首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Semicontinuous cultures of Scenedesmus obliquus in artificial wastewater, recycled into proteins about 33% and 25% of the dissolved nitrogen missing from the medium 24 h after harvesting 50% and 70% of the culture, and replacing the volume harvested with fresh medium. The residual dissolved nitrogen concentrations were 25% and 43% of the initial, respectively, with an imbalance in the mass budget close to 17 and 20 mg N l(-1) d-1. Most or all the nitrogen missing was found in an ammonia trap located at the air vent of the closed cultures, showing that an important role of microalgae in wastewater treatment is that of favouring NH3 stripping due to the photosynthesis-induced pH increases.  相似文献   

2.
Scenedesmus obliquus can help to reduce the environmental impact of industrial olive mill wastewater from olive oil extraction in the three‐phase system. This work examines the effect of temperature changes (288–308 K) on algal growth, culture medium, and biochemical composition of S. obliquus. The maximum specific growth rate of 0.024 h?1 occurred at an optimal temperature of 302.7 K. The apparent activation energies of cell growth and cell death were determined as 61.8 and 142.8 kJ/mol, respectively. At the end of culture the percentages of pigments, proteins, and carbohydrates were greater at the two ends of the temperature range studied, as it was also observed for the maximum elimination of biochemical oxygen demand (BOD5). The mono‐ and polyunsaturated fatty acid content of the biomass was greater at the lowest temperature used (288 K).  相似文献   

3.
The microalga Scenedesmus incrassatulus was grown under continuous regime in the presence of chromium(VI), cadmium(II) and copper(II), as single metal species and as mixtures of two or three metals, in a laboratory scale system. We used an artificial wastewater with low free ion activities (as determined by MINEQL+) due to the presence of EDTA (a strong chelating agent) but with total concentrations not suitable for acceptable environments. Chromium(VI) and cadmium(II) had positive interaction that increased the removal percentages of both these metals; we could not, however, detect any interaction with copper(II). S. incrassatulus was able to remove all the tested metals to some extent (25-78%), but bivalent metals were not removed as efficiently as reported in batch cultures, probably due to the high pH values there recorded. Chromium(VI) was more efficiently removed in continuous cultures than in batch culture, because the uptake of chromate could be favored by actively growing algae.  相似文献   

4.
Three pilot subsurface wastewater infiltration systems filled with the same mixed matrix made of 80% brown soil and cinder at a weight of 20% were constructed in the laboratory. All systems worked successfully in the intermittent feeding mode with total hydraulic loading of 4 m3/(m2 d) for over 2 months, with the optimal parameters of shunt ratio of 1:1 and shunt position at the depth of 0.7 m was achieved on the basis of large amounts of experimental data. The experiment results showed that shunt distributing wastewater could significantly improve the nitrogen removal in the subsurface infiltration system and the average removal rates of TN and NH4-N increased by 10% and 5.67%, respectively. Shunt distributing wastewater had little influence on the removal rates of COD and TP. The results suggested that shunt distributing wastewater was simple and effective for nitrogen removal.  相似文献   

5.
Nitrate and ammonium removal from purified swine wastewater using biogas and air was investigated in continuous reactor operation. A novel type of reactor, a semi-partitioned reactor (SPR), which enables a biological reaction using methane and oxygen in the water phase and discharges these unused gases separately, was operated with a varying gas supply rate. Successful removal of NO(3)(-) and NH(4)(+) was observed when biogas and air of 1L/min was supplied to an SPR of 9L water phase with a NO(2,3)(-)-N and NH(4)(+)-N removal rate of 0.10 g/L/day and 0.060 g/L/day, respectively. The original biogas contained an average of 77.2% methane, and the discharged biogas from the SPR contained an average of 76.9% of unused methane that was useable for energy like heat or electricity production. Methane was contained in the discharged air from the SPR at an average of 2.1%. When gas supply rates were raised to 2L/min and the nitrogen load was increased, NO(3)(-) concentration was decreased, but NO(2)(-) accumulated in the reactor and the NO(2,3)(-)-N and NH(4)(+)-N removal activity declined. To recover the activity, lowering of the nitrogen load and the gas supply rate was needed. This study shows that the SPR enables nitrogen removal from purified swine wastewater using biogas under limited gas supply condition.  相似文献   

