首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Plasma membrane repair is mediated by Ca(2+)-regulated exocytosis of lysosomes   总被引:16,自引:0,他引:16  
Reddy A  Caler EV  Andrews NW 《Cell》2001,106(2):157-169
Plasma membrane wounds are repaired by a mechanism involving Ca(2+)-regulated exocytosis. Elevation in intracellular [Ca(2+)] triggers fusion of lysosomes with the plasma membrane, a process regulated by the lysosomal synaptotagmin isoform Syt VII. Here, we show that Ca(2+)-regulated exocytosis of lysosomes is required for the repair of plasma membrane disruptions. Lysosomal exocytosis and membrane resealing are inhibited by the recombinant Syt VII C(2)A domain or anti-Syt VII C(2)A antibodies, or by antibodies against the cytosolic domain of Lamp-1, which specifically aggregate lysosomes. We further demonstrate that lysosomal exocytosis mediates the resealing of primary skin fibroblasts wounded during the contraction of collagen matrices. These findings reveal a fundamental, novel role for lysosomes: as Ca(2+)-regulated exocytic compartments responsible for plasma membrane repair.  相似文献   

2.
Mast cells upon stimulation through high affinity IgE receptors massively release inflammatory mediators by the fusion of specialized secretory granules (related to lysosomes) with the plasma membrane. Using the RBL-2H3 rat mast cell line, we investigated whether granule secretion involves components of the soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) machinery. Several isoforms of each family of SNARE proteins were expressed. Among those, synaptosome-associated protein of 23 kDa (SNAP23) was central in SNARE complex formation. Within the syntaxin family, syntaxin 4 interacted with SNAP23 and all vesicle-associated membrane proteins (VAMPs) examined, except tetanus neurotoxin insensitive VAMP (TI-VAMP). Overexpression of syntaxin 4, but not of syntaxin 2 nor syntaxin 3, caused inhibition of FcepsilonRI-dependent exocytosis. Four VAMP proteins, i.e., VAMP2, cellubrevin, TI-VAMP, and VAMP8, were present on intracellular membrane structures, with VAMP8 residing mainly on mediator-containing secretory granules. We suggest that syntaxin 4, SNAP23, and VAMP8 may be involved in regulation of mast cell exocytosis. Furthermore, these results are the first demonstration that the nonneuronal VAMP8 isoform, originally localized on early endosomes, is present in a regulated secretory compartment.  相似文献   

3.
The importance of soluble N-ethyl maleimide (NEM)-sensitive fusion protein (NSF) attachment protein (SNAP) receptors (SNAREs) in synaptic vesicle exocytosis is well established because it has been demonstrated that clostridial neurotoxins (NTs) proteolyze the vesicle SNAREs (v-SNAREs) vesicle-associated membrane protein (VAMP)/brevins and their partners, the target SNAREs (t-SNAREs) syntaxin 1 and SNAP25. Yet, several exocytotic events, including apical exocytosis in epithelial cells, are insensitive to numerous clostridial NTs, suggesting the presence of SNARE-independent mechanisms of exocytosis. In this study we found that syntaxin 3, SNAP23, and a newly identified VAMP/brevin, tetanus neurotoxin (TeNT)-insensitive VAMP (TI-VAMP), are insensitive to clostridial NTs. In epithelial cells, TI-VAMP–containing vesicles were concentrated in the apical domain, and the protein was detected at the apical plasma membrane by immunogold labeling on ultrathin cryosections. Syntaxin 3 and SNAP23 were codistributed at the apical plasma membrane where they formed NEM-dependent SNARE complexes with TI-VAMP and cellubrevin. We suggest that TI-VAMP, SNAP23, and syntaxin 3 can participate in exocytotic processes at the apical plasma membrane of epithelial cells and, more generally, domain-specific exocytosis in clostridial NT-resistant pathways.  相似文献   

