首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To date, the field of ancient DNA has relied almost exclusively on mitochondrial DNA (mtDNA) sequences. However, a number of recent studies have reported the successful recovery of ancient nuclear DNA (nuDNA) sequences, thereby allowing the characterization of genetic loci directly involved in phenotypic traits of extinct taxa. It is well documented that postmortem damage in ancient mtDNA can lead to the generation of artifactual sequences. However, as yet no one has thoroughly investigated the damage spectrum in ancient nuDNA. By comparing clone sequences from 23 fossil specimens, recovered from environments ranging from permafrost to desert, we demonstrate the presence of miscoding lesion damage in both the mtDNA and nuDNA, resulting in insertion of erroneous bases during amplification. Interestingly, no significant differences in the frequency of miscoding lesion damage are recorded between mtDNA and nuDNA despite great differences in cellular copy numbers. For both mtDNA and nuDNA, we find significant positive correlations between total sequence heterogeneity and the rates of type 1 transitions (adenine --> guanine and thymine --> cytosine) and type 2 transitions (cytosine --> thymine and guanine --> adenine), respectively. Type 2 transitions are by far the most dominant and increase relative to those of type 1 with damage load. The results suggest that the deamination of cytosine (and 5-methyl cytosine) to uracil (and thymine) is the main cause of miscoding lesions in both ancient mtDNA and nuDNA sequences. We argue that the problems presented by postmortem damage, as well as problems with contamination from exogenous sources of conserved nuclear genes, allelic variation, and the reliance on single nucleotide polymorphisms, call for great caution in studies relying on ancient nuDNA sequences.  相似文献   

2.
Like in bacteria, DNA in these organisms is subjected to enzymatic modification (methylation) both at adenine and cytosine residues. There is an indirect evidence that adenine DNA methylation takes place also in animals. In plants m6A was detected in total, mitochondrial and nuclear DNAs; in plants one and the same gene (DRM2) can be methylated both at adenine and cytosine residues. ORF homologous to bacterial adenine DNA-methyltransferases are present in nuclear DNA of protozoa, yeasts, insects, nematodes, higher plants, vertebrates and other eukaryotes. Thus, adenine DNA-methyltransferases can be found in the various evolutionary distant eukaryotes. First N6-adenine DNA-methyltransferase (wadmtase) of higher eukaryotes was isolated from vacuolar fraction of vesicles obtained from aging wheat coleoptiles; in the presence of S-adenosyl-L-methionine this Mg2+ -, Ca2+ -dependent enzyme de novo methylates first adenine residue in TGATCA sequence in single- and double-stranded DNA but it prefers single-stranded DNA structures. Adenine DNA methylation in eukaryotes seems to be involved in regulation of both gene expression and DNA replication including replication of mitochondrial DNA. It can control persistence of foreign DNA in a cell and seems to be an element of R-M system in plants. Thus, in eukaryotic cell there are, at least, two different systems of the enzymatic DNA methylations (adenine and cytosine ones) and a special type of regulation of gene functioning based on the combinatory hierarchy of these interdependent genome modifications.  相似文献   

3.
Comparison of open-reading frames (ORFs) H. pylori 26695 and J99 strains has been revealed prevalence of nucleotide replacements as transitions (more than 3%) above transversions (less than 1%). Prevalence of nucleotide transitions is caused by high speed of C : G to T : A transitions in a coding strand of DNA (3.5-5.3%) and not coding strand (2.9-3.9%). The correspondence rate of transversion (A --> C, A --> T, C --> A, C --> G, G --> C, G --> T, T --> A and T --> G) did not exceed 0.84%. The highest correspondence frequency between C and T was detected in ACGT-ATGT (28.3%) - the site of methylation by active methyltransferase M.Hpy99XI in H. pylori 26695 and J99. Thus one can speculate that predominant transition taking place in H. pylori is mutation of C into T, which is realized through cytosine methylation-deamination mechanism.  相似文献   