6.
Wastewater microorganisms of nitrification and denitrification were cultivated to compose two biofilm modules, termed the permeable support bioreactor (PSB) and the membrane feeding substrate bioreactor (MFSB). PSB and MFSB were combined in a single tank to develop a double-biofilm reactor, which was used to treat nitrogen contaminants in wastewater. With a membrane supplement of substrates (O(2) and CH(3)OH), the D.O. and COD levels were at a low value in the bulk solution thus inhibitive effects between nitrification and denitrification were minimized. Simultaneous nitrification/denitrification was conducted in the reactor and the double-biofilm reactor achieved high nitrification and denitrification efficiency, of 96.5% and 82%, respectively.  相似文献   

7.
8.
Biodiesel production was examined with Scenedesmus obliquus in a recirculatory aquaculture system with fish pond discharge and poultry litter to couple with waste treatment. Lipid productivity of 14,400 liter ha(-1) year(-1) was projected with 11 cultivation cycles per year. The fuel properties of the biodiesel produced adhered to Indian and international standards.  相似文献   

9.
Strasser  Bruno J  Dau  Holger  Heinze  Ilona  Senger  Horst 《Photosynthesis research》1999,60(2-3):217-227
Changes in the photosynthetic apparatus occurring during the synchronous cell cycle of the green alga Scenedesmus obliquus are compared to the adaptational response induced by light intensity variations. To investigate and compare these two phenomena, we analyze the polyphasic rise of the chlorophyll fluorescence yield exhibited by plants and cyanobacteria when exposed to high intensity actinic light. Four fluorescence parameters are calculated which are closely related to Photosystem II (PS II) structure and function: ABS/RC, the antenna size of PS II; PO, the quantum yield for reduction of the primary PS II quinone acceptor; qPQ, related to the size of the plastoquinone pool; qEmax, the capacity for pH dependent non-photochemical quenching. The capacity for non-photochemical quenching changes in response to light intensity variations, but it is not affected by the developmental changes occurring during the cell cycle. In contras t, for ABS/RC, PO and qPQ, we observe light induced as well as cell cycle dependent variations. We discuss the relations of the four fluorescence parameters to the molecular organization of the photosynthetic apparatus and its cell cycle and light dependent changes.  相似文献   

10.
A 1.2 kW, 2450 MHz resonant continuous microwave processing system was designed and optimized for oil extraction from green algae (Scenedesmus obliquus). Algae-water suspension (1:1 w/w) was heated to 80 and 95°C, and subjected to extraction for up to 30 min. Maximum oil yield was achieved at 95°C and 30 min. The microwave system extracted 76-77% of total recoverable oil at 20-30 min and 95°C, compared to only 43-47% for water bath control. Extraction time and temperature had significant influence (p<0.0001) on extraction yield. Oil analysis indicated that microwaves extracted oil containing higher percentages of unsaturated and essential fatty acids (indicating higher quality). This study validates for the first time the efficiency of a continuous microwave system for extraction of lipids from algae. Higher oil yields, faster extraction rates and superior oil quality demonstrate this system's feasibility for oil extraction from a variety of feedstock.  相似文献   

11.
研究了浓度为0、1、5、10、15、20 mg/L的新兴离子液体溴化1-己基-3-甲基咪唑([C6mim]Br)在24h、48h、72h和96h对斜生栅藻还原型谷胱甘肽(GSH)及其代谢酶-谷胱甘肽过氧化物酶(GPX)、谷胱甘肽转硫酶(GST)和谷胱甘肽还原酶(GR)的影响。结果表明:GSH含量在24h、48h和72h时,在最低处理浓度下不变,其他处理浓度下随胁迫浓度增加而降低,96h时则与对照无差异或较小;GPX和GST的活性在72h之前明显升高(最高浓度组的GST活性有波动),96h时均降低至对照水平;GR活性在24h时,[C6mim]Br=1 mg/L时升高,之后降低,在48h增高至对照水平,72h时,[C6mim]Br≥10 mg/L的处理组高于对照水平,96h时,除最低处理组外,均降至对照水平以下。GR是GSH系统中的限速酶,GST则是该系统中活性和灵敏性最高的酶,可作为[C6mim]Br胁迫时的敏感的生物标志物。1 mg/L的[C6mim]Br可引起藻细胞的氧化胁迫,具有环境毒性。  相似文献   

