首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 27 毫秒
1.
Activation of G protein-coupled receptors is thought to involve disruption of intramolecular interactions that stabilize their inactive conformation. Such disruptions are induced by agonists or by constitutively active mutations. In the present study, novel potent inverse agonists are described to inhibit the constitutive activity of 5-HT(4) receptors. Using these compounds and specific receptor mutations, we investigated the mechanisms by which inverse agonists may reverse the disruption of intramolecular interactions that causes constitutive activation. Two mutations (D100(3.32)A in transmembrane domain (TMD)-III and F275(6.51)A in TMD-VI) were found to completely block inverse agonist effects without impairing their binding properties nor the molecular activation switches induced by agonists. Based on the rhodopsin model, we propose that these mutated receptors are in equilibrium between two states R and R* but are unable to reach a third "silent" state stabilized by inverse agonists. We also found another mutation in TMD-VI (W272(6.48)A) that stabilized this silent state. This mutant remained fully activated by agonists. Molecular modeling indicated that Asp-100, Phe-275, and Trp-272 might constitute a network required for stabilization of the silent state by the described inverse agonists. However, this network is not necessary for agonist activity.  相似文献   

2.
R A Shephard 《Life sciences》1987,40(25):2429-2436
A considerable body of biochemical and neurophysiological evidence implicates GABA in anxiety and in benzodiazepine action. The present article surveys the behavioral effects of GABA agonists and their interactions with drugs acting at the benzodiazepine receptor in animal anxiety paradigms. Certain GABA agonists, notably valproate, simulate many behavioral actions of benzodiazepines. Moreover, several behavioral studies of the interaction of GABA agonists with benzodiazepines support the hypothesis of a benzodiazepine receptor complex with one or more GABA, benzodiazepine and probably other binding sites. However, there are also a number of anomalous findings of GABA agonist action alone and in combination with benzodiazepines. It is argued that these paradoxical results can better be accounted for in terms of the receptor complex and the distribution of the drugs, rather than by suggesting that the anxiolytic actions of benzodiazepines are not mediated by GABA systems. The potential clinical usefulness of GABA agonists in anxiety is commented upon.  相似文献   

3.
The identification of a new series of RORc inverse agonists is described. Comprehensive structure-activity relationship studies of this reversed sulfonamide series identified potent RORc inverse agonists in biochemical and cellular assays which were also selective against a panel of nuclear receptors. Our work has contributed a compound that may serve as a useful in vitro tool to delineate the complex biological pathways involved in signalling through RORc. An X-ray co-crystal structure of an analogue with RORc has also provided useful insights into the binding interactions of the new series.  相似文献   

4.
In Caenorhabditis elgans, insulin-like peptides have significant roles in modulating larval diapause and adult lifespan via the insulin/IGF-1 signaling (IIS) pathway. Although 40 insulin-like peptides (ILPs) have been identified, it remains unknown how ILPs act as either agonists or antagonists for their sole receptor, DAF-2. Here we found 1) INS-23 functions as an antagonistic ILP to promote larval diapause through the IIS pathway like a DAF-2 antagonist, INS-18, 2) INS-23 and INS-18 have similar biochemical functions. In addition, our molecular modeling suggests that INS-23 and INS-18 have characteristic insertions in the B-domain, which are crucial for the recognition of the insulin receptor, when compared with DAF-2 agonists. These characteristic insertions in the B-domain of INS-23 and INS-18 would modulate their intermolecular interactions with the DAF-2 receptor, which may lead these molecules to act as antagonistic ligands. Our study provides new insight into the function and structure of ILPs.  相似文献   

