首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
Angiogenesis is important for wound healing, tumor growth, and metastasis. The laminin alpha4 chain, a component of laminin-8 and -9, is expressed in endothelial cell basement membranes. It mediates endothelial cell adhesion by binding with its receptors such as alphavbeta3 integrin and participates in new blood vessel formation. In this study, we found the recombinant laminin alpha4LG modules (rLG1-3, rLG1, and rLG2) mediate HUVECs adhesion. The attachment of HUVECs to the rLG2 was specifically inhibited by a function-blocking monoclonal antibody LM609 specific for alphavbeta3 integrin. Using deletion mutants of the alpha4LG2 revealed the HUVECs-adhesion site is located in amino acids 1121-1139. A synthetic G(1121-1139) peptide could be attached by HUVECs at same efficiency with the rLG2 and promoted angiogenesis in CAM. In conclusion, we have identified a new alphavbeta3 integrin-interacting peptide within laminin alpha4 G domain. This suggests that G(1121-1139) peptide-containing proteins may perform their biological functions by interacting with alphavbeta3 integrin.  相似文献   

4.
Sphingolipids are essential membrane components of eukaryotic cells. Their synthesis is initiated with the condensation of l-serine with palmitoyl-CoA, producing 3-ketodihydrosphingosine (KDS), followed by a reduction to dihydrosphingosine by KDS reductase. Until now, only yeast TSC10 has been identified as a KDS reductase gene. Here, we provide evidence that the human FVT-1 (hFVT-1) and mouse FVT-1 (mFVT-1) are functional mammalian KDS reductases. The forced expression of hFVT-1 or mFVT-1 in TSC10-null yeast cells suppressed growth defects, and hFVT-1 overproduced in cultured cells exhibited KDS reductase activity in vitro. Moreover, purified recombinant hFVT-1 protein exhibited NADPH-dependent KDS reductase activity. The identification of the FVT-1 genes enabled us to characterize the mammalian KDS reductase at the molecular level. Northern blot analyses demonstrated that both hFVT-1 and mFVT-1 mRNAs are ubiquitously expressed, suggesting that FVT-1 is a major KDS reductase. We also found the presence of hFVT-1 variants, which were differentially expressed among tissues. Immunofluorescence microscopic analysis revealed that hFVT-1 is localized at the endoplasmic reticulum. Moreover, a proteinase K digestion assay revealed that the large hydrophilic domain of hFVT-1, which contains putative active site residues, faces the cytosol. These results suggest that KDS is converted to dihydrosphingosine in the cytosolic side of the endoplasmic reticulum membrane. Moreover, the topology studies provide insight into the spatial organization of the sphingolipid biosynthetic pathway.  相似文献   

5.
The SR protein kinase in yeast, Sky1p, phosphorylates yeast SR-like protein, Npl3p, at a single serine residue located at its C terminus. We report here the X-ray crystal structure of Sky1p bound to a substrate peptide and ADP. Surprisingly, an Npl3p-derived substrate peptide occupies a groove 20 A away from the kinase active site. In vitro studies support the substrate-docking role of this groove. Mutagenesis and binding studies reveal that multiple degenerate short peptide motifs located within the RGG domain of Npl3p serve as the substrate docking motifs. However, a single docking motif is sufficient for its stable interaction with the kinase. Methylation of the docking motifs abolishes kinase binding and phosphorylation of Npl3p. Remarkably, removal of the docking groove in the kinase or the docking motifs of the substrate does not reduce the overall catalytic efficiency of the phosphorylation reaction in any significant manner. We suggest that docking interaction between Sky1p and Npl3p is essential for substrate recruitment and binding specificity.  相似文献   

6.
A fragment of RyR1 (amino acids 4064-4210) is predicted to fold to at least one lobe of calmodulin and to bind Ca(2+). This fragment of RyR1 (R4064-4210) was subcloned, expressed, refolded, and purified. Consistent with the predicted folding pattern, R4064-4210 was found to bind two molecules of Ca(2+) and undergo a structural change upon binding Ca(2+) that exposes hydrophobic amino acids. R4064-4210 also binds to RyR1, the L-type Ca(2+) channel (Cav(1.1)), and several synthetic calmodulin binding peptides. Both R4064-4210 and a peptide representing the calmodulin-binding region of RyR1 (R3614-3643) alter the Ca(2+) dependence of ((3)H)ryanodine binding to RyR1, suggesting that they may both be interfering with an intramolecular interaction between amino acids 4064-4210 and amino acids 3614-3643 in the native RyR1 to alter or regulate the response of the channel to changes in Ca(2+) concentration. The finding that a domain within RyR1 binds Ca(2+) and interacts with calmodulin-binding motifs may provide insights into the mechanism for calcium- and calmodulin-dependent regulation of this channel and perhaps for its regulation by the L-type Ca(2+) channel.  相似文献   

