首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The catch apparatus (CA) is the collagenous ligament at the spinal joint of sea urchins. It maintains spine posture by stiffening and allows spine movement by softening. A CA preparation, which was isolated from ossicles, was used to test the hypothesis that frictional forces between collagen fibers and ossicles are the source of stiffness changes. Isolated preparations of the CA changed in stiffness, thus falsifying the hypothesis. Another hypothesis proposes that muscle fibers, which represent a relatively small component of the CA, cause stiffening of the CA by contraction. Chemicals that evoked contraction in spine muscles did not always stiffen the CA: the CA of Heterocentrotus mammillatus softened in response to artificial seawater with potassium concentration elevated to 100 mM. This provided evidence against the muscle-based hypothesis. The present results suggest that the stiffness changes of the CA are based on changes in the mechanical properties of the extracellular components of the connective tissue and are therefore related to the connective tissue catch that is widespread in other echinoderms.  相似文献   

2.
Cartilaginous tissues such as the intervertebral disk are predominantly loaded under compression. Yet, they contain abundant collagen fibers, which are generally assumed to contribute to tensile loading only. Fiber tension is thought to originate from swelling of the proteoglycan-rich nucleus. However, in aged or degenerate disk, proteoglycans are depleted, whereas collagen content changes little. The question then rises to which extend the collagen may contribute to the compressive stiffness of the tissue. We hypothesized that this contribution is significant at high strain magnitudes and that the effect depends on fiber orientation. In addition, we aimed to determine the compression of the matrix. Bovine inner and outer annulus fibrosus specimens were subjected to incremental confined compression tests up to 60 % strain in radial and circumferential direction. The compressive aggregate modulus was determined per 10 % strain increment. The biochemical composition of the compressed specimens and uncompressed adjacent tissue was determined to compute solid matrix compression. The stiffness of all specimens increased nonlinearly with strain. The collagen-rich outer annulus was significantly stiffer than the inner annulus above 20 % compressive strain. Orientation influenced the modulus in the collagen-rich outer annulus. Finally, it was shown that the solid matrix was significantly compressed above 30 % strain. Therefore, we concluded that collagen fibers significantly contribute to the compressive stiffness of the intervertebral disk at high strains. This is valuable for understanding the compressive behavior of collagen-reinforced tissues in general, and may be particularly relevant for aging or degenerate disks, which become more fibrous and less hydrated.  相似文献   

3.
A statistical factorial analysis approach was conducted on a poroelastic finite element model of a lumbar intervertebral disc to analyse the influence of six material parameters (permeabilities of annulus, nucleus, trabecular vertebral bone, cartilage endplate and Young's moduli of annulus and nucleus) on the displacement, fluid pore pressure and velocity fields. Three different loading modes were investigated: compression, flexion and axial rotation. Parameters were varied considering low and high levels in agreement with values found in the literature for both healthy and degenerated lumbar discs. Results indicated that annulus stiffness and cartilage endplate permeability have a strong effect on the overall fluid- and solid-phase responses in all loading conditions studied. Nucleus stiffness showed its main relevance in compression while annulus permeability influenced mainly the annular pressure field. This study confirms the permeability's central role in biphasic modelling and highlights for the lumbar disc which experiments of material property characterization should be performed. Moreover, such sensitivity study gives important guidelines in poroelastic material modelling and finite element disc validation.  相似文献   

4.
In this (semi) quantitative animal study the reaction of the periodontal ligament (PDL) to experimental tooth movement is described. To this end, rabbit first incisors were moved sideways with helical torsion springs for periods varying from 3-24 hours. The initial force of the springs was 50 gf. The histomorphology of the PDL was studied in 5 microns thick plastic sections. Comparison with control animals and animals wearing passive springs showed that tooth movement leads to an increased trauma in the PDL within only a few hours. This trauma is characterized by hyalinization, tears and ruptures in the fibres and blood vessels, and by the presence of extravascular erythrocytes and pyknosis. Tissue damage significantly increased with time. After 24 hours of tooth movement, the PDL fibers are compressed or stretched in 68% of the sections and the blood vessels in the PDL are compressed or stretched in 62% of the sections. Even in the controls, more than 15% of the sections displayed slightly stretched or compressed fibers, and about 10% showed slightly compressed or stretched blood vessels. This indicates that some damage is regularly present in a normally functioning PDL. Increases in the percentage of sections with blood vessel compression are found in all groups wearing passive springs, especially after 6 hours. A high concordancy in compression and tension patterns of blood vessels and fibers is present in 83% of the sections. Pyknotic cells are practically confined to areas with compressed PDL fibers in rabbits wearing active springs. Extravascular erythrocytes were found in sections with all types of fiber patterns. A significant majority of extravascular erythrocytes, however, was found in areas with compressed fibers.  相似文献   

