首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of acetylcholine, angiotensin II and adrenocorticotropin (ACTH) on phosphatidylinositol (PI) metabolism was examined using bovine adrenocortical fasciculata cell suspensions. The three agents, which acutely stimulate glucocorticoid production by these cells, were all able to increase [32P]Pi incorporation into cellular PI. However, whereas the relative steroidogenic potency (at maximally active concentrations) was ACTH greater than or equal to angiotensin II greater than acetylcholine, the effect on PI labeling was in the order angiotensin II greater than acetylcholine greater than ACTH. The dose-response curves for steroidogenesis and that for PI labeling were superimposable in the case of angiotensin II (ED50 = 1 X 10(-8) M) and of acetylcholine (ED50 = 5 X 10(-7) M), while the two responses were dissociated under graded ACTH challenge. Both steroidogenic response and increased PI labeling elicited by angiotensin II and acetylcholine were respectively inhibited by (Sar1-Ala8)-angiotensin II and muscarinic antagonists. Time-course study showed that in the case of angiotensin II and acetylcholine, the sequence of events was: increased phosphatidic acid labeling, increased PI labeling, activated steroidogenesis. By sharp contrast, under ACTH stimulation, increased steroidogenesis was detected well before activation of PI metabolism. These data suggest that in bovine adrenocortical fasciculata cell, steroidogenesis may be activated by two different pathways. The first one would act mainly through cyclic AMP-dependent intracellular events and is usually accepted in the mechanism of action of ACTH. The other, cyclic AMP-independent pathway, as in the case of angiotensin II and acetylcholine actions, may involve phospholipid-mediated intracellular processes.  相似文献   

2.
The hypothesis that ACTH (corticotropin) stimulates steroidogenesis by a mechanism that involves breakdown of polyphosphoinositides and increase in intracellular Ca2+ (called here the 'phosphatidylinositide-Ca2+ mechanism') was tested in Y-1 adrenal-tumour cells and in bovine fasciculata cells, by using incorporation of 32P and myo-[3H]inositol to study phospholipid metabolism, and quin-2 and fura 2 to measure intracellular Ca2+. As a positive control, we repeated experiments showing that angiotensin II stimulates glomerulosa cells by way of the phosphatidylinositide-Ca2+ mechanism, by using the same methods. With Y-1 and fasciculata cells, no change was observed in the incorporation of either of the labelled precursors into any phosphatidylinositide or into any of three major phosphoinositols, i.e. inositol phosphate, bisphosphate and trisphosphate. Moreover, no change in mass of any of these compounds was seen. No change was observed in the concentration of intracellular Ca2+ in Y-1 or fasciculata cells on addition of ACTH, by using either quin-2 or fura 2. By contrast, decreased incorporation of 32P into phosphatidylinositol bisphosphate and an increase in intracellular Ca2+ were seen when glomerulosa cells were treated with angiotensin II. It is concluded that the phosphatidylinositide-Ca2+ mechanism is not used by Y-1 adrenal or bovine fasciculata cells in the steroidogenic response to ACTH unless the mechanism is radically different from that seen with all other hormones so far tested in which this mechanism occurs.  相似文献   

3.
Phospholipase C (Bacillus cereus) added to the incubation medium stimulated the steroidogenic activity of bovine adrenal zona fasciculata cell suspensions to a level similar to that induced by optimal concentration of ACTH. This effect was not related to an increase of cyclic AMP; it was calcium-dependent and was also induced by an other bacterial phospholipase C (from Clostridium perfringens) whereas phospholipases A2 and D were ineffective. Phospholipid metabolism was examined in these cells after radiolabeling with [14C]-glycerol or [32P]orthophosphate. Phospholipase C induced a very fast (5 seconds) increase in cellular [14C]-1,2-diacylglycerol followed by [32P] labeling of phosphatidic acid and phosphatidylinositol. These events preceded the stimulation of steroidogenesis which was detectable after 2 minutes of incubation. These observations suggest that activation of an endogenous phospholipase C activity may be considered as an early event in the response of bovine adrenocortical cells to steroidogenic effectors such as angiotensin II and acetylcholine.  相似文献   

