首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The regulation of internal Na(+) and K(+) concentrations is important for bacterial cells, which, in the absence of Na(+) extrusion systems, cannot grow in the presence of high external Na(+). Likewise, bacteria require K(+) uptake systems when the external K(+) concentration becomes too low to support growth. At present, we have little knowledge of K(+) toxicity and bacterial outward-directed K(+) transport systems. We report here that high external concentrations of K(+) at alkaline pH are toxic and that bacteria require K(+) efflux and/or extrusion systems to avoid excessive K(+) accumulation. We have identified the first example of a bacterial K(+)(specific)/H(+) antiporter, Vp-NhaP2, from Vibrio parahaemolyticus. This protein, a member of the cation : proton antiporter-1 (CPA1) family, was able to mediate K(+) extrusion from the cell to provide tolerance to high concentrations of external KCl at alkaline pH. We also report the discovery of two V. parahaemolyticus Na(+)/H(+) antiporters, Vp-NhaA and Vp-NhaB, which also exhibit a novel ion specificity toward K(+), implying that they work as Na(+)(K(+))/H(+) exchangers. Furthermore, under specific conditions, Escherichia coli was able to mediate K(+) extrusion against a K(+) chemical gradient, indicating that E. coli also possesses an unidentified K(+) extrusion system(s).  相似文献   

2.
In Escherichia coli, expulsion of sodium ions is driven by proton flux via at least two distinct Na+/H+ antiporters, NhaA and NhaB. When the nhaA gene is deleted from the chromosome, the cell becomes sensitive to high salinity and alkaline pH (Padan, E., Maisler, N., Taglicht, D., Karpel, R., and Schuldiner, S. (1989) J. Biol. Chem. 264, 20297-20302). In the current work we cloned the nhaB gene by complementation of the delta nhaA strain. The gene codes for a membrane protein 504 amino acids long. Hydropathic analysis of the sequence indicates the presence of 12 putative transmembrane helices. NhaB has been specifically labeled with [35S]methionine; it is a membrane protein and displays an apparent M(r) of 47,000, slightly lower than that predicted from its amino acid sequence. Membranes from cells containing multiple dose of nhaB display enhanced Na+/H+ antiporter activity, as measured by the ability of Na+ to collapse a preformed pH gradient or by direct measurement of 22Na+ fluxes. In contrast to NhaA, whose activity increases with pH, NhaB is practically insensitive to pH. Limited homologies with Na+ transporters have been identified.  相似文献   

3.
Vibrio cholerae, the causative agent of cholera, is a normal inhabitant of aquatic environments, where it survives in a wide range of conditions of pH and salinity. In this work, we investigated the role of three Na+/H+ antiporters on the survival of V. cholerae in a saline environment. We have previously cloned the Vc-nhaA gene encoding the V. cholerae homolog of Escherichia coli. Here we identified two additional antiporter genes, designated Vc-nhaB and Vc-nhaD, encoding two putative proteins of 530 and 477 residues, respectively, highly homologous to the respective antiporters of Vibrio species and E. coli. We showed that both Vc-NhaA and Vc-NhaB confer Na+ resistance and that Vc-NhaA displays an antiport activity in E. coli, which is similar in magnitude, kinetic parameters, and pH regulation to that of E. coli NhaA. To determine the roles of the Na+/H+ antiporters in V. cholerae, we constructed nhaA, nhaB, and nhaD mutants (single, double, and triple mutants). In contrast to E. coli, the inactivation of the three putative antiporter genes (Vc-nhaABD) in V. cholerae did not alter the bacterial exponential growth in the presence of high Na+ concentrations and had only a slight effect in the stationary phase. In contrast, a pronounced and similar Li+-sensitive phenotype was found with all mutants lacking Vc-nhaA during the exponential phase of growth and also with the triple mutant in the stationary phase of growth. By using 2-n-nonyl-4-hydroxyquinoline N-oxide, a specific inhibitor of the electron-transport-linked Na+ pump NADH-quinone oxidoreductase (NQR), we determined that in the absence of NQR activity, the Vc-NhaA Na+/H+ antiporter activity becomes essential for the resistance of V. cholerae to Na+ at alkaline pH. Since the ion pump NQR is Na+ specific, we suggest that its activity masks the Na+/H+ but not the Li+/H+ antiporter activities. Our results indicate that the Na+ resistance of the human pathogen V. cholerae requires a complex molecular system involving multiple antiporters and the NQR pump.  相似文献   

