首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Thirty-two genes have been identified within the genome of the yeast Saccharomyces cerevisiae which putatively encode mitochondrial transport proteins. We have attempted to overexpress a subset of these genes, namely those which encode mitochondrial transporters of unknown function, and have succeeded in overexpressing 19 of these genes. The overexpressed proteins were then isolated and tested for five well-characterized reconstituted transport activities (i.e., the transport of citrate, dicarboxylates, pyruvate, camitine, and aspartate). Utilizing this approach, we have clearly identified the yeast mitochondrial dicarboxylate transport protein, as well as two additional lower-magnitude transport functions (i.e., tricarboxylate and dicarboxylate transport activities). The implications of these results and the considerations relevant to this approach are discussed.  相似文献   

2.
Summary The transport of solutes by bacteria has been studied for about thirty years. Early experiments on amino acid entry and galactoside accumulation provided concrete evidence that bacteria possessed specific transport systems and that these were subject to regulation. Since then a large number of transport systems have been discovered and studied extensively. Many of these use entirely different strategies for capturing or accumulating substrates. This diversity reflects variation in the availability of nutrients and ions in the different environments tolerated and inhabited by microorganisms. Examination of a few bacterial transport systems provides an opportunity to gain insight into a wide range of topics in the area of membrane transport. These include: the identification of carrier proteins and their arrangement in the membrane, the regulation of transport protein synthesis by environmental factors, and the localization of transport proteins to their extracytoplasmic destinations.It has been possible to construct a number of bacterial strains in which the gene (lacZ) which codes for the cytoplasmic enzyme -galactosidase is fused to genes which code for transport proteins. The following article is intended to illustrate how these gene fusions have been used to study the regulation and structure of transport proteins inEscherichia coli.  相似文献   

3.
Molecular motors drive the transport of vesicles and organelles within the cell. Traditionally, these transport processes have been considered separately from membrane trafficking events, such as regulated budding and fusion. However, recent progress has revealed mechanistic links that integrate these processes within the cell. Rab proteins, which function as key regulators of intracellular trafficking, have now been shown to recruit specific motors to organelle membranes. Rab-independent recruitment of motors by adaptor or scaffolding proteins is also a key mechanism. Once recruited to vesicles and organelles, these motors can then drive directed transport; this directed transport could in turn affect the efficiency of trafficking events. Here, we discuss this coordinated regulation of trafficking and transport, which provides a powerful mechanism for temporal and spatial control of cellular dynamics.  相似文献   

4.
P H Barry 《Biophysical journal》1998,74(6):2903-2905
Since the late 1960s it has been known that the passage of current across a membrane can give rise to local changes in salt concentration in unstirred layers or regions adjacent to that membrane, which in turn give rise to the development of slow transient diffusion potentials and osmotic flows across those membranes. These effects have been successfully explained in terms of transport number discontinuities at the membrane-solution interface, the transport number of an ion reflecting the proportion of current carried by that ion. Using the standard definitions for transport numbers and the regular diffusion equations, these polarization or transport number effects have been analyzed and modeled in a number of papers. Recently, the validity of these equations has been questioned. This paper has demonstrated that, by going back to the Nernst-Planck flux equations, exactly the same resultant equations can be derived and therefore that the equations derived directly from the transport number definitions and standard diffusion equations are indeed valid.  相似文献   

5.
Plasmodium falciparum infection induces alterations in the transport properties of infected erythrocytes that have recently been defined using electrophysiological techniques. Mechanisms responsible for transport of substrates into intraerythrocytic parasites have also been clarified by studies of three substrate-specific (hexose, nucleoside and aquaglyceroporin) parasite plasma membrane transporters. These have been characterised functionally using the Xenopus laevis oocyte heterologous expression system. The same expression system is currently being used to define the function of parasite 'P' type ATPases responsible for intraparasitic [Ca(2+)] homeostasis. We review studies on these transport processes and examine their potential as novel drug targets.  相似文献   