5.
Spine catch ligaments of a sea urchin Arbacia punctulata were extended under constant load. Ligaments from an undisturbed animal may show any extension rate from zero (catch state) to rapid extension to failure. Replacing the preparation bath with Ca2+- and Mg2+-free sea water reversibly abolishes the catch state. The fine structure of the outer muscle layer and inner ligament cone associated with the spine base is described. The unstriated paramyosin muscles bear thin flanges and form compact interlocking rows. Subsurface cisternae are associated with the plasma membrane. The muscles are innervated by glia-free axons ending in bulbous terminals containing lucent synaptic vesicles. The ligament comprises cylindrical bundles of collagen fibrils: one or more minute muscle fibers (paramyosin) lie parallel with and closely adjoining each bundle. The mean diameter of these muscles is 0.3 μg and they occupy 2–3 % of the ligament's cross-sectional area. Axons containing electronopaque secretory droplets accompany the muscles between the collagen bundles: the cell bodies of these neurones generally lie on the outer surface of the ligament. When an urchin points a spine, the ligament on the side of the contracting spine muscle shortens but does not buckle. A function of the intraligamental muscles is to effect this non-buckled shortening. The catch mechanism (which resides entirely within the ligament) may be due either to the intraligamental muscles and/or to a locked polymer mechanism in which matrix molecules between collagen fibrils are reversibly crosslinked by divalent cations.  相似文献   

6.
We studied the mechanical and anatomical anisotropy of the canine diaphragmatic central tendon (CT). Dumb-bell-shaped strips with effective dimensions of 10 x 2 mm (length x width) were cut from different regions of the canine diaphragmatic CT in two different orientations relative to the direction of neighboring muscle fibers. Specimens sampled with their long axial dimension oriented parallel to the neighboring muscle fibers were named Group-1 and those sampled with an orientation perpendicular to the neighboring muscle fibers were named Group-2. Results from one-dimensional stress-strain and tensile failure strength tests revealed that the CT is a nonlinear, inelastic, and anisotropic material. Group-1 specimens were found to have a higher stiffness, higher failure strength and higher strain energy density at failure than Group-2 specimens. Polarized microscopy showed that multiple sheets of collagen fiber bundles formed an orthogonal network in the tendon. Collagen fiber bundles along Group-1 direction formed parallel trajectory lines connecting the neighboring costal and crural muscles; bundles along Group-2 direction were observed to orient 90 degrees away. At the central apex region of the CT, collagen bundles of Group-1 formed a fan-like trajectory pattern. This collagen network architecture was compared favorably to the trajectories of an approximated principal stress field in the CT due to simulated contractile forces from its adjacent costal and crural muscles. These combined results suggest a structure-function relationship for the anatomical and mechanical anisotropy in the canine diaphragmatic CT.  相似文献   

7.
Many patients with low back and/or pelvic girdle pain feel relief after application of a pelvic belt. External compression might unload painful ligaments and joints, but the exact mechanical effect on pelvic structures, especially in (active) upright position, is still unknown. In the present study, a static three-dimensional (3-D) pelvic model was used to simulate compression at the level of anterior superior iliac spine and the greater trochanter. The model optimised forces in 100 muscles, 8 ligaments and 8 joints in upright trunk, pelvis and upper legs using a criterion of minimising maximum muscle stress. Initially, abdominal muscles, sacrotuberal ligaments and vertical sacroiliac joints (SIJ) shear forces mainly balanced a trunk weight of 500N in upright position. Application of 50N medial compression force at the anterior superior iliac spine (equivalent to 25N belt tension force) deactivated some dorsal hip muscles and reduced the maximum muscle stress by 37%. Increasing the compression up to 100N reduced the vertical SIJ shear force by 10% and increased SIJ compression force with 52%. Shifting the medial compression force of 100N in steps of 10N to the greater trochanter did not change the muscle activation pattern but further increased SIJ compression force by 40% compared to coxal compression. Moreover, the passive ligament forces were distributed over the sacrotuberal, the sacrospinal and the posterior ligaments. The findings support the cause-related designing of new pelvic belts to unload painful pelvic ligaments or muscles in upright posture.  相似文献   