4.
5.
Summary A library containing more than 80% of the Vibrio cholerae genome was constructed by cloning BamH1 restriction fragments into pBR322. Using interspecific complementation of an Escherichia coli recA mutant with plasmids containing the gene bank of V. cholerae, a recA-like gene was identified. The recombinant plasmid, designated as pDP145, contained a 1.45 kb segment of V. cholerae DNA which codes for a protein of molecular weight 39,000. The product of this gene confers methyl methane sulphonate resistance on the E. coli recA mutant, suppresses its ultraviolet (UV) light sensitive phenotype and has proteolytic activity on the phage repressor. Induction of a 39,000 dalton protein in UV-irradiated V. cholerae cells was demonstrated.  相似文献   

6.
Vc-NhaD is a Na(+)/H(+) antiporter from Vibrio cholerae with a sharp maximum of activity at pH approximately 8.0. NhaD homologues are present in many bacteria as well as in higher plants. However, very little is known about structure-function relations in NhaD-type antiporters. In this work 14 conserved polar residues associated with putative transmembrane segments of Vc-NhaD have been screened for their possible role in the ion translocation and pH regulation of Vc-NhaD. Substitutions S150A, D154G, N155A, N189A, D199A, T201A, T202A, S389A, N394G, S428A, and S431A completely abolished the Vc-NhaD-mediated Na(+)-dependent H(+) transfer in inside-out membrane vesicles. Substitutions T157A and S428A caused a significant increase of apparent K(m) values for alkali cations, with the K(m) for Li(+) elevated more than that for Na(+), indicating that Thr-157 and Ser-428 are involved in alkali cation binding/translocation. Of six conserved His residues, mutation of only His-93 and His-210 affected the Na(+)(Li(+))/H(+) antiport, resulting in an acidic shift of its pH profile, whereas H93A also caused a 7-fold increase of apparent K(m) for Na(+) without affecting the K(m) for Li(+). These data suggest that side chains of His-93 and His-210 are involved in proton binding and that His-93 also contributes to the binding of Na ions during the catalytic cycle. These 15 residues are clustered in three distinct groups, two located at opposite sides of the membrane, presumably facilitating the access of substrate ions to the third group, a putative catalytic site in the middle of lipid bilayer. The distribution of these key residues in Vc-NhaD molecule also suggests that transmembrane segments IV, V, VI, X, XI, and XII are situated close to one another, creating a transmembrane relay of charged/polar residues involved in the attraction, coordination, and translocation of transported cations.  相似文献   

7.
Na(+)/H(+) antiporters are ubiquitous membrane proteins that are involved in homeostasis of H(+) and Na(+) throughout the biological kingdom. Corroborating their role in pH homeostasis, many of the Na(+)/H(+) antiporter proteins are regulated directly by pH. The pH regulation of NhaA, the Escherichia coli Na(+)/H(+) antiporter (EcNhaA), as of other, both eukaryotic and prokaryotic Na(+)/H(+) antiporters, involves a pH sensor and conformational changes in different parts of the protein that transduce the pH signal into a change in activity. Thus, residues that affect the pH response, the translocation or both activities cluster in separate domains along the antiporter molecules. Importantly, in the NhaA family, these domains are conserved. Helix-packing model of EcNhaA based on cross-linking data suggests, that in the three dimensional structure of NhaA, residues that affect the pH response may be in close proximity, forming a single pH sensitive domain. Therefore, it is suggested that, despite considerable differences in the primary structure of the antiporters from the bacterial NhaA to the mammalian NHEs, their three-dimensional architectures are conserved. Test of this possibility awaits the atomic resolution of the 3D structure of the antiporters.  相似文献   