7.
Genome sequence analyses predict many proteins that are structurally related to proteases but lack catalytic residues, thus making functional assignment difficult. We show that one of these proteins (ACN-1), a unique multi-domain angiotensin-converting enzyme (ACE)-like protein from Caenorhabditis elegans, is essential for larval development and adult morphogenesis. Green fluorescent protein-tagged ACN-1 is expressed in hypodermal cells, the developing vulva, and the ray papillae of the male tail. The hypodermal expression of acn-1 appears to be controlled by nhr-23 and nhr-25, two nuclear hormone receptors known to regulate molting in C. elegans. acn-1(RNAi) causes arrest of larval development because of a molting defect, a protruding vulva in adult hermaphrodites, severely disrupted alae, and an incomplete seam syncytium. Adult males also have multiple tail defects. The failure of the larval seam cells to undergo normal cell fusion is the likely reason for the severe disruption of the adult alae. We propose that alteration of the ancestral ACE during evolution, by loss of the metallopeptidase active site and the addition of new protein modules, has provided opportunities for novel molecular interactions important for post-embryonic development in nematodes.  相似文献   

8.
CheA is a multidomain histidine kinase for chemotaxis in Escherichia coli. CheA autophosphorylates through interaction of its N-terminal phosphorylation site domain (P1) with its central dimerization (P3) and ATP-binding (P4) domains. This activity is modulated through the C-terminal P5 domain, which couples CheA to chemoreceptor control. CheA phosphoryl groups are donated to two response regulators, CheB and CheY, to control swimming behavior. The phosphorylated forms of CheB and CheY turn over rapidly, enabling receptor signaling complexes to elicit fast behavioral responses by regulating the production and transmission of phosphoryl groups from CheA. To promote rapid phosphotransfer reactions, CheA contains a phosphoacceptor-binding domain (P2) that serves to increase CheB and CheY concentrations in the vicinity of the adjacent P1 phosphodonor domain. To determine whether the P2 domain is crucial to CheA's signaling specificity, we constructed CheADeltaP2 deletion mutants and examined their signaling properties in vitro and in vivo. We found that CheADeltaP2 autophosphorylated and responded to receptor control normally but had reduced rates of phosphotransfer to CheB and CheY. This defect lowered the frequency of tumbling episodes during swimming and impaired chemotactic ability. However, expression of additional P1 domains in the CheADeltaP2 mutant raised tumbling frequency, presumably by buffering the irreversible loss of CheADeltaP2-generated phosphoryl groups from CheB and CheY, and greatly improved its chemotactic ability. These findings suggest that P2 is not crucial for CheA signaling specificity and that the principal determinants that favor appropriate phosphoacceptor partners, or exclude inappropriate ones, most likely reside in the P1 domain.  相似文献   

9.
The majority of Wiskott-Aldrich syndrome protein (WASP) in T cells is in a complex with WASP interacting protein (WIP), a 503 a.a. long proline rich protein. Here we demonstrate that a novel anti-WIP mAb, 3D10, recognizes an epitope in the N-terminal domain of the WIP protein, within the sequence 13PTFALA18. mAb 3D10 competes with actin, but not with WASP or Nck, for WIP binding. Analysis of 3D10 immunoprecipitates failed to demonstrate dissociation of the WASP-WIP complex after TCR ligation that we previously reported using a polyclonal anti-WIP anti-serum raised against a C-terminal peptide (a.a. 459-503) that spanned the WASP binding site. 3D10 mAb allowed the detection of a novel isoform of WIP consisting of a truncated 403 a.a. long protein that includes the 377 a.a. encoded by the first 4 exons of WIP followed by a 26 a.a. sequence encoded by intron 4.  相似文献   