4.
Detection of 5-methylcytosine in DNA sequences.   总被引:42,自引:22,他引:20       下载免费PDF全文
Col E1 DNA has methylated cytosine in the sequence 5'-CC*(A/T)GG-3' and methylated adenine in the sequence 5'-GA*TC-3' at the positions indicated by asterisks(*). When the Maxam-Gilbert DNA sequencing method is applied to this DNA, the methylated cytosine (5-methylcytosine) is found to be less reactive to hydrazine than are cytosine and thymine, so that a band corresponding to that base does not appear in the pyrimidine cleavage patterns. The existence of the methylated cytosine can be confirmed by analyzing the complementary strand or unmethylated DNA. In contrast, the methylated adenine (probably N6-methyladenine) cannot be distinguished from adenine with standard conditions for cleavage at adenine.  相似文献   

5.
Whereas in Escherichia coli DNA mismatch repair is directed to the newly synthesized strand due to its transient lack of adenine methylation, the molecular determinants of strand discrimination in eukaryotes are presently unknown. In mammalian cells, cytosine methylation within CpG sites may represent an analogous and mechanistically plausible means of targeting mismatch correction. Using HeLa nuclear extracts, we conducted a systematic analysis in vitro to determine whether cytosine methylation participates in human DNA mismatch repair. We prepared a set of A·C heteroduplex molecules that were either unmethylated, hemimethylated or fully methylated at CpG sequences and found that the methylation status persisted under the assay conditions. However, no effect on either the time course or the magnitude of mismatch repair events was evident; only strand discontinuities contributed to strand bias. By western analysis we demonstrated that the HeLa extract contained MED1 protein, which interacts with MLH1 and binds to CpG-methylated DNA; supplementation with purified MED1 protein was without effect. In summary, human DNA mismatch repair operates independently of CpG methylation status, and we found no evidence supporting a role for CpG hemimethylation as a strand discrimination signal.  相似文献   

6.
The cause of the high variability of human mitochondrial DNA (mtDNA) remains largely unknown. Three mechanisms of mutagenesis that might account for the generation of nucleotide substitutions in mtDNA have been analyzed: deamination of DNA nitrous bases caused by deamination agents, tautomeric proton migration in nitrous bases, and the hydrolysis of the glycoside bond between the nitrous base and carbohydrate residue in nucleotides against the background of the free-radical damage of DNA polymerase γ. Quantum chemical calculations demonstrated that the hydrolysis of the N-glycoside bond is the most probable mechanism; it is especially prominent in the H strand, which remains free during mtDNA replication for a relatively long time. It has also been found that hydrolytic deamination of adenine in single-stranded regions of the H strand is a possible cause of the high frequency of T → C transitions in the mutation spectra of the L-chain of the major mtDNA noncoding region.  相似文献   

7.
Zebularine (1-(β-D-ribofuranosyl)-1,2-dihydropyrimidin-2-one) was studied as both a 2 ′-deoxyribosyl 5 ′-triphosphate derivative and as a template incorporated into an oligonucleotide. Using a novel pyrosequencing assay, zebularine acted as cytosine analog and was incorporated into DNA with a template pairing profile most similar to cytosine, pairing with greatest efficiency opposite guanine in the template strand. Guanine was incorporated with greater affinity than adenine opposite a zebularine in the template strand. Computer modeling of base-pairing structures supported a better fit of zebularine opposite guanine than adenine. Zebularine acts as a cytosine analog, which supports its activity as an inhibitor of cytosine methyltransferase.  相似文献   

8.
Zebularine (1-(beta-D-ribofuranosyl)-1,2-dihydropyrimidin-2-one) was studied as both a 2 '-deoxyribosyl 5 '-triphosphate derivative and as a template incorporated into an oligonucleotide. Using a novel pyrosequencing assay, zebularine acted as cytosine analog and was incorporated into DNA with a template pairing profile most similar to cytosine, pairing with greatest efficiency opposite guanine in the template strand. Guanine was incorporated with greater affinity than adenine opposite a zebularine in the template strand. Computer modeling of base-pairing structures supported a better fit of zebularine opposite guanine than adenine. Zebularine acts as a cytosine analog, which supports its activity as an inhibitor of cytosine methyltransferase.  相似文献   