8.
Sod2 is the sodium-proton antiporter on the plasma membrane of the fission yeast Schizosaccharomyces pombe. It is vitally important for sodium export and pH homeostasis in this organism. Recently, the sod2 gene has been cloned and sequenced. However, initial attempts to express sod2 in Escherichia coli using the T7 promoter failed. In the present work we examined physiological consequences of expression of sod2 in E. coli. To alleviate problems caused by expression of sod2 we: (i) used sodium-free media at all steps; (ii) used the moderate tac promoter for expression and; (iii) used E. coli strain MH1 which has impaired sodium exchange. The effect of sod2 expression on E. coli varied depending on the E. coli genotype. When sod2 was expressed in BL21 cells which have normal N a+/H+ antiporters, the result was a Li+ sensitive phenotype. LiCl completely arrested or prevented growth of BL21 E. coli transformed with the sod2 gene. The effect on growth was pronounced in media of low external pH. Sod2 was then expressed in E. coli MH1 which is devoid of endogenous Na+/H+ antiporters. These cells became more resistant to external LiCl, but only in Na+ containing media. In the absence of external Na+, the presence of sod2 reduced growth. The results are explained in a model which demonstrates the physiological consequences of interference by expression of a foreign electroneutral Na+/H+ antiporter in conjunction with different housekeeping systems of E. coli host cells.  相似文献   

9.
10.
A cosmid gene bank of Vibrio cholerae 395, classical Ogawa, was screened in Escherichia coli HB101 for expression of the vibrio neuraminidase (NANase) gene nanH (N-acylneuraminate glycohydrolase). Positive clones were identified by their ability to cleave the fluorogenic NANase substrate 2'-(4-methylumbelliferyl)-alpha-D-N-acetylneuraminic acid. Seven NANase-positive clones were detected after screening 683 cosmid isolates with a rapid, qualitative plate assay method. The nanH gene was subcloned from one of the cosmids and was located within a 4.8-kilobase-pair BglII restriction endonuclease fragment. Evidence that nanH was the NANase structural gene was obtained by transposon mutagenesis and by purification and comparison of the cloned gene product with the secreted NANase purified from the parent V. cholerae strain. The sequence of the first 20 amino-terminal amino acids of the secreted NANase purified from V. cholerae was determined by automated Edman degradation and matched perfectly with the amino acid sequence predicted from nucleotide sequencing of nanH. The sequence data also revealed the existence of a potential signal peptide that was apparently processed from NANase in both V. cholerae and E. coli. In contrast to V. cholerae, E. coli nanH+ clones did not secrete NANase into the growth medium, retaining most of the enzyme in the periplasmic compartment. Kinetic studies in V. cholerae showed that nanH expression and NANase secretion were temporally correlated as cells in batch culture entered late-exponential-phase growth. Similar kinetics were observed in at least one of the E. coli nanH+ clones, suggesting that nanH expression in E. coli might be controlled by some of the same signals as in the parent V. cholerae strain.  相似文献   

11.
Using a series of oligonucleotides synthesized on the basis of conserved nucleotide motifs in heat-shock genes, the groESL heat-shock operon from a Vibrio cholerae TSI-4 strain has been cloned and sequenced, revealing that the presence of two open reading frames (ORFs) of 291 nucleotides and 1,632 nucleotides separated by 54 nucleotides. The first ORF encoded a polypeptide of 97 amino acids, GroES homologue, and the second ORF encoded a polypeptide of 544 amino acids, GroEL homologue. A comparison of the deduced amino acid sequences revealed that the primary structures of the V. cholerae GroES and GroEL proteins showed significant homology with those of the GroES and GroEL proteins of other bacteria. Complementation experiments were performed using Escherichia coli groE mutants which have the temperature-sensitive growth phenotype. The results showed that the groES and groEL from V. cholerae were expressed in E. coli, and groE mutants harboring V. cholerae groESL genes regained growth ability at high temperature. The evolutionary analysis indicates a closer relationship between V. cholerae chaperonins and those of the Haemophilus and Yersinia species.  相似文献   

12.
A mutant of Escherichia coli with defective Na+/H+ antiporter was isolated. The rationale for its isolation was that cells possessing defective Na+/H+ antiporter, which is essential for establishment of a Na+ gradient, could not grow with a carbon source that was taken up with Na+. The mutant had no appreciable Na+/H+ antiporter activity, but its K+/H+ antiporter and Ca2+/H+ antiporter activities were normal. Judging from the reversion frequency, the defect seems to be due to a single mutation. The mutant could not grow at alkaline pH. Therefore, the Na+/H+ antiporter, but not the K+/H+ antiporter or the Ca2+/H+ antiporter, seems to be responsible for pH regulation in alkaline medium. This mutant will be useful for cloning the Na+/H+ antiporter gene and for detection of Na+-substrate cotransport systems.  相似文献   