5.
Opioid receptors belong to the family of G-protein-coupled receptors characterized by their seven transmembrane domains. The activation of these receptors by agonists such as morphine and endogenous opioid peptides leads to the activation of inhibitory G-proteins followed by a decrease in the levels of intracellular cAMP. Opioid receptor activation is also associated with the opening of K(+) channels and the inhibition of Ca(2+) channels. A number of investigations, prior to the development of opioid receptor cDNAs, suggested that opioid receptor types interacted with each other. Early pharmacological studies provided evidence for the probable interaction between opioid receptors. More recent studies using receptor selective antagonists, antisense oligonucleotides, or animals lacking opioid receptors further suggested that interactions between opioid receptor types could modulate their activity. We examined opioid receptor interactions using biochemical, biophysical, and pharmacological techniques. We used differential epitope tagging and selective immunoisolation of receptor complexes to demonstrate homotypic and heterotypic interactions between opioid receptor types. We also used the proximity-based bioluminescence resonance energy transfer assay to explore opioid receptor-receptor interactions in living cells. In this article we describe the biochemical and biophysical methods involved in the detection of receptor dimers. We also address some of the concerns and suggest precautions to be taken in studies examining receptor-receptor interactions.  相似文献   

6.
Partial, selective activation of nuclear receptors is a central issue in molecular endocrinology but only partly understood. Using LXRs as an example, we show here that purely agonistic ligands can be clearly and quantitatively differentiated from partial agonists by the cofactor interactions they induce. Although a pure agonist induces a conformation that is incompatible with the binding of repressors, partial agonists such as GW3965 induce a state where the interaction not only with coactivators, but also corepressors is clearly enhanced over the unliganded state. The activities of the natural ligand 22(R)-hydroxycholesterol and of a novel quinazolinone ligand, LN6500 can be further differentiated from GW3965 and T0901317 by their weaker induction of coactivator binding. Using biochemical and cell-based assays, we show that the natural ligand of LXR is a comparably weak partial agonist. As predicted, we find that a change in the coactivator to corepressor ratio in the cell will affect NCoR recruiting compounds more dramatically than NCoR-dissociating compounds. Our data show how competitive binding of coactivators and corepressors can explain the tissue-specific behavior of partial agonists and open up new routes to a rational design of partial agonists for LXRs.  相似文献   

7.
8.
Mayo M 《Bio Systems》2005,82(1):74-82
Understanding how an individual's genetic make-up influences their risk of disease is a problem of paramount importance. Although machine-learning techniques are able to uncover the relationships between genotype and disease, the problem of automatically building the best biochemical model or "explanation" of the relationship has received less attention. In this paper, I describe a method based on random hill climbing that automatically builds Petri net models of non-linear (or multi-factorial) disease-causing gene-gene interactions. Petri nets are a suitable formalism for this problem, because they are used to model concurrent, dynamic processes analogous to biochemical reaction networks. I show that this method is routinely able to identify perfect Petri net models for three disease-causing gene-gene interactions recently reported in the literature.  相似文献   

9.
Cell signaling is a very complex network of biochemical reactions triggered by a huge number of stimuli coming from the external medium. The function of any single signaling component depends not only on its own structure but also on its connections with other biomolecules. During prokaryotic-eukaryotic transition, the rearrangement of cell organization in terms of diffusional compartmentalization exerts a deep change in cell signaling functional potentiality. In this review I briefly introduce an intriguing ancient relationship between pathways involved in cell responses to chemical agonists (growth factors, nutrients, hormones) as well as to mechanical forces (stretch, osmotic changes). Some biomolecules (ion channels and enzymes) act as "hubs", thanks to their ability to be directly or indirectly chemically/mechanically co-regulated. In particular calcium signaling machinery and arachidonic acid metabolism are very ancient networks, already present before eukaryotic appearance. A number of molecular "hubs", including phospholipase A2 and some calcium channels, appear tightly interconnected in a cross regulation leading to the cellular response to chemical and mechanical stimulations.  相似文献   

10.
Progress towards a deeper understanding of cellular biochemical networks demands the development of methods to both identify and validate component proteins of these networks. Here, we describe a cDNA library screening strategy that achieves these aims, based on a protein-fragment complementation assay (PCA) using green fluorescent protein (GFP) as a reporter. The strategy combines a simple cell-based cDNA-screening approach (interactions of a "bait" protein of interest with "prey" cDNA products) with specific functional assays that use the same system and provide initial validation of the cDNA products as being biologically relevant. We applied this strategy to identify novel interacting partners of the protein kinase PKB/Akt. This method provides very general means of identifying and validating genes involved in any cellular process and is particularly designed for identifying enzyme substrates or regulatory proteins for which the enzyme specificity can only be defined by their interactions with other proteins in cells in which the proteins are normally expressed.  相似文献   