9.
To determine whether replicational mutagenesis in the yeast genome is influenced by the positions of active origins, a reporter gene was placed in two orientations at multiple locations within a 39,000 bp region of chromosome III possessing two strong origins. The frequency of mutations resulting from misincorporation of adenine opposite 8-hydroxyguanine in one strand and 6-hydroxylaminopurine opposite cytosine in the other strand differed by 3- to 10-fold, depending on the gene orientation and its distance from the origins. The observed patterns indicate that active origins establish a strand bias for mutations that is maintained over thousands of base pairs and results from lower nucleotide selectivity and/or less efficient proofreading or mismatch repair during leading strand DNA replication.  相似文献   

10.
The Escherichia coli adenine glycosylase MutY is involved in the repair of 7,8-dihydro-8-oxo-2"-deoxyguanosine (OG):A and G:A mispairs in DNA. Our approach toward understanding recognition and processing of DNA damage by MutY has been to use substrate analogs that retain the recognition properties of the substrate mispair but are resistant to the glycosylase activity of MutY. This approach provides stable MutY-DNA complexes that are amenable to structural and biochemical characterization. In this work, the interaction of MutY with the 2"-deoxyadenosine analogs 2"-deoxy-2"-fluoroadenosine (FA), 2"-deoxyaristeromycin (R) and 2"-deoxyformycin A (F) was investigated. MutY binds to duplexes containing the FA, R or F analogs opposite G and OG within DNA with high affinity; however, no enzymatic processing of these duplexes is observed. The specific nature of the interaction of MutY with an OG:FA duplex was demonstrated by MPE-Fe(II) hydroxyl radical footprinting experiments which showed a nine base pair region of protection by MutY surrounding the mispair. DMS footprinting experiments with an OG:A duplex revealed that a specific G residue located on the OG-containing strand was protected from DMS in the presence of MutY. In contrast, a G residue flanking the substrate analogs R, F or FA was observed to be hypersensitive to DMS in the presence of MutY. These results suggest a major conformational change in the DNA helix upon binding of MutY that exposes the substrate analog-containing strand. This finding is consistent with a nucleotide flipping mechanism for damage recognition by MutY. This work demonstrates that duplex substrates for MutY containing FA, R or F instead of A are excellent substrate mimics that may be used to provide insight into the recognition by MutY of damaged and mismatched base pairs within DNA.  相似文献   

11.
Exposure of biological materials to ionizing radiation often induces clustered DNA damage. The mutagenicity of clustered DNA damage can be analyzed with plasmids carrying a clustered DNA damage site, in which the strand bias of a replicating plasmid (i.e., the degree to which each of the two strands of the plasmid are used as the template for replication of the plasmid) can help to clarify how clustered DNA damage enhances the mutagenic potential of comprising lesions. Placement of a mismatch near a clustered DNA damage site can help to determine the strand bias, but present plasmid-based methods do not allow insertion of a mismatch at a given site in the plasmid. Here, we describe a polymerization-based method for constructing a plasmid containing clustered DNA lesions and a mismatch. The presence of a DNA lesion and a mismatch in the plasmid was verified by enzymatic treatment and by determining the relative abundance of the progeny plasmids derived from each of the two strands of the plasmid.  相似文献   