8.
When activated muscle fibers are stretched, there is a long-lasting increase in the force. This phenomenon, referred to as "residual force enhancement," has characteristics similar to those of the "static tension," a long-lasting increase in force observed when muscles are stretched in the presence of Ca(2+) but in the absence of myosin-actin interaction. Independent studies have suggested that these two phenomena have a common mechanism and are caused either by 1) a Ca(2+)-induced stiffening of titin or by 2) promoting titin binding to actin. In this study, we performed two sets of experiments in which activated fibers (pCa(2+) 4.5) treated with the myosin inhibitor blebbistatin were stretched from 2.7 to 2.8 μm at a speed of 40 L(o)/s, first, after partial extraction of TnC, which inhibits myosin-actin interactions, or, second, after treatment with gelsolin, which leads to the depletion of thin (actin) filaments. We observed that the static tension, directly related with the residual force enhancement, was not changed after treatments that inhibit myosin-actin interactions or that deplete fibers from troponin C and actin filaments. The results suggest that the residual force enhancement is caused by a stiffening of titin upon muscle activation but not with titin binding to actin. This finding indicates the existence of a Ca(2+)-regulated, titin-based stiffness in skeletal muscles.  相似文献   

9.
The distribution and immunocytochemical characterization of nerve fibers and their terminals in the posterior longitudinal ligament of the rat lumbar vertebral column was studied in whole-mount preparations and serial semithin and ultrathin sections. Differences in the localization, distribution pattern and density of peptidergic and catecholaminergic nerve fibers were found in the vertebral and intervertebral regions of the posterior longitudinal ligament. For immunocytochemistry, free floating specimens were incubated with primary antibodies against protein gene product 9.5, substance P, calcitonin gene-related peptide, dopamine-beta-hydroxylase, vasoactive intestinal polypeptide and neuropeptide Y together with the avidin-biotin-peroxidase method. In whole-mount preparations, the neural marker protein gene product 9.5 is immunostained in all unmyelinated nerve fibers in the posterior longitudinal ligament, thus giving a panoramic view of the nerve fiber plexus. The most striking nerve fiber plexus is localized in the intervertebral region. In this region, the posterior longitudinal ligament is rich in capillaries that form a dense plexus within its ventral part and extend to the outer layer of the annulus fibrosus. The peptidergic and catecholaminergic innervation of the posterior longitudinal ligament is discussed in the context of pain syndromes related to the vertebral column and degenerative lumbar spine diseases.  相似文献   

10.
The Huxley-Simmons phase 2 controls the kinetics of the first stages of tension recovery after a step-change in fiber length and is considered intimately associated with tension generation. It had been shown that phase 2 is comprised of two distinct unrelated phases. This is confirmed here by showing that the properties of phase 2(fast) are independent of fiber type, whereas those of phase 2(slow) are fiber type dependent. Phase 2(fast) has a rate of 1000-2000 s(-1) and is temperature insensitive (Q(10) approximately 1.16) in fast, medium, and slow speed fibers. Regardless of fiber type and temperature, the amplitude of phase 2(fast) is half (approximately 0.46) that of phase 1 (fiber instantaneous stiffness). Consequently, fiber compliance (cross-bridge and thick/thin filament) appears to be the common source of both phase 1 elasticity and phase 2(fast) viscoelasticity. In fast fibers, stiffness increases in direct proportion to tension from an extrapolated positive origin at zero tension. The simplest explanation is that tension generation can be approximated by two-state transition from attached preforce generating (moderate stiffness) to attached force generating (high stiffness) states. Phase 2(slow) is quite different, progressively slowing in concert with fiber type. An interesting interpretation of the amplitude and rate data is that reverse coupling of phase 2(slow) back to P(i) release and ATP hydrolysis appears absent in fast fibers, detectable in medium speed fibers, and marked in slow fibers contracting isometrically. Contracting slow and heart muscles stretched under load could employ this enhanced reversibility of the cross-bridge cycle as a mechanism to conserve energy.  相似文献   