6.
D Graham  S Z Langer 《Life sciences》1992,51(9):631-645
The sodium-ion coupled transporters for 5-hydroxytryptamine (5HT), noradrenaline and dopamine function to reduce extracellular levels of biogenic amines. Over the past fifteen years selective inhibitors of these transport systems have been developed including fluoxetine, citalopram, paroxetine, litoxetine (for 5HT), nisoxetine, desipramine, maprotiline (for noradrenaline) and GBR-12935 (for dopamine). Some of these inhibitors, including drugs selective for noradrenaline transport and particularly those selective for the 5HT transport system are currently widely used in the clinical management of affective disorders. Selective biogenic amine uptake inhibitors have, in addition, provided tools to undertake molecular pharmacological and biochemical studies of their respective transporters. By this means, the rat brain 5HT and dopamine transporters have been identified as polypeptides with relative molecular masses of 73,000 and 80,000, respectively, using affinity-chromatographic purification and photoaffinity-labelling techniques. Recently, the biogenic amine transporters have been cloned and a comparison of their predicted amino acid sequences reveals that these proteins share a considerable degree of similarity with notably 12-13 transmembrane spanning domains. Perspectives for future fundamental and clinical research on biogenic amine transport systems using molecular biological techniques are discussed.  相似文献   

7.
Transport between the nucleus and cytoplasm involves both stationary components and mobile factors acting in concert to move macromolecules through the nuclear pore complex. Multiple transport pathways requiring both unique and shared components have been identified. In the past 18 months, new findings have shed light on the nature of some of the mobile components of these pathways. New receptor-cargo pairs for both import and export pathways have been identified extending the breadth of known transport pathways. Surprising findings on the role of Ran and energy in transport have changed our way of thinking about the mechanism of movement through the nuclear pore.  相似文献   

8.
RNA localization is a widely conserved mechanism for generating cellular asymmetry. In Xenopus oocytes, microtubule-dependent transport of RNAs to the vegetal cortex underlies germ layer patterning. Although kinesin motors have been implicated in this process, the apparent polarity of the microtubule cytoskeleton has pointed instead to roles for minus-end-directed motors. To resolve this issue, we have analyzed participation of kinesin motors in vegetal RNA transport and identified a direct role for Xenopus kinesin-1. Moreover, in vivo interference and biochemical experiments reveal a key function for multiple motors, specifically kinesin-1 and kinesin-2, and suggest that these motors may interact during transport. Critically, we have discovered a subpopulation of microtubules with plus ends at the vegetal cortex, supporting roles for these kinesin motors in vegetal RNA transport. These results provide a new mechanistic basis for understanding directed RNA transport within the cytoplasm.  相似文献   

9.
The inner membranes of mitochondria contain a family of carrier proteins that are responsible for the transport in and out of the mitochondrial matrix of substrates, products, co-factors and biosynthetic precursors that are essential for the function and activities of the organelle. This family of proteins is characterized by containing three tandem homologous sequence repeats of approximately 100 amino acids, each folded into two transmembrane alpha-helices linked by an extensive polar loop. Each repeat contains a characteristic conserved sequence. These features have been used to determine the extent of the family in genome sequences. The genome of Saccharomyces cerevisiae contains 34 members of the family. The identity of five of them was known before the determination of the genome sequence, but the functions of the remaining family members were not. This review describes how the functions of 15 of these previously unknown transport proteins have been determined by a strategy that consists of expressing the genes in Escherichia coli or Saccharomyces cerevisiae, reconstituting the gene products into liposomes and establishing their functions by transport assay. Genetic and biochemical evidence as well as phylogenetic considerations have guided the choice of substrates that were tested in the transport assays. The physiological roles of these carriers have been verified by genetic experiments. Various pieces of evidence point to the functions of six additional members of the family, but these proposals await confirmation by transport assay. The sequences of many of the newly identified yeast carriers have been used to characterize orthologs in other species, and in man five diseases are presently known to be caused by defects in specific mitochondrial carrier genes. The roles of eight yeast mitochondrial carriers remain to be established.  相似文献   

10.
Auxins and tropisms   总被引:6,自引:0,他引:6  
Differential growth of plants in response to the changes in the light and gravity vectors requires a complex signal transduction cascade. Although many of the details of the mechanisms by which these differential growth responses are induced are as yet unknown, auxin has been implicated in both gravitropism and phototropism. Specifically, the redistribution of auxin across gravity or light-stimulated tissues has been detected and shown to be required for this process. The approaches by which auxin has been implicated in tropisms include isolation of mutants altered in auxin transport or response with altered gravitropic or phototropic response, identification of auxin gradients with radiolabeled auxin and auxin-inducible gene reporter systems, and by use of inhibitors of auxin transport that block gravitropism and phototropism. Proteins that transport auxin have been identified and the mechanisms which determine auxin transport polarity have been explored. In addition, recent evidence that reversible protein phosphorylation controls this process is summarized. Finally, the data in support of several hypotheses for mechanisms by which auxin transport could be differentially regulated during gravitropism are examined. Although many details of the mechanisms by which plants respond to gravity and light are not yet clear, numerous recent studies demonstrate the role of auxin in these processes.  相似文献   