4.
Mast cell exocytosis, which includes compound degranulation and vesicle-associated piecemeal degranulation, requires multiple Q- and R- SNAREs. It is not clear how these SNAREs pair to form functional trans-SNARE complexes and how these trans-SNARE complexes are selectively regulated for fusion. Here we undertake a comprehensive examination of the capacity of two Q-SNARE subcomplexes (syntaxin3/SNAP-23 and syntaxin4/SNAP-23) to form fusogenic trans-SNARE complexes with each of the four granule-borne R-SNAREs (VAMP2, 3, 7, 8). We report the identification of at least six distinct trans-SNARE complexes under enhanced tethering conditions: i) VAMP2/syntaxin3/SNAP-23, ii) VAMP2/syntaxin4/SNAP-23, iii) VAMP3/syntaxin3/SNAP-23, iv) VAMP3/syntaxin4/SNAP-23, v) VAMP8/syntaxin3/SNAP-23, and vi) VAMP8/syntaxin4/SNAP-23. We show for the first time that Munc18a operates synergistically with SNAP-23-based non-neuronal SNARE complexes (i to iv) in lipid mixing, in contrast to Munc18b and c, which exhibit no positive effect on any SNARE combination tested. Pre-incubation with Munc18a renders the SNARE-dependent fusion reactions insensitive to the otherwise inhibitory R-SNARE cytoplasmic domains, suggesting a protective role of Munc18a for its cognate SNAREs. Our findings substantiate the recently discovered but unexpected requirement for Munc18a in mast cell exocytosis, and implicate post-translational modifications in Munc18b/c activation.  相似文献   

5.
Abstract : The synaptic plasma membrane proteins syntaxin and synaptosome-associated protein of 25 kDa (SNAP-25) are central participants in synaptic vesicle trafficking and neurotransmitter release. Together with the synaptic vesicle protein synaptobrevin/vesicle-associated membrane protein (VAMP), they serve as receptors for the general membrane trafficking factors N -ethylmaleimide-sensitive factor (NSF) and soluble NSF attachment protein (α-SNAP). Consequently, syntaxin, SNAP-25, and VAMP (and their isoforms in other membrane trafficking pathways) have been termed SNAP receptors (SNAREs). Because protein phosphorylation is a common and important mechanism for regulating a variety of cellular processes, including synaptic transmission, we have investigated the ability of syntaxin and SNAP-25 isoforms to serve as substrates for a variety of serine/threonine protein kinases. Syntaxins 1A and 4 were phosphorylated by casein kinase II, whereas syntaxin 3 and SNAP-25 were phosphorylated by Ca2+ - and calmodulin-dependent protein kinase II and cyclic AMP-dependent protein kinase, respectively. The biochemical consequences of SNARE protein phosphorylation included a reduced interaction between SNAP-25 and phosphorylated syntaxin 4 and an enhanced interaction between phosphorylated syntaxin 1A and the synaptic vesicle protein synaptotagmin I, a potential Ca2+ sensor in triggering synaptic vesicle exocytosis. No other effects on the formation of SNARE complexes (comprised of syntaxin, SNAP-25, and VAMP) or interactions involving n-Sec1 or α-SNAP were observed. These findings suggest that although phosphorylation does not directly regulate the assembly of the synaptic SNARE complex, it may serve to modulate SNARE complex function through other proteins, including synaptotagmin I.  相似文献   

