首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ectopic expression of DNA methyltransferase 1 (DNMT1) has been proposed to play an important role in cancer. dnmt1 mRNA is undetectable in growth-arrested cells but is induced upon entrance into the S phase of the cell cycle, and until now, the mechanisms responsible for this regulation were unknown. In this report, we demonstrate that the 3'-untranslated region (3'-UTR) of the dnmt1 mRNA can confer a growth-dependent regulation on its own message as well as a heterologous beta-globin mRNA. Our results indicate that a 54-nucleotide highly conserved element within the 3'-UTR is necessary and sufficient to mediate this regulation. Cell-free mRNA decay experiments demonstrate that this element increases mRNA turnover rates and does so to a greater extent in the presence of extracts prepared from arrested cells. A specific RNA-protein complex is formed with the 3'-UTR only in growth-arrested cells, and a UV cross-linking analysis revealed a 40-kDa protein (p40), the binding of which is dramatically increased in growth-arrested cells and is inversely correlated with dnmt1 mRNA levels as cells are induced into the cell cycle. Although ectopic expression of human DNMT1 lacking the 3'-UTR can transform NIH-3T3 cells, inclusion of the 3'-UTR prevents transformation. These results support the hypothesis that deregulated expression of DNMT1 with the cell cycle is important for cellular transformation.  相似文献   

2.
Feedback regulation of DNA methyltransferase gene expression by methylation.   总被引:10,自引:0,他引:10  
This paper tests the hypothesis that expression of the DNA methyltransferase, dnmt1, gene is regulated by a methylation-sensitive DNA element. Methylation of DNA is an attractive system for feedback regulation of DNA methyltransferase as the final product of the reaction, methylated DNA, can regulate gene expression in cis. We show that an AP-1-dependent regulatory element of dnmt1 is heavily methylated in most somatic tissues and in the mouse embryonal cell line, P19, and completely unmethylated in a mouse adrenal carcinoma cell line, Y1. dnmt1 is highly over expressed in Y1 relative to P19 cell lines. Global inhibition of DNA methylation in P19 cells by 5-azadeoxycytidine results in demethylation of the AP-1 regulatory region and induction of dnmt1 expression in P19cells, but not Y1 cells. We propose that this regulatory region of dnmt1 acts as a sensor of the DNA methylation capacity of the cell. These results provide an explanation for the documented coexistence of global hypomethylation and high levels of DNA methyltransferase activity in many cancer cells and for the carcinogenic effect of hypomethylating diets.  相似文献   

3.
4.
In mouse embryos, the int-1 proto-oncogene is transiently expressed in areas of the developing neural system. Retinoic acid-treated P19 embryonal carcinoma cells have often been used as an in vitro model for the molecular basis of neural development. We shown here that int-1 is transiently expressed in differentiated P19 cells. The time course and retinoic acid dose dependence of int-1 expression suggest that the gene is specifically expressed during early neural differentiation. P19 cells may be a useful model to assist in the study, at the cellular level, of the role of int-1 in neural development.  相似文献   

5.
Differentiation of P19 embryonal carcinoma cells in response to the morphogen retinoic acid is regulated by Galpha(12/13) and is associated with activation of c-Jun N-terminal kinase. The role of MEKK1 and MEKK4 upstream of the c-Jun N-terminal kinase was investigated in P19 cells. P19 clones stably expressing constitutively active and dominant negative mutants of MEKK1 and MEKK4 were created and characterized. Expression of the constitutively active form of either MEKK1 or MEKK4 mimicked the action of retinoic acid, inducing these embryonal carcinoma cells to primitive endoderm. Expression of the dominant negative form of MEKK1 had no influence on the ability of retinoic acid to induce either JNK activation or primitive endoderm formation in P19 stem cells. Expression of the dominant negative form of MEKK4, in contrast, effectively blocks both morphogen-induced activation of JNK and cellular differentiation. These data identify MEKK4 as upstream of c-Jun N-terminal kinase in the pathway mediating differentiation of P19 stem cells to primitive endoderm.  相似文献   