11.
A method has been developed to isolate cells from the submaxillary gland of mouse by treatment with pronase. Three fractions of cells have been isolated having almost equal iodide concentrating activity. The isolated cells show time dependent uphill transport of iodide. The transport is substrate-saturable, having aK m value of 0.3 μM for iodide. The transport is sensitive to antithyroid drugs, metabolic inhibitors and to some extent to ouabain. Pseudohalide such as thiocyanate competes with the transport of iodide. Thyroid hormones or thyroid stimulating hormone have no significant effect on the iodide transport in these cells.  相似文献   

12.
Some of the food-derived tripeptides with angiotensin converting enzyme (ACE)-inhibitory activity have been reported to be hypotensive after being orally administered. The mechanism for the intestinal transport of these tripeptides was studied by using monolayer-cultured human intestinal Caco-2 cells which express many enterocyte-like functions including the peptide transporter (PepT1)-mediated transport system. Val-Pro-Pro, an ACE-inhibitory peptide from fermented milk, was used as a model tripeptide. A significant amount of intact Val-Pro-Pro was transported across the Caco-2 cell monolayer. This transport was hardly inhibited by a competitive substrate for PepT1. Since no intact Val-Pro-Pro was detected in the cells, Val-Pro-Pro apically taken by Caco-2 cells via PepT1 was likely to have been quickly hydrolyzed by intracellular peptidases, producing free Val and Pro. These findings suggest that PepT1-mediated transport was not involved in the transepithelial transport of intact Val-Pro-Pro. Paracellular diffusion is suggested to have been the main mechanism for the transport of intact Val-Pro-Pro across the Caco-2 cell monolayer.  相似文献   

13.
Preparations having properties resembling those of synaptosomes have been isolated from whole fly homogenates ofDrosophila melanogaster using ficoll gradient floatation technique. These have been characterized by marker enzymes and electron microscopy and binding of muscarinic antagenist3H Quinuclidinyl benzilate. An uptake system for neurotransmitter, ã-Aminobutyric acid has been demonstrated in these preparations. A high affinity uptake system for L-glutamate has also been studied in these subcellular fractions. This uptake of glutamate is transport into an osmotically sensitive compartment and not due to binding of glutamate to membrane components. The transport of glutamate has an obligatory requirements for either sodium or potassium ions. Kinetic experiments show that two transport systems, withK m values 0.33 X 10-6M and 2.0 X 10-6M, respectively, function in the accumulation of glutamate. ATP stimulates lower affinity transport of glutamate. Inhibition of glutamate uptake by L-aspartate but not by phenylalanine and tyrosine indicates that a common carrier mediates the transport of both glutamate and aspartate. β-N-oxalyl-L-β β-diamino propionic acid and kainic acid, both inhibitors of glutamate transport in mammalian brain preparations, strongly inhibited transport of glutamate inDrosophila preparations Comparison with uptake of ã-aminobutyric acid and glutamate in isolated larval brain is presented to show that the synaptosome-like preparations we have isolated are rich in central nervous system derived structures, and presynaptic endings from neuromuscular junctions.  相似文献   

14.
Nucleocytoplasmic transport of macromolecules.   总被引:23,自引:0,他引:23       下载免费PDF全文
Nucleocytoplasmic transport is a complex process that consists of the movement of numerous macromolecules back and forth across the nuclear envelope. All macromolecules that move in and out of the nucleus do so via nuclear pore complexes that form large proteinaceous channels in the nuclear envelope. In addition to nuclear pores, nuclear transport of macromolecules requires a number of soluble factors that are found both in the cytoplasm and in the nucleus. A combination of biochemical, genetic, and cell biological approaches have been used to identify and characterize the various components of the nuclear transport machinery. Recent studies have shown that both import to and export from the nucleus are mediated by signals found within the transport substrates. Several studies have demonstrated that these signals are recognized by soluble factors that target these substrates to the nuclear pore. Once substrates have been directed to the pore, most transport events depend on a cycle of GTP hydrolysis mediated by the small Ras-like GTPase, Ran, as well as other proteins that regulate the guanine nucleotide-bound state of Ran. Many of the essential factors have been identified, and the challenge that remains is to determine the exact mechanism by which transport occurs. This review attempts to present an integrated view of our current understanding of nuclear transport while highlighting the contributions that have been made through studies with genetic organisms such as the budding yeast, Saccharomyces cerevisiae.  相似文献   