12.
Larson ED  Iams K  Drummond JT 《DNA Repair》2003,2(11):1199-1210
Genomic DNA and its precursors are susceptible to oxidation during aerobic cellular metabolism, and at least five distinct repair activities target a single common lesion, 7,8-dihydro-8-oxoguanine (8-oxoG). The human mismatch repair (MMR) pathway, which has been implicated in an apoptotic response to covalent DNA damage, is likely to encounter 8-oxoG in both the parental and daughter strand during replication. Here, we show that lesions containing 8-oxoG paired with adenine or cytosine, which are most likely to arise during replication, are not efficiently processed by the mismatch repair system. Lesions containing 8-oxoG paired with thymine or guanine, which are unlikely to arise, are excised in an MSH2/MSH6-dependent manner as effectively as the corresponding mismatches when placed in a context that reflects the daughter strand during replication. Using a newly developed assay based on methylation sensitivity, we characterized strand-excision events opposite 8-oxoG situated to reflect placement in the parental strand. Lesions that efficiently trigger strand excision and resynthesis (8-oxoG paired with thymine or guanine) result in adenine or cytosine insertion opposite 8-oxoG. These latter pairings are poor substrates for further action by mismatch repair, but precursors for alternative pathways with non-mutagenic outcomes. We suggest that the lesions most likely to be encountered by the human mismatch repair pathway during replication, 8-oxoG.A or 8-oxoG.C, are likely to escape processing in either strand by this system. Taken together, these data suggest that the human mismatch repair pathway is not a major contributor to removal of misincorporated 8-oxoG, nor is it likely to trigger repeated attempts at lesion processing.  相似文献   

13.
Oxidative damage to DNA has been reported to occur in a wide variety of disease states. The most widely used "marker" for oxidative DNA damage is 8-hydroxyguanine. However, the use of only one marker has limitations. Exposure of calf thymus DNA to an .OH-generating system (CuCl(2), ascorbate, H(2)O(2)) or to hypochlorous acid (HOCl), led to the extensive production of multiple oxidized or chlorinated DNA base products, as measured by gas chromatography-mass spectrometry. The addition of peroxynitrite (ONOO(-)) (<200 microM) or SIN-1 (1mM) to oxidized DNA led to the extensive loss of 8-hydroxyguanine, 5-hydroxycytosine, 2,6-diamino-4-hydroxy-5-formamidopyrimidine, 2-hydroxyadenine, 8-hydroxyadenine, and 4,6-diamino-5-formamidopyrimidine were lost at higher ONOO(-) concentrations (>200 microM). Exposure of DNA to HOCl led to the generation of 5-Cl uracil and 8-Cl adenine and addition of ONOO(-) (<200 microM) or SIN-1 (1mM) led to an extensive loss of 8-Cl adenine and a small loss of 5-Cl uracil at higher concentrations (>500 microM). An .OH-generating system (CuCl(2)/ascorbate/H(2)O(2)) could also destroy these chlorinated species. Treatment of oxidized or chlorinated DNA with acidified nitrite (NO(2)(-), pH 3) led to substantial loss of various base lesions, in particular 8-OH guanine, 5-OH cytosine, thymine glycol, and 8-Cl adenine. Our data indicate the possibility that when ONOO(-), nitrite in regions of low pH or .OH are produced at sites of inflammation, levels of certain damaged DNA bases could represent an underestimate of ongoing DNA damage. This study emphasizes the need to examine more than one modified DNA base when assessing the role of reactive species in human disease.  相似文献   

14.
8-Oxoguanine (8-oxoG) is a major mutagenic DNA base damage corrected by the base excision repair (BER) pathway, which is initiated by lesion specific DNA glycosylases. The human DNA glycosylase hOgg1 catalyses excision of 8-oxoG followed by strand incision 3' to the abasic site if cytosine is positioned in the complementary strand. Unlike most bifunctional glycosylases, hOgg1 uncouples base removal and strand cleavage. This paper addresses the significance of product inhibition and magnesium for the non-concerted action of hOgg1 activities. The enzymatic activities of hOgg1 were analysed on duplex DNA containing a single 8-oxoG or abasic site opposite cytosine. AP-lyase cleavage of abasic sites was inhibited in the presence of free 8-oxoG, indicating that the product of base excision inhibits the subsequent strand incision step. Assays with DNA containing 8-oxoG showed that free 8-oxoG also inhibited the glycosylase activity. This result suggests that the free 8-oxoG base may retain in the recognition site following N-glycosylic cleavage, implying that product inhibition contribute to uncoupling the activities of hOgg1. Magnesium reduced the efficiency of base excision and strand incision on DNA containing 8-oxoG under single turnover conditions; however, the reduction was more pronounced for the AP-lyase activity. Furthermore, Shiff-base formation between hOgg1 and 8-oxoG containing DNA was abrogated in the presence of magnesium. These results suggest that hOgg1 mainly operates as a monofunctional glycosylase under physiological concentrations of magnesium.  相似文献   