10.
We have previously shown [Badyal, S. K., et al. (2006) J. Biol. Chem. 281, 24512-24520] that the distal histidine (His42) in the W41A variant of ascorbate peroxidase binds to the heme iron in the ferric form of the protein but that binding of the substrate triggers a conformational change in which His42 dissociates from the heme. In this work, we show that this conformational rearrangement also occurs upon reduction of the heme iron. Thus, we present X-ray crystallographic data to show that reduction of the heme leads to dissociation of His42 from the iron in the ferrous form of W41A; spectroscopic and ligand binding data support this observation. Structural evidence indicates that heme reduction occurs through formation of a reduced, bis-histidine-ligated species that subsequently decays by dissociation of His42 from the heme. Collectively, the data provide clear evidence that conformational movement within the same heme active site can be controlled by both ligand binding and metal oxidation state. These observations are consistent with emerging data on other, more complex regulatory and sensing heme proteins, and the data are discussed in the context of our developing views in this area.  相似文献   

11.
Bose K  Pop C  Feeney B  Clark AC 《Biochemistry》2003,42(42):12298-12310
We have examined the enzymatic activity of an uncleavable procaspase-3 mutant (D9A/D28A/D175A), which contains the wild-type catalytic residues in the active site. The results are compared to those for the mature caspase-3. Although at pH 7.5 and 25 degrees C the K(m) values are similar, the catalytic efficiency (k(cat)) is approximately 130-fold lower in the zymogen. The mature caspase-3 demonstrates a maximum activity at pH 7.4, whereas the maximum activity of procaspase-3 occurs at pH 8.3. The pK(a) values of both catalytic groups, H121 and C163, are shifted to higher pH for procaspase-3. We developed limited proteolysis assays using trypsin and V8 proteases, and we show that these assays allow the examination of amino acids in three of five active site loops. In addition, we examined the fluorescence emission of the two tryptophanyl residues in the active site over the pH range of 2.5-9 as well as the response to several quenching agents. Overall, the data suggest that the major conformational change that occurs upon maturation results in formation of the loop bundle among loops L4, L2, and L2'. The pK(a) values of both catalytic groups decrease as a result of the loop movements. However, loop L3, which comprises the bulk of the substrate binding pocket, does not appear to be unraveled and solvent-exposed, even at lower pH.  相似文献   

12.
Agrin induces both phosphorylation and aggregation of nicotinic acetylcholine receptors (AChRs) when added to myotubes in culture, apparently by binding to a specific receptor on the myotube surface. One such agrin receptor is alpha-dystroglycan, although binding to alpha-dystroglycan appears not to mediate AChR aggregation. To determine whether agrin-induced AChR phosphorylation is mediated by alpha-dystroglycan or by a different agrin receptor, fragments of recombinant agrin that differ in affinity for alpha-dystroglycan were examined for their ability to induce AChR phosphorylation and aggregation in mouse C2 myotubes. The carboxy-terminal 95 kDa agrin fragment agrin-c95(A0B0), which binds to alpha-dystroglycan with high affinity, failed to induce AChR phosphorylation and aggregation. In contrast, agrin-c95(A4B8) which binds less strongly to alpha-dystroglycan, induced both phosphorylation and aggregation, as did a small 21 kDa fragment of agrin, agrin-c21(B8), that completely lacks the binding domain for alpha-dystroglycan. We conclude that agrin-induced AChR phosphorylation and aggregation are triggered by an agrin receptor that is distinct from alpha-dystroglycan.  相似文献   

13.
Fcp1 is an essential protein serine phosphatase that dephosphorylates the C-terminal domain (CTD) of RNA polymerase II. By testing the effects of serial N- and C-terminal deletions of the 723-amino acid Schizosaccharomyces pombe Fcp1, we defined a minimal phosphatase domain spanning amino acids 156-580. We employed site-directed mutagenesis (introducing 24 mutations at 14 conserved positions) to locate candidate catalytic residues. We found that alanine substitutions for Arg(223), Asp(258), Lys(280), Asp(297), and Asp(298) abrogated the phosphatase activity with either p-nitrophenyl phosphate or CTD-PO(4) as substrates. Structure-activity relationships were determined by introducing conservative substitutions at each essential position. Our results, together with previous mutational studies, highlight a constellation of seven amino acids (Asp(170), Asp(172), Arg(223), Asp(258), Lys(280), Asp(297), and Asp(298)) that are conserved in all Fcp1 orthologs and likely comprise the active site. Five of these residues (Asp(170), Asp(172), Lys(280), Asp(297), and Asp(298)) are conserved at the active site of T4 polynucleotide 3'-phosphatase, suggesting that Fcp1 and T4 phosphatase are structurally and mechanistically related members of the DXD phosphotransferase superfamily.  相似文献   