6.
P19 embryonic carcinoma cells, a model system for studying early development and differentiation, can differentiate into neurons and primitive endoderm-like cells depending on the culture conditions. We have previously reported that the activation of c-Jun amino-terminal kinase (JNK) is required for the retinoic acid-induced neural differentiation of P19 cells. However, the signaling pathway(s) responsible for the activation of JNK has not been known. In this study, we demonstrated that activities of MAPK kinase 4 (MKK4) and TAK1, one of the upstream kinases of MKK4, were enhanced in the neurally differentiating cells. Inhibition of the neural differentiation by an overexpression of protein phosphatase 2Cepsilon, an inactivator of TAK1, suggested a critical role of the TAK1 signaling pathway during the differentiation. Confocal microscopic analysis indicated that TAK1, phospho-MKK4, and phospho-JNK were colocalized with tubulin in the neurites and localized also in the nuclei of the differentiating cells. In contrast, two TAK1-binding proteins, TAB1 and TAB2, which are involved in the activation of TAK1, were localized in the neurites and the nuclei of the differentiating cells, respectively. These results suggest that two distinct TAK1-MKK4-JNK signaling pathways are independently activated at the different intracellular locations and may participate in the regulation of the neural differentiation of P19 cells.  相似文献   

7.
8.
9.
Chemically induced differentiation of murine erythroleukemia cells is a multistep process involving a precommitment period in which exposure to inducer leads to cells that are irreversibly committed to terminal differentiation. Certain changes in the expression of cellular proto-oncogenes are an important feature of the precommitment phase. We have identified two H1 histone genes that are rapidly induced during this period. Unlike most histone genes, these two H1 genes encode polyadenylated mRNAs with long 3' untranslated regions. To investigate the relationship between induction of the H1 mRNAs and changes in proto-oncogene expression, we studied two independent series of mouse erythroleukemia cell lines that are inhibited from differentiating because of deregulated expression of transfected copies of c-myc or c-myb. The results showed that induction of the H1 mRNAs was negatively regulated by c-myc. The two H1 histone genes are among the first examples of specific cellular genes that are regulated by c-myc. The timing of their induction suggests that they may play an important role in achieving commitment to terminal differentiation.  相似文献   

10.
11.
12.
13.
14.
Human DIXDC1 is a member of Dishevelled-Axin (DIX) domain containing gene family which plays important roles in Wnt signaling and neural development. In this report, we first confirmed that expression of Ccd1, a mouse homologous gene of DIXDC1, was up-regulated in embryonic developing nervous system. Further studies showed that Ccd1 was expressed specifically in neurons and colocalized with early neuronal marker Tuj1. During the aggregation induced by RA and neuronal differentiation of embryonic carcinoma P19 cells, expressions of Ccd1 as well as Wnt-1 and N-cadherin were dramatically increased. Stable overexpression of DIXDC1 in P19 cells promoted the neuronal differentiation. P19 cells overexpressing DIXDC1 but not the control P19 cells could differentiate into Tuj1 positive cells with RA induction for only 2 days. Meanwhile, we also found that overexpression of DIXDC1 facilitated the expression of Wnt1 and bHLHs during aggregation and differentiation, respectively, while inhibited gliogenesis by down-regulating the expression of GFAP in P19 cells. Thus, our finding suggested that DIXDC1 might play an important role during neurogenesis, overexpression of DIXDC1 in embryonic carcinoma P19 cells promoted neuronal differentiation, and inhibited gliogenesis induced by retinoic acid. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users. XT Jing and HT Wu contributed equally to this work.  相似文献   