6.
Previous studies have demonstrated roles for vesicle-associated membrane protein 2 (VAMP 2) and VAMP 8 in Ca(2+)-regulated pancreatic acinar cell secretion, however, their coordinated function in the secretory pathway has not been addressed. Here we provide evidence using immunofluorescence microscopy, cell fractionation, and SNARE protein interaction studies that acinar cells contain two distinct populations of zymogen granules (ZGs) expressing either VAMP 2 or VAMP 8. Further, VAMP 8-positive granules also contain the synaptosome-associated protein 29, whereas VAMP 2-expressing granules do not. Analysis of acinar secretion by Texas red-dextran labeling indicated that VAMP 2-positive ZGs mediate the majority of exocytotic events during constitutive secretion and also participate in Ca(2+)-regulated exocytosis, whereas VAMP 8-positive ZGs are more largely involved in Ca(2+)-stimulated secretion. Previously undefined functional roles for VAMP and syntaxin isoforms in acinar secretion were established by introducing truncated constructs of these proteins into permeabilized acini. VAMP 2 and VAMP 8 constructs each attenuated Ca(2+)-stimulated exocytosis by 50%, whereas the neuronal VAMP 1 had no effects. In comparison, the plasma membrane SNAREs syntaxin 2 and syntaxin 4 each inhibited basal exocytosis, but only syntaxin 4 significantly inhibited Ca(2+)-stimulated secretion. Syntaxin 3, which is expressed on ZGs, had no effects. Collectively, these data demonstrate that individual acinar cells express VAMP 2- and VAMP 8-specific populations of ZGs that orchestrate the constitutive and Ca(2+)-regulated secretory pathways.  相似文献   

7.
Synaptotagmin is a proposed Ca2+ sensor on the vesicle for regulated exocytosis and exhibits Ca2+-dependent binding to phospholipids, syntaxin, and SNAP-25 in vitro, but the mechanism by which Ca2+ triggers membrane fusion is uncertain. Previous studies suggested that SNAP-25 plays a role in the Ca2+ regulation of secretion. We found that synaptotagmins I and IX associate with SNAP-25 during Ca2+-dependent exocytosis in PC12 cells, and we identified C-terminal amino acids in SNAP-25 (Asp179, Asp186, Asp193) that are required for Ca2+-dependent synaptotagmin binding. Replacement of SNAP-25 in PC12 cells with SNAP-25 containing C-terminal Asp mutations led to a loss-of-function in regulated exocytosis at the Ca2+-dependent fusion step. These results indicate that the Ca2+-dependent interaction of synaptotagmin with SNAP-25 is essential for the Ca2+-dependent triggering of membrane fusion.  相似文献   

8.
Pairing of SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) proteins on vesicles (v-SNAREs) and SNARE proteins on target membranes (t-SNAREs) mediates intracellular membrane fusion. VAMP3/cellubrevin is a v-SNARE that resides in recycling endosomes and endosome-derived transport vesicles. VAMP3 has been implicated in recycling of transferrin receptors, secretion of alpha-granules in platelets, and membrane trafficking during cell migration. Using a cell fusion assay, we examined membrane fusion capacity of the ternary complexes formed by VAMP3 and plasma membrane t-SNAREs syntaxin1, syntaxin4, SNAP-23 and SNAP-25. VAMP3 forms fusogenic pairing with t-SNARE complexes syntaxin1/SNAP-25, syntaxin1/SNAP-23 and syntaxin4/SNAP-25, but not with syntaxin4/SNAP-23. Deletion of the N-terminal domain of syntaxin4 enhanced membrane fusion more than two fold, indicating that the N-terminal domain negatively regulates membrane fusion. Differential membrane fusion capacities of the ternary v-/t-SNARE complexes suggest that transport vesicles containing VAMP3 have distinct membrane fusion kinetics with domains of the plasma membrane that present different t-SNARE proteins.  相似文献   

9.
Synaptic vesicle exocytosis requires three SNARE (soluble N-ethylmaleimide-sensitive-factor attachment protein receptor) proteins: syntaxin and SNAP-25 on the plasma membrane (t-SNAREs) and synaptobrevin/VAMP on the synaptic vesicles (v-SNARE). Vesicular synaptotagmin 1 is essential for fast synchronous SNARE-mediated exocytosis and interacts with the SNAREs in brain material. To uncover the step at which synaptotagmin becomes linked to the three SNAREs, we purified all four proteins from brain membranes and analyzed their interactions. Our study reveals that, in the absence of calcium, native synaptotagmin 1 binds the t-SNARE heterodimer, formed from syntaxin and SNAP-25. This interaction is both stoichiometric and of high affinity. Synaptotagmin contains two divergent but conserved C2 domains that can act independently in calcium-triggered phospholipid binding. We now show that both C2 domains are strictly required for the calcium-independent interaction with the t-SNARE heterodimer, indicating that the double C2 domain structure of synaptotagmin may have evolved to acquire a function beyond calcium/phospholipid binding.  相似文献   