11.
The active and passive contractile performance of skeletal muscle fibers largely depends on the myosin heavy chain (MHC) isoform and the stiffness of the titin spring, respectively. Open questions concern the relationship between titin-based stiffness and active contractile parameters, and titin's importance for total passive muscle stiffness. Here, a large set of adult rabbit muscles (n = 37) was studied for titin size diversity, passive mechanical properties, and possible correlations with the fiber/MHC composition. Titin isoform analyses showed sizes between approximately 3300 and 3700 kD; 31 muscles contained a single isoform, six muscles coexpressed two isoforms, including the psoas, where individual fibers expressed similar isoform ratios of 30:70 (3.4:3.3 MD). Gel electrophoresis and Western blotting of two other giant muscle proteins, nebulin and obscurin, demonstrated muscle type-dependent size differences of < or =70 kD. Single fiber and single myofibril mechanics performed on a subset of muscles showed inverse relationships between titin size and titin-borne tension. Force measurements on muscle strips suggested that titin-based stiffness is not correlated with total passive stiffness, which is largely determined also by extramyofibrillar structures, particularly collagen. Some muscles have low titin-based stiffness but high total passive stiffness, whereas the opposite is true for other muscles. Plots of titin size versus percentage of fiber type or MHC isoform (I-IIB-IIA-IID) determined by myofibrillar ATPase staining and gel electrophoresis revealed modest correlations with the type I fiber and MHC-I proportions. No relationships were found with the proportions of the different type II fiber/MHC-II subtypes. Titin-based stiffness decreased with the slow fiber/MHC percentage, whereas neither extramyofibrillar nor total passive stiffness depended on the fiber/MHC composition. In conclusion, a low correlation exists between the active and passive mechanical properties of skeletal muscle fibers. Slow muscles usually express long titin(s), predominantly fast muscles can express either short or long titin(s), giving rise to low titin-based stiffness in slow muscles and highly variable stiffness in fast muscles. Titin contributes substantially to total passive stiffness, but this contribution varies greatly among muscles.  相似文献   

12.
The polarization properties of light diffracted from single-skinned fibers of skeletal muscles have been examined under conditions in which the bathing solution pH and the ionic strength are changed. For fibers in the relaxed state, we observe large decreases in both the total depolarization signal, r, and the total diffraction birefringence signal, delta nT, upon pH change from 7.0 to 8.0 at normal ionic strength. However, if the ionic strength is raised, then the r-value change as the pH changes from pH 7.0 to pH 8.0 is much smaller. If the rigor state is achieved at pH 8.0, and 0 mM ATP under either of the ionic strength conditions, the fiber can still be stretched. Rigor stiffness for this state is only approximately 20% that of the value of the stiffness at pH 7.0 rigor. Electron micrographs obtained under this pH 8.0 rigor state show that the overlap region can be decreased upon stretching the fiber, signifying a different kind of weaker-binding rigor state. Optically, the weaker-binding rigor state has a lower depolarization signal and larger form birefringence than the strong-binding rigor state. To convert from one type of rigor state (pH 7.0) to the other rigor state (pH 8.0), or vice versa, the fiber must first be relaxed. Apparently, either of the rigor states can block the full impact of the pH effect.  相似文献   

13.
Understanding spinal kinematics is essential for distinguishing between pathological conditions of spine disorders, which ultimately lead to low back pain. It is of high importance to understand how changes in mechanical properties affect the response of the lumbar spine, specifically in an effort to differentiate those associated with disc degeneration from ligamentous changes, allowing for more precise treatment strategies. To do this, the goals of this study were twofold: (1) develop and validate a finite element (FE) model of the lumbar spine and (2) systematically alter the properties of the intervertebral disc and ligaments to define respective roles in functional mechanics. A three-dimensional non-linear FE model of the lumbar spine (L3-sacrum) was developed and validated for pure moment bending. Disc degeneration and sequential ligament failure were modelled. Intersegmental range of motion (ROM) and bending stiffness were measured. The prediction of the FE model to moment loading in all three planes of bending showed very good agreement, where global and intersegmental ROM and bending stiffness of the model fell within one standard deviation of the in vitro results. Degeneration decreased ROM for all directions. Stiffness increased for all directions except axial rotation, where it initially increased then decreased for moderate and severe degeneration, respectively. Incremental ligament failure produced increased ROM and decreased stiffness. This effect was much more pronounced for all directions except lateral bending, which is minimally impacted by ligaments. These results indicate that lateral bending may be more apt to detect the subtle changes associated with degeneration, without being masked by associated changes of surrounding stabilizing structures.  相似文献   