15.
In this work, direct DNA damage induced by low-energy electrons (sub-keV) is simulated using a Monte Carlo method. The characteristics of the present simulation are to consider the new mechanism of DNA damage due to dissociative electron attachment (DEA) and to allow determining damage to specific bases (i.e., adenine, thymine, guanine, or cytosine). The electron track structure in liquid water is generated, based on the dielectric response model for describing electron inelastic scattering and on a free-parameter theoretical model and the NIST database for calculating electron elastic scattering. Ionization cross sections of DNA bases are used to generate base radicals, and available DEA cross sections of DNA components are applied for determining DNA-strand breaks and base damage induced by sub-ionization electrons. The electron elastic scattering from DNA components is simulated using cross sections from different theoretical calculations. The resulting yields of various strand breaks and base damage in cellular environment are given. Especially, the contributions of sub-ionization electrons to various strand breaks and base damage are quantitatively presented, and the correlation between complex clustered DNA damage and the corresponding damaged bases is explored. This work shows that the contribution of sub-ionization electrons to strand breaks is substantial, up to about 40–70%, and this contribution is mainly focused on single-strand break. In addition, the base damage induced by sub-ionization electrons contributes to about 20–40% of the total base damage, and there is an evident correlation between single-strand break and damaged base pair A–T.  相似文献   

16.
Quantitative analysis of gene-specific DNA damage in human spermatozoa   总被引:5,自引:0,他引:5  
Recent studies have suggested that human spermatozoa are highly susceptible to DNA damage induced by oxidative stress. However, a detailed analysis of the precise nature of this damage and the extent to which it affects the mitochondrial and nuclear genomes has not been reported. To induce DNA damage, human spermatozoa were treated in vitro with hydrogen peroxide (H2O2; 0-5 mM) or iron (as Fe(II)SO4, 0-500 microM). Quantitative PCR (QPCR) was used to measure DNA damage in individual nuclear genes (hprt, beta-pol and beta-globin) and mitochondrial DNA. Single strand breaks were also assessed by alkaline gel electrophoresis. H2O2 was found to be genotoxic toward spermatozoa at concentrations as high as 1.25 mM, but DNA damage was not detected in these cells with lower concentrations of H2O2. The mitochondrial genome of human spermatozoa was significantly (P<0.001) more susceptible to H2O2-induced DNA damage than the nuclear genome. However, both nDNA and mtDNA in human spermatozoa were significantly (P<0.001) more resistant to damage than DNA from a variety of cell lines of germ cell and myoblastoid origin. Interestingly, significant DNA damage was also not detected in human spermatozoa treated with iron. These studies report, for the first time, quantitative measurements of DNA damage in specific genes of male germ cells, and challenge the commonly held belief that human spermatozoa are particularly vulnerable to DNA damage.  相似文献   