10.
Lipid rafts are membrane microdomains rich in cholesterol and glycosphingolipids that have been implicated in the regulation of intracellular protein trafficking. During exocytosis, a class of proteins termed SNAREs mediate secretory granule-plasma membrane fusion. To investigate the role of lipid rafts in secretory granule exocytosis, we examined the raft association of SNARE proteins and SNARE complexes in rat basophilic leukemia (RBL) mast cells. The SNARE protein SNAP-23 co-localized with a lipid raft marker and was present in detergent-insoluble lipid raft microdomains in RBL cells. By contrast, only small amounts (<20%) of the plasma membrane SNARE syntaxin 4 or the granule-associated SNARE vesicle-associated membrane protein (VAMP)-2 were present in these microdomains. Despite this, essentially all syntaxin 4 and most of VAMP-2 in these rafts were present in SNARE complexes containing SNAP-23, while essentially none of these complexes were present in nonraft membranes. Whereas SNAP-23 is membrane anchored by palmitoylation, the association of the transmembrane protein syntaxin 4 with lipid rafts was because of its binding to SNAP-23. After stimulating mast cells exocytosis, the amount of syntaxin 4 and VAMP-2 present in rafts increased twofold, and these proteins were now present in raft-associated phospho-SNAP-23/syntaxin 4/VAMP-2 complexes, revealing differential association of SNARE fusion complexes during the process of regulated exocytosis.  相似文献   

11.
Members of the synaptotagmin family have been proposed to function as Ca2+ sensors in membrane fusion. Syt VII is a ubiquitously expressed synaptotagmin previously implicated in plasma membrane repair and Trypanosoma cruzi invasion, events which are mediated by the Ca2+-regulated exocytosis of lysosomes. Here, we show that embryonic fibroblasts from Syt VII-deficient mice are less susceptible to trypanosome invasion, and defective in lysosomal exocytosis and resealing after wounding. Examination of mutant mouse tissues revealed extensive fibrosis in the skin and skeletal muscle. Inflammatory myopathy, with muscle fiber invasion by leukocytes and endomysial collagen deposition, was associated with elevated creatine kinase release and progressive muscle weakness. Interestingly, similar to what is observed in human polymyositis/dermatomyositis, the mice developed a strong antinuclear antibody response, characteristic of autoimmune disorders. Thus, defective plasma membrane repair in tissues under mechanical stress may favor the development of inflammatory autoimmune disease.  相似文献   

12.
Intercalated and inner medullary collecting duct (IMCD) cells of the kidney mediate the transport of H+ by a plasma membrane H+-ATPase. The rate of H+ transport in these cells is regulated by exocytic insertion of H+-ATPase-laden vesicles into the apical membrane. We have shown that the exocytic insertion of proton pumps (H+-ATPase) into the apical membrane of rat IMCD cells, in culture, involves SNARE proteins (syntaxin (synt), SNAP-23, and VAMP). The membrane fusion complex observed in IMCD cells with the induction of proton pump exocytosis not only included these SNAREs but also the H+-ATPase. Based on these observations, we suggested that the targeting of these vesicles to the apical membrane is mediated by an interaction between the H+-ATPase and a specific t-SNARE. To evaluate this hypothesis, we utilized a "pull-down" assay in which we identified, by Western analysis, the proteins in a rat kidney medullary homogenate that complexed with glutathione S-transferase (GST) fusion syntaxin isoforms attached to Sepharose 4B-glutathione beads. The syntaxin isoforms employed were 1A, 1B, 2, 4, 5, and also 1A that was truncated to exclude the H3 SNARE binding domain (synt-1ADeltaH3). All full-length syntaxin isoforms formed complexes with SNAP-23 and VAMP. Neither GST nor synt-1ADeltaH3 formed complexes with these SNAREs. H+-ATPase (subunits E, a, and c) bound to syntaxin-1A and to a lesser extent to synt-1B but not to synt-1ADeltaH3 or synt-2, -4, and -5. In cultured IMCD cells transfected to express syntaxin truncated for the membrane binding domain (synt-DeltaC), expression of synt-1ADeltaC, but not synt-4DeltaC, inhibited H+-ATPase exocytosis. In conclusion, because all full-length syntaxins examined bound VAMP-2 and SNAP-23, but only non-H3-truncated syntaxin-1 bound H+-ATPase, and synt-1ADeltaC expression by intact IMCD cells inhibited H+-ATPase exocytosis, it is likely that the H+-ATPase binds directly to the H3 domain of syntaxin-1 and not through VAMP-2 or SNAP-23. Interaction between the syntaxin-1A and H+-ATPase is important in the targeted exocytosis of the proton pump to the apical membrane of intercalated cells.  相似文献   