11.
G Almogy  L Stone    N Ben-Tal 《Biophysical journal》2001,81(6):3016-3028
A general "multi-stage" regulation model, based on linearly connected regulatory units, is formulated to demonstrate how biochemical pathways may achieve high levels of accuracy. The general mechanism, which is robust to changes in biochemical parameters, such as protein concentration and kinetic rate constants, is incorporated into a mathematical model of the bacterial chemotaxis network and provides a new framework for explaining regulation and adaptiveness in this extensively studied system. Although conventional theories suggest that methylation feedback pathways are responsible for chemotactic regulation, the model, which is deduced from known experimental data, indicates that protein interactions downstream of the bacterial receptor complex, such as CheAs and CheZ, may play a crucial and complementary role.  相似文献   

12.
Liu BA  Engelmann BW  Nash PD 《FEBS letters》2012,586(17):2597-2605
Natural languages arise in an unpremeditated fashion resulting in words and syntax as individual units of information content that combine in a manner that is both complex and contextual, yet intuitive to a native reader. In an analogous manner, protein interaction domains such as the Src Homology 2 (SH2) domain recognize and "read" the information contained within their cognate peptide ligands to determine highly selective protein-protein interactions that underpin much of cellular signal transduction. Herein, we discuss how contextual sequence information, which combines the use of permissive and non-permissive residues within a parent motif, is a defining feature of selective interactions across SH2 domains. Within a system that reads phosphotyrosine modifications this provides crucial information to distinguish preferred interactions. This review provides a structural and biochemical overview of SH2 domain binding to phosphotyrosine-containing peptide motifs and discusses how the diverse set of SH2 domains is able to differentiate phosphotyrosine ligands.  相似文献   

13.
A multitude of biochemical signaling processes have been characterized that affect gene expression and cellular activity. However, living cells often need to integrate biochemical signals with mechanical information from their microenvironment as they respond. In fact, the signals received by shape alone can dictate cell fate. This mechanotrasduction of information is powerful, eliciting proliferation, differentiation, or apoptosis in a manner dependent upon the extent of physical deformation. The cells internal "prestressed" structure and its "hardwired" interaction with the extra-cellular matrix (ECM) appear to confer this ability to filter biochemical signals and decide between divergent cell functions influenced by the nature of signals from the mechanical environment. In some instances mechanical signaling through the tissue microenvironment has been shown to be dominant over genomic defects, imparting a normal phenotype on cells that otherwise have transforming genetic lesions. This mechanical control of phenotype is postulated to have a central role in embryogenesis, tissue physiology as well as the pathology of a wide variety of diseases, including cancer. We will briefly review studies showing physical continuity between the external cellular microenvironment and the interior of the cell nucleus. Newly characterized structures, termed nuclear envelope lamina spanning complexes (NELSC), and their interactions will be described as part of a model for mechanical transduction of extracellular cues from the ECM to the genome.  相似文献   

14.
G protein-coupled receptors represent the largest superfamily of cell membrane-spanning receptors. We used allosteric small molecules as a novel approach to better understand conformational changes underlying the inactive-to-active switch in native receptors. Allosteric molecules bind outside the orthosteric area for the endogenous receptor activator. The human muscarinic M(2) acetylcholine receptor is prototypal for the study of allosteric interactions. We measured receptor-mediated G protein activation, applied a series of structurally diverse muscarinic allosteric agents, and analyzed their cooperative effects with orthosteric receptor agonists. A strong negative cooperativity of receptor binding was observed with acetylcholine and other full agonists, whereas a pronounced negative cooperativity of receptor activation was observed with the partial agonist pilocarpine. Applying a newly synthesized allosteric tool, point mutated receptors, radioligand binding, and a three-dimensional receptor model, we found that the deviating allosteric/orthosteric interactions are mediated through the core region of the allosteric site. A key epitope is M(2)Trp(422) in position 7.35 that is located at the extracellular top of transmembrane helix 7 and that contacts, in the inactive receptor, the extracellular loop E2. Trp 7.35 is critically involved in the divergent allosteric/orthosteric cooperativities with acetylcholine and pilocarpine, respectively. In the absence of allosteric agents, Trp 7.35 is essential for receptor binding of the full agonist and for receptor activation by the partial agonist. This study provides first evidence for a role of an allosteric E2/transmembrane helix 7 contact region for muscarinic receptor activation by orthosteric agonists.  相似文献   