15.
16.
Tumor progression involves the acquisition of invasiveness through a basement membrane. The c-jun proto-oncogene is overexpressed in human tumors and has been identified at the leading edge of human breast tumors. TGF-β plays a bifunctional role in tumorigenesis and cellular migration. Although c-Jun and the activator protein 1 (AP-1) complex have been implicated in human cancer, the molecular mechanisms governing cellular migration via c-Jun and the role of c-Jun in TGF-β signaling remains poorly understood. Here, we analyze TGF-β mediated cellular migration in mouse embryo fibroblasts using floxed c-jun transgenic mice. We compared the c-jun wild type with the c-jun knockout cells through the use of Cre recombinase. Herein, TGF-β stimulated cellular migration and intracellular calcium release requiring endogenous c-Jun. TGF-β mediated Ca(2+) release was independent of extracellular calcium and was suppressed by both U73122 and neomycin, pharmacological inhibitors of the breakdown of PIP(2) into IP(3). Unlike TGF-β-mediated Ca(2+) release, which was c-Jun dependent, ATP mediated Ca(2+) release was c-Jun independent. These studies identify a novel pathway by which TGF-β regulates cellular migration and Ca(2+) release via endogenous c-Jun.  相似文献   

17.
18.
Uc.40 is a long noncoding RNA that is highly conserved among different species, although its function is unknown. It is highly expressed in abnormal human embryonic heart. We previously reported that overexpression of uc.40 promoted apoptosis and inhibited proliferation of P19 cells, and downregulated PBX1, which was identified as a potential target gene of uc.40. The current study evaluated the effects of uc40-siRNA-44 (siRNA against uc.40) on the differentiation, proliferation, apoptosis, and mitochondrial function in P19 cells, and investigated the relationship between uc.40 and PBX1 in cardiomyocytes. The uc.40 silencing expression was confirmed by quantitative real-time polymerase chain reaction (RT-PCR). Observation of morphological changes in transfected P19 cells during different stages of differentiation revealed that uc40-siRNA-44 increased the number of cardiomyocyes. There was no significant difference in the morphology or time of differentiation between the uc40-siRNA-44 group and the control group. uc40-siRNA-44 significantly promoted proliferation of P19 cells and inhibited serum starvation-induced apoptosis. There was no significant difference in mitochondrial DNA copy number or cellular ATP level between the two groups, and ROS levels were significantly decreased in uc40-siRNA-44-transfected cells. The levels of PBX1 and myocardial markers of differentiation were examined in transfected P19 cells; uc40-siRNA-44 downregulated myocardial markers and upregulated PBX1 expression. These results suggest that uc.40 may play an important role during the differentiation of P19 cells by regulation of PBX1 to promote proliferation and inhibit apoptosis. These studies provide a foundation for further study of uc.40/PBX1 in cardiac development.  相似文献   

19.
20.
The retinoblastoma protein (Rb) controls cell proliferation, differentiation, and senescence and provides an essential tumor suppressive function that cells must eliminate to attain unlimited proliferative potential. Elimination of the Rb pathway also results in apoptosis, however, thereby providing an efficient surveillance mechanism to sense the loss of Rb. To become tumorigenic cells must thus overcome not only Rb function but also the apoptotic response caused by the loss of Rb function. We show that oncogenic Ras (RasV12) potently blocks cell death in Rb family member knockout mouse embryo fibroblasts (TKO cells). Activation of phosphatidylinositol 3-kinase and Raf by oncogenic Ras mediated this protection, implying that multiple Ras effector pathways are required, in concert, for this pro-survival signal. Although activation of Raf by selective Ras mutants protected TKO cells from cell death, pharmacologic inhibition of MEK had little effect on RasV12 protection, suggesting that a Raf-dependent, MEK-independent pathway was important for this effect. We show that this Raf-dependent protection occurred through activation of c-Jun and thus AP-1 activation. These observations could account for the dependence of Ras transformation on c-Jun activity and for the roles of AP-1 in oncogenesis. Our results support the concept of two oncogenic events cooperating to achieve a balance between immortalization and survival.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号