13.
The phosphorylation targets that mediate the enhancement of exocytosis by PKC are unknown. PKC phosporylates the SNARE protein SNAP-25 at Ser-187. We expressed mutants of SNAP-25 using the Semliki Forest Virus system in bovine adrenal chromaffin cells and then directly measured the Ca2+ dependence of exocytosis using photorelease of caged Ca2+ together with patch-clamp capacitance measurements. A flash of UV light used to elevate [Ca2+](i) to several microM and release the highly Ca2+-sensitive pool (HCSP) of vesicles was followed by a train of depolarizing pulses to elicit exocytosis from the less Ca2+-sensitive readily releasable pool (RRP) of vesicles. Carbon fiber amperometry confirmed that the amount and kinetics of catecholamine release from individual granules were similar for the two phases of exocytosis. Mimicking PKC phosphorylation with expression of the S187E SNAP-25 mutant resulted in an approximately threefold increase in the HCSP, whereas the response to depolarization increased only 1.5-fold. The phosphomimetic S187D mutation resulted in an approximately 1.5-fold increase in the HCSP but a 30% smaller response to depolarization. In vitro binding assays with recombinant SNARE proteins were performed to examine shifts in protein-protein binding that may promote the highly Ca2+-sensitive state. The S187E mutant exhibited increased binding to syntaxin but decreased Ca2+-independent binding to synaptotagmin I. Mimicking phosphorylation of the putative PKA phosphorylation site of SNAP-25 with the T138E mutation decreased binding to both syntaxin and synaptotagmin I in vitro. Expressing the T138E/ S187E double mutant in chromaffin cells demonstrated that enhancing the size of the HCSP correlates with an increase in SNAP-25 binding to syntaxin in vitro, but not with Ca2+-independent binding of SNAP-25 to synaptotagmin I. Our results support the hypothesis that exocytosis triggered by lower Ca2+ concentrations (from the HCSP) occurs by different molecular mechanisms than exocytosis triggered by higher Ca2+ levels.  相似文献   

14.
Neurotransmitter release from synaptic vesicles is triggered by voltage-gated calcium influx through P/Q-type or N-type calcium channels. Purification of N-type channels from rat brain synaptosomes initially suggested molecular interactions between calcium channels and two key proteins implicated in exocytosis: synaptotagmin I and syntaxin 1. Co-immunoprecipitation experiments were consistent with the hypothesis that both N- and P/Q-type calcium channels, but not L-type channels, are associated with the 7S complex containing syntaxin 1, SNAP-25, VAMP and synaptotagmin I or II. Immunofluorescence confocal microscopy at the frog neuromuscular junction confirmed that calcium channels, syntaxin 1 and SNAP-25 are co-localized at active zones of the presynaptic plasma membrane where transmitter release occurs. Experiments with recombinant proteins were performed to map synaptic protein interaction sites on the alpha 1A subunit, which forms the pore of the P/Q-type calcium channel. In vitro-translated 35S-synaptotagmin I bound to a site located on the cytoplasmic loop linking homologous domains II and III of the alpha 1A subunit. This direct link would target synaptotagmin, a putative calcium sensor for exocytosis, to a microdomain of calcium influx close to the channel mouth. Cysteine string proteins (CSPs) contain a J-domain characteristic of molecular chaperones that cooperate with Hsp70. They are located on synaptic vesicles and thought to be involved in modulating the activity of presynaptic calcium channels. CSPs were found to bind to the same domain of the calcium channel as synaptotagmin, and also to associate with VAMP. CSPs may act as molecular chaperones in association with Hsp70 to direct assembly or dissociation of multiprotein complexes at the calcium channel.  相似文献   