4.
Dispersed rat adrenal cells prepared from both the capsule and the decapsulated gland were used to investigate the effects on cyclic AMP accumulation of known stimuli of steroidogenesis [ACTH (adrenocorticotrophin), angiotensin II, K(+) ions and 5-hydroxytryptamine]. Since glomerulosa-cell preparations from capsular strippings are normally contaminated with a proportion of fasciculata cells, cells purified by fractionation on a bovine serum albumin gradient were also used. The results showed that: (1) ACTH and angiotensin II stimulated cyclic AMP accumulation in both fractionated and unfractionated zona fasciculata cells; (2) 5-hydroxytryptamine and an increased extracellular K(+) concentration (from 3.6 to 8.4mm) had no effect on cyclic AMP concentrations in fasciculata cell preparations; (3) the addition of ACTH, angiotensin II, 5-hydroxytryptamine or K(+) to the incubation medium resulted in increased cyclic AMP concentrations in unpurified zona glomerulosa cell preparations; (4) fractionation and hence the virtual elimination of fasciculata contamination, did not affect the response to 5-hydroxytryptamine and increased K(+) concentration. However, the responses to ACTH and angiotensin II were markedly lowered but not abolished. These results strongly suggest a link between cyclic AMP production and steroidogenesis in the zone of the adrenal gland that specifically secretes aldosterone. All four agents used stimulated both steroid output and cyclic AMP accumulation. However, at certain doses of 5-hydroxytryptamine, K(+) and angiotensin II the significant increases in corticosterone output were not accompanied by measurable increases in cyclic AMP accumulation.  相似文献   

5.
In isolated bovine adrenal zona fasciculata cells, the use of adenosine deaminase to remove endogenous adenosine had no effect on basal or angiotensin II-stimulated steroidogenesis but enhanced ACTH1-24-stimulated steroidogenesis over the entire dose response range without appreciable change in potency of ACTH1-24. 8-Phenyl-theophylline, an adenosine antagonist, mimicked all of the actions of adenosine deaminase. High concentrations (greater than 1 microM) of N6-phenylisopropyl-adenosine (PIA) increased basal, angiotensin II and cyclic AMP-stimulated steroidogenesis, whilst inhibiting the ACTH1-24-stimulated condition. PIA also increased the potency of angiotensin II approx 20-fold. These observations are consistent with the possibility that adenosine exerts effects on two different signalling systems within zona fasciculata cells.  相似文献   

6.
Adrenal glands obtained from patients undergoing therapeutic adrenalectomy were used to study the effects of angiotensin on human adrenal steroidogenesis. It was observed that angiotensin stimulated cortisol biosynthesis. Although this has been demonstrated to occur in canine and bovine adrenals, angiotensin-induced cortisol biosynthesis has not been established in man. The possibility that angiotensin merely stimulated glomerulosa cells to secrete precursor steroids which accumulated in the medium and then diffused into fasciculata cells to provide substrate for cortisol biosynthesis was excluded by demonstrating that 3β-hydroxy-5-pregnen-20-one (pregnenolone) and progesterone (the only pertinent precursors) did not accumulate in angiotensinstimulated cell suspensions. In addition, angiotensin stimulated cortisol biosynthesis in a fasciculata cell suspension in which angiotensin did not stimulate aldosterone production. Therefore, in human adrenal cell suspensions angiotensin appeared to act directly to stimulate cortisol synthesis by fasciculata cells. In normal subjects pre-treated with dexamethasone, angiotensin infusions failed to stimulate an increase in plasma cortisol. The physiological importance of angiotensin as a regulator of cortisol secretion remains, therefore, to be established.  相似文献   

7.
The purpose of the present experiments was to compare the effects on phosphatidylinositol metabolism of agents stimulating aldosterone secretion. Glomerulosa cells, isolated from rat adrenals, were incubated in the presence of one of the following stimuli: angiotensin II, elevated potassium concentration, corticotropin, dibutyryl cyclic AMP and prostaglandin E2. Of all these substances, only angiotensin II stimulated the incorporation of [32P]phosphate into phosphatidylinositol. The effect was already detected 2.5 min and was still maintained 60 min after the onset of stimulation. A slight enhancement of the incorporation into other phospholipids was observed in the first minutes of stimulation. Cycloheximide abolished the effect of angiotensin II on aldosterone production, but not on phosphatidylinositol synthesis. In cells prelabelled with [32P]phosphate, radioactivity in phosphatidylinositol relative to that in other phospholipids decreased in response to angiotensin II within 5 min. This indicates that angiotensin II induces a specific breakdown of phosphatidylinositol. Corticotropin failed to enhance the incorporation of [32P]phosphate into phosphatidylinositol and other phospholipids in isolated fasciculate-reticularis cells. The results suggests that although both angiotensin II and potassium are presumed to act through changes in calcium metabolism, angiotensin alone generates the calcium signal by increased phosphatidylinositol turnover.  相似文献   