14.
《The Journal of cell biology》1990,111(5):1885-1894
Myofiber growth and myofibril assembly at the myotendinous junction (MTJ) of stretch-hypertrophied rabbit skeletal muscle was studied by in situ hybridization, immunofluorescence, and electron microscopy. In situ hybridization identified higher levels of myosin heavy chain (MHC) mRNA at the MTJ of fibers stretched for 4 d. Electron microscopy at the MTJ of these lengthening fibers revealed a large cytoplasmic space devoid of myofibrils, but containing polysomes, sarcoplasmic reticulum and T-membranes, mitochondria, Golgi complexes, and nascent filament assemblies. Tallies from electron micrographs indicate that myofibril assembly in stretched fibers followed a set sequence of events. (a) In stretched fiber ends almost the entire sarcolemmal membrane was electron dense but only a portion had attached myofibrils. Vinculin, detected by immunofluorescence, was greatly increased at the MTJ membrane of stretched muscles. (b) Thin filaments were anchored to the sarcolemma at the electron dense sites. (c) Thick filaments associated with these thin filaments in an unregistered manner. (d) Z-bodies splice into thin filaments and subsequently thin and thick filaments fall into sarcomeric register. Thus, the MTJ is a site of mRNA accumulation which sets up regional protein synthesis and myofibril assembly. Stretched muscles also lengthen by the addition of myotubes at their ends. After 6 d of stretch these myotubes make up the majority of fibers at the muscle ends. Essentially all these myotubes repeat the developmental program of primary myotubes and express slow MHC. MHC mRNA distribution in myotubes is disorganized as is the distribution of their myofibrils.  相似文献   

15.
Elastic proteins: biological roles and mechanical properties   总被引:7,自引:0,他引:7  
The term 'elastic protein' applies to many structural proteins with diverse functions and mechanical properties so there is room for confusion about its meaning. Elastic implies the property of elasticity, or the ability to deform reversibly without loss of energy; so elastic proteins should have high resilience. Another meaning for elastic is 'stretchy', or the ability to be deformed to large strains with little force. Thus, elastic proteins should have low stiffness. The combination of high resilience, large strains and low stiffness is characteristic of rubber-like proteins (e.g. resilin and elastin) that function in the storage of elastic-strain energy. Other elastic proteins play very different roles and have very different properties. Collagen fibres provide exceptional energy storage capacity but are not very stretchy. Mussel byssus threads and spider dragline silks are also elastic proteins because, in spite of their considerable strength and stiffness, they are remarkably stretchy. The combination of strength and extensibility, together with low resilience, gives these materials an impressive resistance to fracture (i.e. toughness), a property that allows mussels to survive crashing waves and spiders to build exquisite aerial filters. Given this range of properties and functions, it is probable that elastic proteins will provide a wealth of chemical structures and elastic mechanisms that can be exploited in novel structural materials through biotechnology.  相似文献   

16.
The structure and distribution of collagen fibres in chordae tendineae, anterior leaflet and annulus fibrous of human mitral valve has been investigated using high and small angle X-ray diffraction. The molecular packing of collagen in native mitral valve components is very similar to that in native rat tail tendon. The distribution and orientation of collagen fibres in unstretched and stretched specimens has been deduced by the arcing of the high and small angle meridional reflections. Collagen fibres, which are aligned along the chordae tendineae, are preferentially distributed along the branchings of the chordae into the anterior leaflet and then course towards the annulus fibrous. However, in the anterior leaflet a considerable amount of collagen fibres are organized in a tridimensional isotropic network even after high deformation of the tissue.  相似文献   

17.
Stress analysis in the individual parts of the scapula under normal physiological conditions is necessary to understand the load transfer mechanism, its relation with morphology of bone and to analyse the deviations in stress patterns due to implantation of the glenoid. The purpose of this study was to obtain stress distribution in the scapula during abduction of the arm and to obtain a qualitative estimate of the function of coracoacromial ligament. An accurate three-dimensional (3D) finite element (FE) model of the natural scapula has been developed for this purpose, using computed tomography data and shell-solid modelling approach. The model was experimentally validated. A musculoskeletal shoulder model of forces that calculates all muscle, ligament and joint reaction forces, in six load cases (30-180 degrees) during unloaded humeral abduction was used as applied loading conditions for the 3D FE model. High tensile and compressive stresses (15-60 MPa) were generated in the thick bony ridges of the scapula, like the scapular spine, lateral border, glenoid and acromion. High compressive stresses (45-58 MPa) were evoked in the glenoid and at the connection of glenoid-scapular spine-infraspinous fossa. The stresses in the infraspinous fossa and supraspinous fossa were low (0.05-15 MPa). These results indicated that the transfer of major muscle and joint reaction take place predominantly through the thick bony ridges, whereas the fossa area act more as attachment sites of large muscles. During humeral abduction, coracoacromial ligament was stretched, and presumably will be under tension.  相似文献   