15.
Membrane fusion for exocytosis is mediated by SNAREs, forming trans-ternary complexes to bridge vesicle and target membranes. There is an array of accessory proteins that directly interact with and regulate SNARE proteins. PRIP (phospholipase C-related but catalytically inactive protein) is likely one of these proteins; PRIP, consisting of multiple functional modules including pleckstrin homology and C2 domains, inhibited exocytosis, probably via the binding to membrane phosphoinositides through the pleckstrin homology domain. However, the roles of the C2 domain have not yet been investigated. In this study, we found that the C2 domain of PRIP directly interacts with syntaxin 1 and SNAP-25 but not with VAMP2. The C2 domain promoted PRIP to co-localize with syntaxin 1 and SNAP-25 in PC12 cells. The binding profile of the C2 domain to SNAP-25 was comparable with that of synaptotagmin I, and PRIP inhibited synaptotagmin I in binding to SNAP-25 and syntaxin 1. It was also shown that the C2 domain was required for PRIP to suppress SDS-resistant ternary SNARE complex formation and inhibit high K+-induced noradrenalin release from PC12 cells. These results suggest that PRIP inhibits regulated exocytosis through the interaction of its C2 domain with syntaxin 1 and SNAP-25, potentially competing with other SNARE-binding, C2 domain-containing accessory proteins such as synaptotagmin I and by directly inhibiting trans-SNARE complex formation.  相似文献   

16.
Neurotransmitter release from synaptic vesicles is mediated by complex machinery, which includes the v- and t-SNAP receptors (SNAREs), vesicle-associated membrane protein (VAMP), synaptotagmin, syntaxin, and synaptosome-associated protein of 25 kDa (SNAP-25). They are essential for neurotransmitter exocytosis because they are the proteolytic substrates of the clostridial neurotoxins tetanus neurotoxin and botulinum neurotoxins (BoNTs), which cause tetanus and botulism, respectively. Specifically, SNAP-25 is cleaved by both BoNT/A and E at separate sites within the COOH-terminus. We now demonstrate, using toxin-insensitive mutants of SNAP-25, that these two toxins differ in their specificity for the cleavage site. Following modification within the COOH-terminus, the mutants completely resistant to BoNT/E do not bind VAMP but were still able to form a sodium dodecyl sulfate-resistant complex with VAMP and syntaxin. Furthermore, these mutants retain function in vivo, conferring BoNT/E-resistant exocytosis to transfected PC12 cells. These data provide information on structural requirements within the C-terminal domain of SNAP-25 for its function in exocytosis and raise doubts about the significance of in vitro binary interactions for the in vivo functions of synaptic protein complexes.  相似文献   

17.
Insulin stimulates the fusion of intracellular vesicles containing the glucose transporter Glut4 with the plasma membrane in adipocytes and muscle cells. Glut4 vesicle fusion is thought to be catalyzed by the interaction of the vesicle soluble N-ethyl-maleimide-sensitive fusion protein attachment protein receptor VAMP2 with the target soluble N-ethyl-maleimide-sensitive fusion protein attachment protein receptors SNAP-23 and syntaxin 4. Here, we use combined membrane fractionation, detergent solubility, and sucrose gradient flotation to demonstrate that the large majority (>70%) of SNAP-23 and a significant proportion of syntaxin 4 ( approximately 35%) are associated with plasma membrane lipid rafts in 3T3-L1 adipocytes. Furthermore, VAMP2 is shown to be concentrated in lipid rafts isolated from intracellular membranes. Insulin stimulation had no effect on the plasma membrane raft association of SNAP-23 or syntaxin 4 but promoted VAMP2 insertion into plasma membrane rafts. Immunofluorescence analysis revealed that SNAP-23 was clustered at the plasma membrane and almost completely segregated from the transferrin receptor. SNAP-23 distribution seemed to be distinct from caveolin-1, and clusters of SNAP-23 were dispersed after cholesterol extraction with methyl-beta-cyclodextrin, suggesting that the majority of SNAP-23 is associated with non-caveolar, cholesterol-rich lipid rafts. The results described implicate lipid rafts as important platforms for Glut4 vesicle fusion and suggest the hypothesis that such rafts may represent a spatial integration point of insulin signaling and membrane traffic.  相似文献   