8.
Regulation of aldosterone synthesis   总被引:2,自引:0,他引:2  
The effects of angiotensin II and ACTH on cyclic AMP and aldosterone synthesis were studied in cells isolated from the bovine adrenal cortex. Angiotensin is a more potent stimulus of aldosterone synthesis than ACTH and the action of ACTH on aldosterone synthesis in cells from the glomerulosa is augmented by the presence of cells from the fasciculata. Angiotensin stimulates aldosterone synthesis in the absence of detectable changes in cyclic AMP, but the cells do respond to dibutyryl cyclic AMP leaving open the possibility that a cyclic nucleotide may play a role in the steroidogenic action of this hormone in the outer zone of the bovine adrenal cortex.  相似文献   

9.
This paper reports a quick, relatively simple and reproducible technique for obtaining populations of zona fasciculata and zona glomerulosa cells up to 80-90% pure, which can be maintained in vitro for study of adrenocortical cell function. Isolated guinea pig adrenocortical cells were separated on a 1-28% bovine serum albumin/Ca++, Mg++-free buffer gradient (wt/vol at 4% increments) using equilibrium density centrifugation (570 g, 30 min). Over 60% of the 8 x 10(5) viable cells/adrenal obtained in the total isolate were recovered after separation. 80% of the zona glomerulosa cells were found in the lower three bands of the gradient. 78% of the zona fasciculata cells were found in the top three bands. Of the cells in the first two bands, 78-91% were zona fasciculata cells, whereas of the cells in the bottom two bands 92-95% were zona glomerulosa cells. The cells retained the morphological characteristics of cells in situ and could be maintained in vitro for periods up to 11 d. They produced a wide variety of steroids, cortisol, corticosterone, aldosterone, 11-beta- hydroxyandrostenedione, deoxycortisol, deoxycorticosterone, cortisone, 18-hydroxycorticosterone, and a product tentatively identified as dehydroepiandrosterone, and they responded to ACTH in a dose-responsive manner with enhanced levels of steroid output. Zona glomerulosa- enriched populations differed from zona fasciculata-enriched populations in their abundant production of aldosterone and in the pattern of steroid production. None of the cultures responded to angiotensin II (100 pg/ml) with increased steroid production.  相似文献   

10.
In this paper we provide evidence to show that the pathways by which adrenocorticotropic hormone (ACTH) and angiotensin II (AII) stimulate steroidogenesis in bovine fasciculata cells are only partially independent. Both hormones have the same intrinsic activity but a 500-fold higher dose of AII is required to achieve 50% stimulation of steroidogenesis. Whereas ACTH acts by way of cAMP, AII appears to operate through protein kinase C. The phorbol ester, 12-O-tetradecanoylphorbol-13 acetate (TPA), and the calcium ionophore, A23187, each stimulate steroidogenesis and, when added together, act synergistically. To test the relationship between the ACTH and AII pathways, we added the two hormones simultaneously and measured steroid production. When the hormones were present at submaximal concentrations, their effects were additive. At maximal doses, steroid production was 40% above that elicited by either hormone alone. In contrast to the action of AII in the glomerulosa cell where it inhibits ACTH-stimulated cAMP formation, AII causes no inhibition in the fasciculata. Cycloheximide inhibits steroidogenesis stimulated by AII or a mixture of TPA and A23187. Scatchard analysis of the binding of 125I-AII to particulates from adrenal cortical fasciculata indicates the presence of a single class of binding sites (Kd = 0.6 X 10(-8) M). Binding is not inhibited by ACTH. Biotin-containing AII analogs that bind specifically to the particulates have been evaluated as potential tools for avidin-biotin affinity chromatography of the receptor. One of these, [N epsilon-6-(biotinylamido)hexyllys1, Val5] AII, is a promising candidate for receptor isolation.  相似文献   