12.
In a high-rate oxidation pond, 0.1 to 1.0% of the algal population of Scenedesmus obliquus was found to be infected by a chytrid. When suitable conditions developed, these infections burst into massive epidemics that killed most of the algae. The major factors triggering massive infections were optimal oxygen concentration and low concentrations of potassium and magnesium cations. The fungicide Benomyl was effective in preventing infection at a concentration of 1 mg/liter.  相似文献   

13.
14.
Effects of diazepam (Valium) on photosynthesis, chlorophyll/photosynthesis ratios, respiration, uptake of rubidium ions, and ultrastructure of Scenedesmus obliquus synchronized by a light-dark regimen of \(14:\overline {10}\) hrs were determined. 80 and 160 μM diazepam, added to the nutrient medium at the start of the light-dark change (i.e., start of the cell cycle) gradually reduced rates of photosynthesis below the initial rates from the beginning of the experiment. Contents of chlorophyll, however, remained nearly unaffected. Consequently, the diazepam-treated cells had a higher chlorophyll/photosynthesis ratio—also with regard to respiration in order to calculate the gross photosynthesis. The occurrence of photorespiration cannot be assumed. The net influx or rubidium was slightly reduced by 100 μM diazepam 0.5 and 2.0 hrs after the start of the cell cycle and was strongly inhibited after 5 to 14 hrs. 80 and 160 μM diazepam caused separation of thylakoids, formation of giant mitochondria and enlargement of vacuoles. The results are discussed and it is finally suggested that diazepam acts on different membrane systems. Furthermore an ATP deficiency cannot be excluded.  相似文献   

15.
Effects of diazepam (Valium) on photosynthesis, chlorophyll/photosynthesis ratios, respiration, uptake of rubidium ions, and ultrastructure of Scenedesmus obliquus synchronized by a light-dark regimen of 14:10 hrs were determined. 80 and 160 muM diazepam, added to the nutrient medium at the start of the light-dark change (i.e., start of the cell cycle) gradually reduced rates of photosynthesis, below the initial rates from the beginning of the experiment. Contents of chlorophyll, however, remained nearly unaffected. Consequently, the diazepam-treated cells had a higher chlorophyll/photosynthesis ratio--also with regard to respiration in order to calculate the gross photosynthesis. The occurrence of photorespiration cannot be assumed. The net influx of rubidium was slightly reduced by 100 muM diazepam 0.5 and 2.0 hrs after the start of the cell cycle and was strongly inhibited after 5 to 14 hrs. 80 and 160 muM diazepam caused separation of thylakoids, formation of giant mitochondria and enlargement of vacuoles.  相似文献   

16.
The increase in the concentration of atmospheric carbon dioxide is considered to be one of the main causes of global warming. As estimated by the Intergovernmental Panel on Climate Change (IPCC) criteria, about 10-15% of the gases emitted from the combustion coal being in the form of carbon dioxide. Microalgae and cyanobacteria can contribute to the reduction of atmospheric carbon dioxide by using this gas as carbon source. We cultivated the Scenedesmus obliquus and Spirulina sp. at 30 degrees C in a temperature-controlled three-stage serial tubular photobioreactor and determined the resistance of these organisms to limitation and excess of carbon dioxide and the capacity of the system to fix this greenhouse gas. After 5 days of cultivation under conditions of carbon limitation both organisms showed cell death. Spirulina sp. presenting better results for all parameters than S. obliquus. For Spirulina sp. the maximum specific growth rate and maximum productivity was 0.44 d(-1), 0.22 g L(-1)d(-1), both with 6% (v/v) carbon dioxide and maximum cellular concentration was 3.50 g L(-1) with 12% (v/v) carbon dioxide. Maximum daily carbon dioxide biofixation was 53.29% for 6% (v/v) carbon dioxide and 45.61% for 12% carbon dioxide to Spirulina sp. corresponding values for S. obliquus being 28.08% for 6% (v/v) carbon dioxide and 13.56% for 12% (v/v) carbon dioxide. The highest mean carbon dioxide fixation rates value was 37.9% to Spirulina sp. in the 6% carbon dioxide runs.  相似文献   