18.
Regulated secretion of neurotransmitter at the synapse is likely to be mediated by dynamic protein interactions involving components of the vesicle (vesicle-associated membrane protein; VAMP) and plasma membrane (syntaxin and synaptosomal associated protein of 25 kDa (SNAP-25)) along with additional molecules that allow for the regulation of this process. Recombinant Hrs-2 interacts with SNAP-25 in a calcium-dependent manner (they dissociate at elevated calcium levels) and inhibits neurotransmitter release. Thus, Hrs-2 has been hypothesized to serve a negative regulatory role in secretion through its interaction with SNAP-25. In this report, we show that Hrs-2 and SNAP-25 interact directly through specific coiled-coil domains in each protein. The presence of syntaxin enhances the binding of Hrs-2 to SNAP-25. Moreover, while both Hrs-2 and VAMP can separately bind to SNAP-25, they cannot bind simultaneously. Additionally, the presence of Hrs-2 reduces the incorporation of VAMP into the syntaxin.SNAP-25.VAMP (7 S) complex. These findings suggest that Hrs-2 may modulate exocytosis by regulating the assembly of a protein complex implicated in membrane fusion.  相似文献   

19.
Fusion pore dynamics are regulated by synaptotagmin*t-SNARE interactions   总被引:10,自引:0,他引:10  
Bai J  Wang CT  Richards DA  Jackson MB  Chapman ER 《Neuron》2004,41(6):929-942
Exocytosis involves the formation of a fusion pore that connects the lumen of secretory vesicles with the extracellular space. Exocytosis from neurons and neuroendocrine cells is tightly regulated by intracellular [Ca2+] and occurs rapidly, but the molecular events that mediate the opening and subsequent dilation of fusion pores remain to be determined. A putative Ca2+ sensor for release, synaptotagmin I (syt), binds directly to syntaxin and SNAP-25, which are components of a conserved membrane fusion complex. Here, we show that Ca2+-triggered syt*SNAP-25 interactions occur rapidly. The tandem C2 domains of syt cooperate to mediate binding to syntaxin/SNAP-25; lengthening the linker that connects C2A and C2B selectively disrupts this interaction. Expression of the linker mutants in PC12 cells results in graded reductions in the stability of fusion pores. Thus, the final step of Ca2+-triggered exocytosis is regulated, at least in part, by direct contacts between syt and SNAP-25/syntaxin.  相似文献   

20.
The synaptosome-associated protein of 25 kDa (SNAP-25) interacts with syntaxin 1 and vesicle-associated membrane protein 2 (VAMP2) to form a ternary soluble N-ethylmaleimide-sensitive fusion protein attachment protein receptor (SNARE) complex that is essential for synaptic vesicle exocytosis. We report a novel RING finger protein, Spring, that specifically interacts with SNAP-25. Spring is exclusively expressed in brain and is concentrated at synapses. The association of Spring with SNAP-25 abolishes the ability of SNAP-25 to interact with syntaxin 1 and VAMP2 and prevents the assembly of the SNARE complex. Overexpression of Spring or its SNAP-25-interacting domain reduces Ca(2+)-dependent exocytosis from PC12 cells. These results indicate that Spring may act as a regulator of synaptic vesicle exocytosis by controlling the availability of SNAP-25 for the SNARE complex formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号