11.
To evaluate the effect of hormones on renal phospholipid metabolism and turnover, we studied the changes in 32P-labeling of phospholipids in rat cortical tubule suspension. Angiotensin II, phenylephrine and parathyroid hormone (PTH) stimulate 32P incorporation into PC by 25, 29 and 26% and into PI by 189, 328 and 33% above control rates, respectively, whereas phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate labeling was not affected. However, when phospholipids were prelabeled with [32P]Pi, addition of angiotensin II led to a significant decrease in phosphatidylinositol 4,5-bisphosphate labeling in the first 2 min with no effect on the other phospholipid fractions. The phenylephrine effect on phospholipid labeling was blocked by prazosin but not by yohimbine, indicating an alpha 1-mediated action. In contrast, the effect of angiotensin II was not inhibited by either antagonist. The stimulating effect of substrates on 32P incorporation reported in the preceding paper was additive to that of hormones. Our results confirm previous studies on renal gluconeogenesis that catecholamines act by an alpha 1-type receptor on proximal tubules, and indicate that phenylephrine and angiotensin II act by different receptor sites exerting the same metabolic effect. The additivity of hormone effects with that of renal substrates indicates that the former are not secondary to release of precursors for phospholipid biosynthesis. The rapid decrease in phosphatidylinositol 4,5-bisphosphate labeling after angiotensin II suggests that the polyphosphoinositide is degraded after hormone binding to the receptor and that PI labeling is a secondary event.  相似文献   

12.
The aim of the present study was to investigate the effect of several effectors on angiotensin II (A-II) receptors and steroidogenic responsiveness in cultured bovine fasciculata cells. Treatment of adrenal cells for 24 h with A-II (0.1 microM), corticotropin (1 nM), phorbol ester (PMA 0.1 microM), calcium ionophore A23187 (0.1 microM) and cyclic 8-bromoAMP (1 mM) produced a loss of A-II receptors whereas the A-II antagonist [Sar1-Ala8]A-II (0.1 microM) led to a small but significant increase. The extent of the down-regulation of receptors following maximal concentrations of A-II was greater than that produced by the other agents. The effects of A-II were dose-dependent with a ID50 of 3 nM. Since cycloheximide and actinomycin blocked the down-regulation of receptors, it seems likely that the effectors lead to the synthesis of certain proteins which inhibit the recycling of internalized receptors. Pretreatment of adrenal cells with A-II induced both homologous (90% decrease) and heterologous (corticotropin 83, PMA and ionophore 76% decrease) steroidogenic desensitization. However, the cAMP response to corticotropin of A-II-pretreated cells was higher (P less than 0.001) than for control cells. Pretreatment with PMA and A23187 also resulted in both homologous and heterologous steroidogenic refractoriness but to a lesser degree than that induced by A-II. In contrast, corticotropin-pretreated cells responded normally to further stimulation with corticotropin or A-II. Similarly pretreatment of bovine adrenal glomerulosa cells with A-II (1 nM and 0.1 microM) and corticotropin (1 nM) also induced A-II receptor loss and steroidogenic refractoriness. The present findings indicate that, in contrast to the results reported in vivo in the rat, where A-II leads to up-regulation of its own receptors on glomerulosa cells and increases steroidogenic responsiveness, this peptide results in both down-regulation and desensitization in cultured bovine fasciculata and glomerulosa cells. Our results also emphasize the absence of correlation between A-II receptor loss and steroidogenic responsiveness.  相似文献   

13.
Neuroblastoma x glioma hybrid cells (NG108-15), differentiated by treatment with 1.5% dimethyl sulfoxide (DMSO) and 0.5% fetal bovine serum, were used to measure the effect of angiotensin II and III (ANG II and ANG III) on the generation of inositol polyphosphates. ANG II increased the synthesis of inositol monophosphates (IP1), inositol diphosphates (IP2), and inositol trisphosphates (IP3) with maximal responses observed at 300, 120, and 30 sec, respectively. The percent increases above basal values at the maximal responses were 140% +/- 9% (IP1), 142% +/- 4% (IP2), and 132% +/- 4% (IP3). This effect was not attenuated by pretreatment of the cells with pertussis toxin. Furthermore, both ANG II and ANG III increased the production of inositol polyphosphates in a dose-dependent manner with ED50 values of 145 nM and 11 nM, respectively. We conclude that differentiated NG108-15 cells express an ANG III selective receptor that mediates phosphatidylinositol breakdown through a pertussis toxin insensitive G-protein.  相似文献   