18.
The nasofrontal suture links the nasal complex with the braincase and is subject to compressive strain during mastication and (theoretically) tensile strain during growth of nasal soft tissues. The suture's ability to transmit compressive and tensile loads therefore affects both cranioskeletal stress distribution and growth. This study investigated the in vitro viscoelastic and failure properties of the nasofrontal suture in the pig, Sus scrofa. Suture specimens from two ages were tested in compression and tension and at fast and slow rates. In additional specimens, strain gauges were applied to the suture and nasal bone for strain measurement during testing. Relaxation testing demonstrated higher elastic moduli in tension than compression, regardless of test rate or pig age. In contrast, maximum elastic moduli from failure tests, as well as peak stresses, were significantly higher in compression than in tension. Sutures from older pigs tended to have higher elastic moduli and peak stresses, significantly so for tensile relaxation moduli. Strain gauge results showed that deformation at the suture was much greater than that of the nasal bone. These data demonstrate the viscoelasticity and deformability of the nasofrontal sutural ligament. The suture achieved maximal resistance to tensile deformation at low loads, corresponding with the low tensile loads likely to occur during growth of nasal soft tissues. In contrast, the maximal stiffness in compression at high loads indicates that the suture functions with a substantial safety factor during mastication.  相似文献   

19.
Torso muscles contribute both intrinsic and reflexive stiffness to the spine; recent modeling studies indicate that intrinsic stiffness alone is sometimes insufficient to maintain stability in dynamic situations. The purpose of this study was to experimentally test this idea by limiting muscular reflexive responses to sudden trunk perturbations. Nine healthy males lay on a near-frictionless apparatus and were subjected to quick trunk releases from the neutral position into flexion or right-side lateral bend. Different magnitudes of moment release were accomplished by having participants contract their musculature to create a range of moment levels. EMG was recorded from 12 torso muscles and three-dimensional lumbar spine rotations were monitored. A second-order linear model of the trunk was employed to estimate trunk stiffness and damping during each quick release. Participants displayed very limited reflex responses to the quick load release paradigms, and consequently underwent substantial trunk displacements (>50% flexion range of motion and >70% lateral bend range of motion in the maximum moment trials). Trunk stiffness increased significantly with significant increases in muscle activation, but was still unable to prevent the largest trunk displacements in the absence of reflexes. Thus, it was concluded that the intrinsic stiffness of the trunk was insufficient to adequately prevent the spine from undergoing potentially harmful rotational displacements. Voluntary muscular responses were more apparent than reflexive responses, but occurred too late and of too low magnitude to sufficiently make up for the limited reflexes.  相似文献   

20.
The musculoskeletal system is adept at dissipating potentially damaging energy that could accelerate fracture consequent to multiple loading cycles. Microstructural damage reduces bone's residual properties, but prevents high stresses within the material by dissipating energy that can lead to eventual failure. Thus skeletal microdamage can be viewed as an adaptive process to prevent bone failure by dissipating energy. Because a damaged bone has reduced strength and stiffness, it must be repaired, so bone has evolved a system of self-repair that relies on microdamage-stimulated signaling mechanisms. When repair cannot occur quickly enough, low energy stress fractures can occur. The regulating effects of muscle also prevent failure by controlling where high stresses occur. Acting synergistically, muscle forces dissipate energy by appropriately regulating accelerations and decelerations of the limbs during movement. When muscles become fatigued, these functions are constrained, larger amounts of energy are imparted to bone, increasing the likelihood of microstructural damage and fracture. Thus, healthy bones are maintained by the ability of the musculoskeletal system to dissipate the energy through synergistic muscular activity and through the maintenance of microstructural and material properties that allow for crack initiation, but also for their repair.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号