15.
Transporters of secondary metabolites   总被引:8,自引:0,他引:8  
The membrane transport of plant secondary metabolites is a newly developing research area. Recent progress in genome and expressed sequence tag (EST) databases has revealed that many transporters and channels exist in plant genome. Studies of the genetic sequences that encode these proteins, and of phenotypes caused by the mutation of these sequences, have been used to characterize the membrane transport of plant secondary metabolites. Such studies have clarified that membrane transport is fairly specific and highly regulated for each secondary metabolite. Not only genes that are involved in the biosynthesis of secondary metabolites but also genes that are involved in their transport will be important for systematic metabolic engineering aimed at increasing the productivity of valuable secondary metabolites in planta.  相似文献   

16.
Revealing the mechanisms by which neurofilament transport and turnover are regulated has proven difficult over the years but recent studies have given new insight into these processes. Mature neurofilament fibers may incorporate a fourth functional subunit, alpha-internexin, as new evidence suggests. Recent findings have made the role of phosphorylation in regulating neurofilament transport velocity controversial. Kinesin and dynein may transport neurofilaments in slow axonal transport as they have been found to associate with neurofilaments. Neurofilament transport and turnover rates may be reduced depending on the existing stationary neurofilament network. Finally, mutations in neurofilament light that have been linked to Charcot-Marie-Tooth disease as well as other neurofilament abnormalities in human disease are discussed.  相似文献   

17.
Measurements of the rate of mucociliary transport in the airways of the lower respiratory tract have been shown to be influenced by the techniques and protocols used. To avoid the effects associated with invasive techniques and anesthesia in animal models used to study the effect of maturation, drugs, disease, and inhaled pollutants on mucociliary transport we have developed unsedated dog and baboon models of mucociliary transport using radioaerosol techniques. As far as they have been tested these animal models of mucociliary transport react to drugs such as isoproterenol and atropine in the same manner as in man.  相似文献   

18.
We present an overview of the research on intracellular transport in pigment cells, with emphasis on the most recent discoveries. Pigment cells of lower vertebrates have been traditionally used as a model for studies of intracellular transport mechanisms, because these cells transport pigment organelles to the center or to the periphery of the cell in a highly co-ordinated fashion. It is now well established that both aggregation and dispersion of pigment in melanophores require two elements of the cytoskeleton: microtubules and actin filaments. Melanosomes are moved along these cytoskeletal tracks by motor proteins. Recent studies have identified the motors responsible for pigment dispersion and aggregation in melanophores. We propose a model for the possible roles of the two cytoskeletal transport systems and how they might interact. We also discuss the putative mechanisms of regulation of pigment transport, especially phosphorylation. Last, we suggest areas of research that will receive attention in the future in order to elucidate the mechanisms of organelle transport.  相似文献   

19.
L-carnitine is an essential cofactor for the transport of fatty acids across the mitochondrial membranes. L-carnitine can be provided by food products or biosynthesized in the liver. After intestinal absorption or hepatic biosynthesis, L-carnitine is transferred to organs whose metabolism is dependent upon fatty acid oxidation, such as the skeletal muscle and the heart. The intracellular transport of L-carnitine into the cell requires specific transporters and today, several of these have been characterized. Most of them belong to the solute carrier family. Heart is one of the major target for carnitine transport and use, however basic properties of carnitine uptake by heart cells have never been studied. In this paper, the transport of L-carnitine by rat heart explants has been examined and the kinetic properties of this transport determined and compared to data obtained in skeletal muscle explants. As in muscle, L-carnitine uptake by heart cells was shown to be dependent on sodium and was inhibited by L-carnitine analogues. Molecules known to interact with the skeletal muscle L-carnitine transport were studied in the heart. While trimethyl hydrazinium propionate (THP) was shown to fully inhibit the L-carnitine uptake by muscle cells, it remained inefficient in inhibiting the L-carnitine uptake by heart cells. On the other hand, compounds such as verapamil and AZT were both able to inhibit both the skeletal muscle and the cardiac uptake of L-carnitine. These data suggested that the muscle and heart systems for L-carnitine uptake exhibited different systems of regulation and these results have to be taken in consideration while administrating those compounds that can alter l-carnitine uptake in the muscle and the heart and can lead to damage to these tissues.  相似文献   

20.
Members of the ATP-binding cassette (ABC) superfamily are integral membrane proteins that hydrolyze ATP to drive transport. In the last two decades these proteins have been extensively characterized on a genetic and biochemical level, and in recent years high-resolution crystal structures of several nucleotide-binding domains and full-length transporters have extended our knowledge. Here we discuss the possible mechanisms of transport that have been derived from these crystal structures and the extensive available biochemical data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号