14.
In bovine adrenal glomerulosa cells, angiotensin II and extracellular K+ stimulate aldosterone secretion in a calcium-dependent manner. In these cells, physiological concentrations of extracellular potassium activate both T-type (low threshold) and L-type (high threshold) voltage-operated calcium channels. Paradoxically, the cytosolic calcium response to 9 mM K+ is inhibited by angiotensin II. Because K+-induced calcium changes observed in the cytosol are almost exclusively due to L-type channel activity, we therefore studied the mechanisms of L-type channel regulation by angiotensin II. Using the patch-clamp method in its perforated patch configuration, we observed a marked inhibition (by 63%) of L-type barium currents in response to angiotensin II. This effect of the hormone was completely prevented by losartan, a specific antagonist of the AT1 receptor subtype. Moreover, this inhibition was strongly reduced when the cells were previously treated for 1 night with pertussis toxin. An effect of pertussis toxin was also observed on the modulation by angiotensin II of the K+ (9 mM)-induced cytosolic calcium response in fura-2-loaded cells, as well as on the angiotensin II-induced aldosterone secretion, at both low (3 mM) and high (9 mM) K+ concentrations. Finally, the expression of both Go and Gi proteins in bovine glomerulosa cells was detected by immunoblotting. Altogether, these results strongly suggest that in bovine glomerulosa cells, a pertussis toxin-sensitive G protein is involved in the inhibition of L-type channel activity induced by angiotensin II.  相似文献   

15.
16.
Bovine adrenal glomerulosa (AZG) cells were shown to express bTREK-1 background K(+) channels that set the resting membrane potential and couple angiotensin II (ANG II) receptor activation to membrane depolarization and aldosterone secretion. Northern blot and in situ hybridization studies demonstrated that bTREK-1 mRNA is uniformly distributed in the bovine adrenal cortex, including zona fasciculata and zona glomerulosa, but is absent from the medulla. TASK-3 mRNA, which codes for the predominant background K(+) channel in rat AZG cells, is undetectable in the bovine adrenal cortex. In whole cell voltage clamp recordings, bovine AZG cells express a rapidly inactivating voltage-gated K(+) current and a noninactivating background K(+) current with properties that collectively identify it as bTREK-1. The outwardly rectifying K(+) current was activated by intracellular acidification, ATP, and superfusion of bTREK-1 openers, including arachidonic acid (AA) and cinnamyl 1-3,4-dihydroxy-alpha-cyanocinnamate (CDC). Bovine chromaffin cells did not express this current. In voltage and current clamp recordings, ANG II (10 nM) selectively inhibited the noninactivating K(+) current by 82.1 +/- 6.1% and depolarized AZG cells by 31.6 +/- 2.3 mV. CDC and AA overwhelmed ANG II-mediated inhibition of bTREK-1 and restored the resting membrane potential to its control value even in the continued presence of ANG II. Vasopressin (50 nM), which also physiologically stimulates aldosterone secretion, inhibited the background K(+) current by 73.8 +/- 9.4%. In contrast to its potent inhibition of bTREK-1, ANG II failed to alter the T-type Ca(2+) current measured over a wide range of test potentials by using pipette solutions of identical nucleotide and Ca(2+)-buffering compositions. ANG II also failed to alter the voltage dependence of T channel activation under these same conditions. Overall, these results identify bTREK-1 K(+) channels as a pivotal control point where ANG II receptor activation is transduced to depolarization-dependent Ca(2+) entry and aldosterone secretion.  相似文献   

17.
The effects of angiotensin II (A II) on adenylate cyclase activities in membranes of the zona glomerulosa (the capsular fraction) and the zona fasciculata (the decapsulated fraction) from rat adrenocortical glands were investigated. A time- and GTP-dependent stimulation by A II of adenylate cyclase activity was observed in the capsular fraction but not in the decapsulated fraction. The activation of adenylate cyclase by ACTH and A II was additive. Stimulation by A II was inhibited by an angiotensin antagonist, DD-3487 (DD). Moreover, the addition of a prostaglandin antagonist, a mixture of polyesters of polyphloretin phosphate (PPP) and an inhibitor of prostaglandin synthesis, indomethacin, was effective in inhibiting A II-induced stimulation of the capsular adenylate cyclase activity, suggesting that the activation of A II receptors located on the capsular membrane leads to the release of prostaglandins, which in turn stimulates the adenylate cyclase.  相似文献   