14.
K Hill  P Schimmel 《Biochemistry》1989,28(6):2577-2586
Aminoacylation requires that an enzyme-bound aminoacyladenylate is brought proximal to the 3' end of a specific transfer RNA. In Escherichia coli alanyl-tRNA synthetase, the first 368 amino acids encode a domain for adenylate synthesis while sequences on the carboxyl-terminal side of this domain are required for much of the enzyme-tRNAAla binding energy. The 3' end of E. coli tRNAAla has been cross-linked to the enzyme, and sequence analysis showed that Lys-73 is the major site of coupling. A mutant enzyme with a Lys-73----Gln replacement has a 50-fold reduced kcat/Km (with respect to tRNAAla) for aminoacylation but has a relatively small alteration of its kinetic parameters for ATP and alanine in the adenylate synthesis reaction. The data provide evidence that the 3' end of tRNAAla binds to a site in the enzyme domain responsible for adenylate synthesis and that a residue (Lys-73) in this domain is important for a tRNAAla-dependent step that is subsequent to the synthesis of the aminoacyladenylate intermediate.  相似文献   

15.
16.
The product of the adenovirus E1A 13S mRNA can both stimulate and repress the expression of certain viral and cellular genes. As with several other regulatory proteins, E1A has a short half-life, approximately 40 min. Although this short half-life is observed in cells expressing the E1A gene, it is not the case with cells injected with E1A protein, where its half-life is very long, generally greater than 15 h. We have sought to reconcile these apparent differences in E1A stability. Using Xenopus oocytes, we find that E1A exhibits its characteristic short half-life when it is synthesized from injected mRNA while it has a very long half-life when it is injected as a protein synthesized originally in Escherichia coli or reticulocyte lysates. In order to delineate the amino acids responsible for rapid E1A turnover, several deletion mRNAs were constructed, injected into oocytes, and E1A half-life determined. Carboxyl-terminal deletions and an internal deletion of residues 38-86 failed to increase the half-life of E1A. In contrast, amino-terminal deletions of 70 and 14 residues resulted in very stable E1A proteins (t1/2 greater than 20 h). Furthermore, deletion of the second amino acid, an arginine, resulted in a stable E1A protein. The amino-terminal region of E1A was able to induce the rapid turnover of a normally stable protein, beta-globin, in oocytes injected with an E1A-globin chimeric mRNA. This E1A-induced instability of globin was abolished, however, when the protein was first synthesized in reticulocyte lysates and then injected into oocytes. The amino-terminal region of E1A is also important in governing halflife in adenovirus-infected HeLa cells. These results demonstrate that the half-life of E1A is established cotranslationally through a mechanism involving sequences within the amino-terminal 37 residues.  相似文献   

17.
18.
The structure of a short-chain IgG2a antibody, which is a member of the family of mouse anti-dansyl switch variant antibodies with identical variable regions but different heavy-chain constant regions [Dangl, J.L., Parks, D. R., Oi, V. T., & Herzenberg, L. A. (1982) Cytometry 2, 395-401], is reported. Amino acid sequencing analyses have demonstrated that in the short-chain IgG2a antibody the entire CH1 domain is deleted whereas the hinge region remains intact. Small-angle X-ray scattering data were collected for the short-chain IgG2a antibody and compared with those for the switch variant IgG1, IgG2a, and IgG2b antibodies with the normal heavy chain. It has been concluded that deletion of the CH1 domain results in a large structural change and the short-chain IgG2a antibody possesses an elongated molecular shape with a much smaller hinge angle as compared with the normal IgG2a antibody that is a Y-shaped molecule.  相似文献   

19.
Clp ATPases are unique chaperones that promote protein unfolding and subsequent degradation by proteases. The mechanism by which this occurs is poorly understood. Here we demonstrate that the N-terminal domain of ClpX is a C4-type zinc binding domain (ZBD) involved in substrate recognition. ZBD forms a very stable dimer that is essential for promoting the degradation of some typical ClpXP substrates such as lambdaO and MuA but not GFP-SsrA. Furthermore, experiments indicate that ZBD contains a primary binding site for the lambdaO substrate and for the cofactor SspB. Removal of ZBD from the ClpX sequence renders the ATPase activity of ClpX largely insensitive to the presence of ClpP, substrates, or the SspB cofactor. All these results indicate that ZBD plays an important role in the ClpX mechanism of function and that ATP binding and/or hydrolysis drives a conformational change in ClpX involving ZBD.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号