerevisiae commitment to cell division occurs late in the G1 phase of the cell cycle at a point called Start and requires the activity of the Cdc28 protein kinase and its associated G1 cyclins. The Swi4,6-dependent cell cycle box binding factor, SBF, is important for maximal expression of the G1 cyclin and HO endonuclease genes at Start. The cell cycle regulation of these genes is modulated through an upstream regulatory element termed the SCB (SwI4,6-dependent cell cycle box, CACGAAA), which is dependent on both SWI4 and SWI6. Although binding of SWI4 and SWI6 to SCB sequences has been well characterized in vitro, the binding of SBF in vivo has not been examined. We used in vivo dimethyl sulfate footprinting to examine the occupancy of SCB sequences throughout the cell cycle. We found that binding to SCB sequences occurred in the G1 phase of the cell cycle and was greatly reduced in G2. In the absence of either SWI4 or SWI6, SCB sequences were not occupied at any cell cycle stage. These results suggest that the G1-specific expression of SCB-dependent genes is regulated at the level of DNA binding in vivo.  相似文献   

18.
Lymphangioleiomyomatosis (LAM) is characterized by cystic lung destruction, resulting from proliferation of smooth-muscle-like cells, which have mutations in the tumor suppressor genes TSC1 or TSC2. Among 277 LAM patients, severe disease was associated with hypoxia and elevated red blood cell indexes that accompanied reduced pulmonary function. Because high red cell indexes could result from hypoxemia-induced erythropoietin (EPO) production, and EPO is a smooth muscle cell mitogen, we investigated effects of EPO in human cells with genetic loss of tuberin function, and we found that EPO increased proliferation of human TSC2-/-, but not of TSC2+/-, cells. A discrete population of cells grown from explanted lungs was characterized by the presence of EPO receptor and loss of heterozygosity for TSC2, consistent with EPO involvement. In LAM cells from lung nodules, EPO was localized to the extracellular matrix, supporting evidence for activation of an EPO-driven signaling pathway. Although the high red cell mass of LAM patients could be related to advanced disease, we propose that EPO, synthesized in response to episodic hypoxia, may increase disease progression by enhancing the proliferation of LAM cells.  相似文献   

19.
Tuberous sclerosis complex is an autosomal-dominant heritable disease caused by mutations in the TSC1 and TSC2 genes. We studied a Chinese patient with sporadic tuberous sclerosis complex. The clinical features of this patient included epilepsy, hypomelanotic macules and angiofibromas on his back; a cranial CT scan showed subependymal nodules along the lateral walls of the lateral ventricles. The TSC1 and TSC2 genes were studied by PCR and direct sequencing of the entire coding region and exon-intron boundaries of these genes. A novel deletion mutation (c.1964delA) in the TSC1 gene exon 15 was identified, which was not present in his parents or 100 unrelated normal controls. This is the first report of this c.1964delA mutation of the TSC1 gene, associated with tuberous sclerosis complex, expanding the spectrum of TSC1 mutations that cause this disease.  相似文献   

20.
Tuberous sclerosis complex is a tumor suppressor gene syndrome whose manifestations can include seizures, mental retardation, and benign tumors of the brain, skin, heart, and kidneys. Hamartin and tuberin, the products of the TSC1 and TSC2 genes, respectively, form a complex and inhibit signaling by the mammalian target of rapamycin. Here, we demonstrate that endogenous hamartin is threonine-phosphorylated during nocodazole-induced G2/M arrest and during the G2/M phase of a normal cell cycle. In vitro assays showed that cyclin-dependent kinase 1 phosphorylates hamartin at three sites, one of which (Thr417) is in the hamartin-tuberin interaction domain. Tuberin interacts with phosphohamartin, and tuberin expression attenuates the phosphorylation of exogenous hamartin. Hamartin with alanine mutations in the three cyclin-dependent kinase 1 phosphorylation sites increased the inhibition of p70S6 kinase by the hamartin-tuberin complex. These findings support a model in which phosphorylation of hamartin regulates the function of the hamartin-tuberin complex during the G2/M phase of the cell cycle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号