17.
Scendesmus sp. isolated from municipal wastewater, entrapped in calcium alginate as algal sheets was employed to remove inorganic nutrients (N and P) from artificial and real domestic secondary effluents in parallel-plate bioreactor after starvation. The key factors affecting the removal efficiency (NH4+-N and PO4(3-)-P), system stability and reuse efficiency of screens were studied and discussed. It has been shown that cell density in the mixture of algal gel was the key factor compared with the thickness of the gel and the cell density of the reactor. A complete removal of NH4+-N and PO4(3-)-P was achieved within 4h of treatment in parallel bioreactors with the optimal cell density in the mixture of algal (2 x 10(8) algae mL(-1)) and 3mm gel sheets after second cycle. Nine cycles of wastewater treatment in 21 days were accomplished, holding higher removal efficiency. NH(4)(+)-N removal efficiency was 99.1% after 105 min, 100% after 135 min, PO4(3-)-P removal efficiency was 100% after 15 min in domestic secondary effluents. Immobilized Scendesmus sp. is shown to have great potentialities for removal of inorganic nitrogen and phosphorus from treated effluents.  相似文献   

18.
Application of a laboratory-scale photobioreactor containing a biofilter composed of the aerial microalga Trentepohlia aurea to the removal of ammonium from synthetic wastewater was assessed to determine whether the system could be applied to water purification and the treatment of eutrophic water. The removal efficiency of the photobioreactor was tested after ten biofilter sheets (total dry weight cells: 50 mg) were cycled in nitrogen-free Bold’s basal (BB) medium for 72 h (pretreatment cycle). The ammonium removal ability was significantly enhanced when the photobioreactor was operated after performing the pretreatment cycle using nitrogen-free BB medium supplemented with magnesium. Moreover, the illumination conditions during the treatment were shown to affect the nitrogen removal ability, and this ability was strongly dependent on the concentrations of organic compounds (e.g., α-ketoglutarate and pyruvate) for assimilating the nitrogen source in the T. aurea biofilter.  相似文献   

19.
The study was aimed at identifying the soil properties responsible for maize yield decline on eroded soils and at quantifying their relationship with yield. Topsoil was artificially removed to incremental depths of 0, 5, 10, 15 and 20 cm to simulate various degrees of erosion. Maize growth and yield were monitored on the plots and soil physical and chemical properties were determined after two years (4 seasons) of cultivation. Soil pH was significantly higher on the control plot and decreased with increased depth of topsoil removal. Bulk density (BD) increased with depth of topsoil removal from a mean value of 1.38 g cm−3 under control to 1.55 g cm−3 at 20 cm depth of removal, while cone index of penetrometer resistance (CI) correspondingly increased from 1.09 g cm−2 to 1.37 g cm−2. Maize yield significantly decreased in the first year from 3.2 t ha−1 on the control plot to 0.12 t ha−1 where 20 cm of topsoil was removed and correspondingly from 1.85 to 0.09 t ha−1 in the second year of cropping. Maize yield decreased exponentially with increase in depth of topsoil removal (r 2=0.99, P<0.01) with an average of 55% yield loss on the removal of just 5 cm topsoil. Soil organic carbon (SOC), BD, CI, field capacity (FC), pH and exchangeable Mg2+ were significantly correlated to maize yield parameters. However, factor analysis showed that the combination of SOC and exchangeable Mg2+ with soil physical properties (BD, FC, CI and depth of topsoil removal) explained 99% of variation in maize grain yield. The need for conservation farm practices is recommended on the soil to prevent soil degradation. Section Editor: L. Wade  相似文献   

20.
Subsurface horizontal flow constructed wetlands are being evaluated for nitrogen (N) and phosphorus (P) removal from wastewater in this study through different gravel sizes, plant densities (Iris pseudacorus), effects of retention times (1 to 10 days) on N and P removal in continuously fed gravel wetland. The inlet and outlet samples were analyzed for TKN, NH4-N, and NO3-N, as standard methods. The planted wetland reactor with fine (SG) and coarse (BG) gravels removed 49.4% and 31.4% TKN, respectively, while unplanted reactors removed 43.4% and 26.8% TKN. Also, the efficiencies for NH4-N were 36.7–43% and 21.6–25.4% for SG and BG planted reactors, respectively. The efficiencies for NO3-N were 53.5–62.5% and 21.6–25.4% for SG and BG planted reactors, respectively. Roles of plants in SG reactors for O-PO4 were 5–12% and 3–8% in BG. Also, the roles of plants in the reactors for TP were 9% and 7.4%. The minimum effective detention time for the removal of NO3-N was 4–5 days. The subsurface constructed wetlands planted with I. pseudacorus can be an appropriate alternative in wastewater treatment natural system in small communities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号