18.
The inhibiting effects of 18-ethynyl-deoxycorticosterone (18-E-DOC) as a mechanism-based inhibitor on the late-steps of the aldosterone biosynthetic pathway were examined in calf adrenal zona glomerulosa cells in primary culture and in freshly isolated calf zona glomerulosa cells. 18-E-DOC inhibited the stimulated secretion of aldosterone and 18-hydroxycorticosterone in a similar dose-response and time fashion. No significant differences were found between the inhibition in cultured and freshly isolated cells (Ki of 0.25 vs 0.26 μM) Corticosterone secretion stimulated by ACTH or angiotensin II was also cultured in freshly isolated zona glomerulosa and fasciculata cells, but was not inhibited in cultured calf adrenal cells. Cortisol secretion stimulated by ACTH was not inhibited by 18-E-DOC in cultured zona fasciculata adrenal cells, but was inhibited in freshly isolated zona fasciculata cells with a Ki of 48 μM. The secretion of 18-hydroxyDOC or 19-hydroxyDOC stimulated by ACTH was not inhibited by 18-E-DOC. The bovine adrenal has been reported to have cytochrome P-450 11β-hydroxylases that can perform the various hydroxylations required for the synthesis of cortisol and aldosterone in the different areas of the adrenal. In other species a distinct 11β-hydroxylase which participates in the biosynthesis of aldosterone and is located in the zona glomerulosa has been described. These studies with the mechanism-based inhibitor, 18-E-DOC, suggest that the bovine adrenal functions in a manner very similar to that of other species and raises the possibility that a distinct 11β-hydroxylase with aldosterone synthase activity might be present, but has not been cloned as yet.  相似文献   

19.
To clarify the signal transduction mechanism of angiotensin II in renal glomeruli, we studied the effect of the hormone on phospholipid metabolism using isolated rat glomeruli. Stimulation of the glomeruli pulse-chase labeled with [3H]glycerol by angiotensin II caused a rapid (within 15 s) breakdown of phosphatidylinositol 4,5-bisphosphate (PIP2) with a concurrent production of 1,2-diacylglycerol. This effect of angiotensin II was in a dose-dependent manner within the range from 10(-12) M to 10(-6) M, and was inhibited by saralasin. Angiotensin II also decreased the 3H radioactivity of PIP slightly only at 15 s and increased that of phosphatidic acid after 15 s, with no significant effect upon the labelings of phosphatidylinositol (PI), phosphatidylcholine (PC) and phosphatidylethanolamine (PE) within 1 min. The change in phospholipid metabolism by angiotensin II was similar when the glomeruli were labeled with [32P]orthophosphate: the decrease in the labeling of PIP2 and the increase in the labeling of phosphatidic acid after 15 s. In addition, 32P labeling of PI increased after 2 min. These results suggest that angiotensin II, after binding to glomerular receptors, induces initial PIP2 hydrolysis to diacylglycerol and subsequent resynthesis of PIP2 through phosphoinositide turnover.  相似文献   

20.
The present study was undertaken to characterize, determine and localize angiotensin II receptors in the nonpregnant and pregnant bovine uterus. In addition, the concentration of active renin, which is responsible for the generation of angiotensin, was determined. Autoradiography and angiotensin II receptor binding studies showed that all compartments of the bovine uterus contained high concentrations of angiotensin II receptors. In general, the type 1 angiotensin II receptor (AT1) predominated over the AT2 receptor. In the endometrium, the highest density was found in the caruncles and the AT1 receptor was always predominant. The density of angiotensin II receptors in the endometrium increased at the beginning of pregnancy, but decreased and reached values similar to those in nonpregnant animals near term. In the myometrium, the density of angiotensin II receptors was highest at or near the endometrial-myometrial junction. In this area, the predominant type of angiotensin II receptor in the uterus of cyclic cows varied, whereas the AT1 receptor always predominated during pregnancy. Non-AT1 and non-AT2 binding sites were found in the same locations as the angiotensin II receptors, but at lower densities. With the exception of the pregnant endometrium, all compartments contained higher active renin concentrations than found in plasma, indicating local synthesis of renin. This study demonstrates a difference in the expression of types of angiotensin II receptor in the bovine uterus compared with other species. The high densities of angiotensin II receptors localized in several important areas imply that the renin-angiotensin system participates in regulation of growth and tissue function in the bovine uterus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号