15.
In recent years the term "systems biology" has become widespread in the biological literature, but most of the papers in which these words appear have surprisingly little to do with older notions of biological systems: they often seem to imply little more than reductionist biology applied on a large scale, with a little attention to interactions between some of the components, but with minimal attention to the kinetic properties of enzymes, which supplied much of the reductionist foundation of biochemistry. A systemic approach to biology ought to put the emphasis on the entire system; insofar as it is concerned with components at all, it is to explain their roles in meeting the needs of the system as a whole. Genuinely systemic thinking allows us to understand how biochemical systems are regulated, and why clumsy attempts to manipulate them for biotechnological purposes may fail. At a more abstract level, it is necessary for understanding the nature of life, because as long as an organism is treated as no more than a collection of components, one cannot ask the right questions, and certainly cannot answer them.  相似文献   

16.
Basement membranes are widely distributed extracellular matrices that coat the basal aspect of epithelial and endothelial cells and surround muscle, fat, and Schwann cells. These extracellular matrices, first expressed in early embryogenesis, are self-assembled on competent cell surfaces through binding interactions among laminins, type IV collagens, nidogens, and proteoglycans. They form stabilizing extensions of the plasma membrane that provide cell adhesion and that act as solid-phase agonists. Basement membranes play a role in tissue and organ morphogenesis and help maintain function in the adult. Mutations adversely affecting expression of the different structural components are associated with developmental arrest at different stages as well as postnatal diseases of muscle, nerve, brain, eye, skin, vasculature, and kidney.The basement membrane (basal lamina) was first described in muscle as a “membranaceous sheath of the most exquisite delicacy” (Bowman 1840). Microscopists subsequently identified basement membranes in nearly all tissues. In the late 1970s, the discovery of the basement membrane-rich EHS tumor led to the isolation of abundant quantities of laminin, type IV collagen, nidogen (entactin), and perlecan, enabling elucidation of their biochemical and cell-interactive properties and opening a door to an understanding of structure and function of basement membranes at a molecular level.Basement membranes are layered cell-adherent extracellular matrices (ECMs) that form part of tissue architecture, contributing both to embryonic differentiation and the maintenance of adult functions. They are evolutionarily ancient structures, likely appearing when organized communities of animal cells first emerged. These matrices serve as an extension of the plasma membrane, protecting tissues from disruptive physical stresses, and provide an interactive interface between cell and surrounding environment that can mediate local and distant signals within and between these compartments. Such signals appear to be largely processed through integrins, growth factor interactions, and dystroglycan. Basement membrane-dependent functions include the promotion of strong epidermal/dermal attachment, stabilization of the skeletal muscle sarcolemma, selectivity of glomerular filtration, and establishment of epithelial and glial cell polarization. Assembly of a functionally active basement membrane depends on the binding interactions among the large carbohydrate-modified proteins, each consisting of an array of distinct domains with unique binding properties. These components, in turn, are organized into higher ordered supramolecular assemblies that engage cell surface receptors in a developmentally and tissue-specific manner. In this review models of structure will be related to those of function based on a consideration of morphological, biochemical, cell biological, developmental, and genetic information.  相似文献   

17.
The oligomers constituted by association of different subunits can exist under multiple forms. In the case of the genetically variable proteins, such a multiplicity leads to numerous questions (i) on the enumerations: what is the number of active forms when a given subunit can make the oligomer inactive, or when the subunits are encoded by s alleles; (ii) on the subunit effects on biochemical properties: how to estimate these effects, are they equal, are there interactions between subunits, etc. Theoretical methods for the study of such oligomeric structures are developed, which mainly rely on linear model techniques. Peculiar properties examined are Vmax and Km, but also the quantities of the various oligomers, which depend on their association law. This approach is extended to the oligomers composed of different sets of subunits, as are for example some enzymes. These aspects are discussed from numerous bibliographic examples, with special reference to molecular interactions (protein complementation or molecular heterosis). Otherwise the genetic application of this theoretical approach is presented: it is possible to consider a genotype as an oligomer of alleles, and thus to study their effects and their interactions, in the one-locus case as well as in the several-loci case. The relevance of this generalization is discussed in connection with two other concepts, the "sequence space" used in molecular evolution and the regression of the genotypic values on the number of alleles used in quantitative genetics.  相似文献   