17.
Genetic miscoding lesions can cause inaccuracies during the interpretation of ancient DNA sequence data. In this study, genetic miscoding lesions were identified and assessed by cloning and direct sequencing of degraded, amplified mitochondrial DNA (mtDNA) extracted from human remains. Forty-two individuals, comprising nine collections from five geographic locations, were analyzed for the presence of DNA damage that can affect the generation of a correct mtDNA profile. In agreement with previous studies, high levels (56.5% of all damage sites) of proposed hydrolytic damage products were observed. Among these, type 2 transitions (cytosine → thymine or guanine → adenine), which are highly indicative of hydrolytic deamination, were observed in 50% of all misincorporations that occurred. In addition to hydrolytic damage products, oxidative damage products were also observed in this study and were responsible for approximately 43.5% of all misincorporations. This level of misincorporation is in contrast to previous studies characterizing miscoding lesions from the analysis of bone and teeth, where few to no oxidative damage products were observed. Of all the oxidative damage products found in this study, type 2 transversions (cytosine → adenine/guanine → thymine or cytosine → guanine/guanine → cytosine), which are commonly formed through the generation of 8-hydroxyguanine, accounted for 30.3% of all genetic miscoding lesions observed. This study identifies the previously unreported presence of oxidative DNA damage and proposes that damage to degraded DNA templates is highly specific in type, correlating with the geographic location and the taphonomic conditions of the depositional environment from which the remains are recovered. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

18.
Summary Specificity of DNA methylation enzymes from the E. coli SK cells and conditions for their separation have been investigated. Column chromatography on carboxymethylcellulose permits fractionation of methylase activity into six discrete peaks whose specificity to the methylated base has been determined in vitro with H3-SAM as precursor. All methylases specific for adenine produced 6-methylaminopurine, all methylases specific for cytosine yielded 5-methylcytosine.The first enzymatic activity peak containing cytosine methylase free of traces of adenine-methyiating activity (E1), and the second peak containing both the enzymes (E2) were not adsorbed on the ion exchanger and went off the column with the effluent (column buffer). Adenine specific methylase E2 is retarded to a small extent during the passage through the column. The second adenine methylases (W) was characterized by weak bonds with the ion exchanger and was removed when washing the column with column buffer. The elution with NaCl gradient produced successively three enzymatic activity peaks: adenine methylase (GI), cytosine methylase (GII), and one more adenine methylase (GIII) removed from the column by 0.16 m, 0.24 m and 0.43 m NaCl respectively.Using a new modification of the complementary methylation test, the specificity with regard to recognition site was examined for all enzymes, except for W and GIII, which were extremely unstable. The adenine methylases E2 and GI and the cytosine methylases E1 and GII were shown to recognize different sites and to be different enzymes. In view of the drastic differences in their chromatographic behaviour and physical stability, the adenine methylases W and GIII are probably also different enzymes.  相似文献   

19.
C De Giorgi  F De Luca  C Saccone 《Gene》1991,103(2):249-252
Two polymorphic forms of mitochondrial DNA (mtDNA) extracted from Arbacia lixula eggs were cloned and the nucleotide sequences of specific regions determined. A comparison of the sequences of the sense strand of the two molecules demonstrates that all the differences are transitions and only of the A----G type. A change such as G----A (or A----G) on the sense mtDNA strand results from either a direct G----A (or A----G) mutation on that strand or a C----T (or T----C) on the complementary strand. None of the C----T (or T----C) changes were detected on the sense strand, which implies that the A----G mutation bias on the sense strand is not reversed for the other strand. Our observation indicates the existence of mechanisms acting asymmetrically on the two mtDNA strands, possibly during mtDNA replication.  相似文献   

20.
DNA with abasic sites has been prepared by deamination of cytosine followed by treatment of the product with uracil N-glycosylase. Termination in vitro on such templates does not occur until treatment with uracil N-glycosylase. DNA terminated one base before abasic sites created from C's has been used as a template in "second stage" reactions. With enzymes devoid or deficient in 3' greater than 5' exonuclease activity purines, particularly adenine, are preferentially added opposite the putative abasic site. 2-Aminopurine behaves more like adenine than like guanine in these experiments. Polymerase beta preferentially incorporates A opposite abasic sites produced from T, and G opposite abasic sites produced from C. We have eliminated an obvious artefact (e.g. strand switching) which might account for this observation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号