18.
In the present report, using vibrational spectroscopy we have probed the ligand-protein interactions for full agonists (glutamate and alpha-amino-5-methyl-3-hydroxy-4-isoxazole propionate (AMPA)) and a partial agonist (kainate) in the isolated ligand-binding domain of the GluR2 subunit of the glutamate receptor. These studies indicate differences in the strength of the interactions of the alpha-carboxylates for the various agonists, with kainate having the strongest interactions and glutamate having the weakest. Additionally, the interactions at the alpha-amine group of the agonists have also been probed by studying the environment of the non-disulfide-bonded Cys-425, which is in close proximity to the alpha-amine group. These investigations suggest that the interactions at the alpha-amine group are stronger for full agonists such as glutamate and AMPA as evidenced by the increase in the hydrogen bond strength at Cys-425. Partial agonists such as kainate do not change the environment of Cys-425 relative to the apo form, suggesting weak interactions at the alpha-amine group of kainate. In addition to probing the ligand environment, we have also investigated the changes in the secondary structure of the protein. Results clearly indicate that full agonists such as glutamate and AMPA induce similar secondary structural changes that are different from those of the partial agonist kainate; thus, a spectroscopic signature is provided for identifying the functional consequences of a specific ligand binding to this protein.  相似文献   

19.
We have previously demonstrated that adenosine controls the release of catecholamines (CA) from carotid body (CB) acting on A2B receptors. Here, we have tested the hypothesis that the control is exerted via an interaction between adenosine A2B and dopamine D2 receptors present in chemoreceptor cells. Experiments were performed in vitro in CB from 3 months rats. The effect of A2B adenosine and D2 dopamine agonists and antagonists applied alone or in combination were studied on basal (20%O2) and hypoxia (10%O2)-evoked release of CA and cAMP content of CB. We have found that adenosine A2 agonists and D2 antagonists dose-dependently increased basal and evoked release CA from the CB while A2 antagonists and D2 agonists had an inhibitory action. The existence of A2B-D2 receptor interaction was established because the inhibitory action of A2 antagonists was abolished by D2 antagonists, and the stimulatory action of A2 agonists was abolished by D2 agonists. Further, A2 agonists increased and D2 agonist decreased cAMP content in the CB; their co-application eliminated the response. The present results provide direct pharmacological evidence that an antagonistic interaction between A2B adenosine and D2 dopamine receptors exist in rat CB and would explain the dopamine-adenosine interactions on ventilation previously observed.  相似文献   

20.
Nociceptin/orphanin FQ (N/OFQ) controls several biological functions by selectively activating an opioid like receptor named N/OFQ peptide receptor (NOP). Biased agonism is emerging as an important and therapeutically relevant pharmacological concept in the field of G protein coupled receptors including opioids. To evaluate the relevance of this phenomenon in the NOP receptor, we used a bioluminescence resonance energy transfer technology to measure the interactions of the NOP receptor with either G proteins or β-arrestin 2 in the absence and in presence of increasing concentration of ligands. A large panel of receptor ligands was investigated by comparing their ability to promote or block NOP/G protein and NOP/arrestin interactions. In this study we report a systematic analysis of the functional selectivity of NOP receptor ligands. NOP/G protein interactions (investigated in cell membranes) allowed a precise estimation of both ligand potency and efficacy yielding data highly consistent with the known pharmacological profile of this receptor. The same panel of ligands displayed marked differences in the ability to promote NOP/β-arrestin 2 interactions (evaluated in whole cells). In particular, full agonists displayed a general lower potency and for some ligands an inverted rank order of potency was noted. Most partial agonists behaved as pure competitive antagonists of receptor/arrestin interaction. Antagonists displayed similar values of potency for NOP/Gβ1 or NOP/β-arrestin 2 interaction. Using N/OFQ as reference ligand we computed the bias factors of NOP ligands and a number of agonists with greater efficacy at G protein coupling were identified.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号