13.
Using in vivo assays, we show that the Na+/H+ antiporter activity of the Escherichia coli mutant HIT-1 is reduced dramatically compared with activity in wild-type cells. An isogenic nhaA (formerly antA) deletion strain, however, is not significantly different from wild type in this respect. We call the locus affecting Na+/H+ antiporter activity of the HIT-1 mutant nhaB. The nhaB activity exhibits no pH dependence in the range between 7.0 and 8.5, whereas that of the nhaA gene increases considerably at pH levels above 8.0. Mutants with defects in nhaB grow normally on agar media containing 0.5 M NaCl, but nhaA mutants are sensitive to 0.5 M NaCl. We have mapped the nhaB mutation of HIT-1 to 25.6 min on the E. coli map. It is unlinked to the nhaA region, which is located at about 0.5 min. Since a cell with a mutation in nhaB alone is essentially Na+/H+ antiporter negative up to pH 8.0, we conclude that nhaB is required for the major Na+/H+ antiporter activity in the usual physiological pH range.  相似文献   

14.
A plasma membrane Na+/H+ antiporter gene (CsSOS1) was separated from cucumber (Cucumis sativus L.) plants by RT-PCR and RACE methods. Sequence analysis indicated that the full-length CsSOS1 cDNA was 3638 bp long with an open reading frame of 3435 bp long encoding a protein of 1145 amino acids. The deduced protein contained conserved structural domains and shared a high similarity with plasma membrane type Na+/H+ antiporters from other plants. TMpred prediction showed that CsSOS1 had 11 transmembrane domains. As shown by RT-PCR, the expression of CsSOS1 was tissue-specific and increased in the root but decreased in the leaves with increasing NaCl concentration. In addition, expression of CsSOS1 in ATX3 mutant yeast could grow on medium containing NaCl and enhanced AXT3 salt tolerance. These results suggest that the CsSOS1 plays a key role in cucumber plants under salt stress.  相似文献   

15.
Gerchman Y  Rimon A  Venturi M  Padan E 《Biochemistry》2001,40(11):3403-3412
Recently, a two-dimensional crystal structure of NhaA, the Na+/H+ antiporter of Escherichia coli has been obtained [Williams, K. A., Kaufer, U. G., Padan, E., Schuldiner, S. and Kühlbrandt, W. (1999) EMBO J., 18, 3558-3563]. In these crystals NhaA exists as a dimer. Using biochemical and genetic approaches here we show that NhaA exists in the native membrane as a homooligomer. Functional complementation between the polypeptides of NhaA was demonstrated by coexpression of pairs of conditional lethal (at high pH in the presence of Na+) mutant alleles of nhaA in EP432, a strain lacking antiporters. Physical interaction in the membrane was shown between the His-tagged NhaA polypeptide which is readily affinity purified from DM-solubilized membranes with a Ni2+-NTA column and another which is not; only when coexpressed did both copurify on the column. The organization of the oligomer in the membrane was studied in situ by site-directed cross-linking experiments. Cysteine residues were introduced--one per NhaA--into certain loops of Cys-less NhaA, so that only intermolecular cross-linking could take place. Different linker-size cross-linkers were applied to the membranes, and the amount of the cross-linked protein was analyzed by mobility shift on SDS-PAGE. The results are consistent with homooligomeric NhaA and the location of residue 254 in the interface between monomers. Intermolecular cross-linking of V254C caused an acidic shift in the pH profile of NhaA.  相似文献   

16.
17.
A Na+/H+ antiporter coded by the nhaA (ant) gene of Escherichia coli has been overproduced and purified. The amino-terminal sequence of the protein has been determined and shown to correlate with initiation at a GUG codon, 75 bases upstream from the previously suggested AUG initiation codon. The purified protein, when reconstituted into proteoliposomes, has Na+/H+ antiport activity. It can mediate sodium uptake when a transmembrane pH gradient is applied. Downhill sodium efflux is shown to be highly dependent on pH and is accelerated by a transmembrane pH gradient. An imposed membrane potential negative inside accelerates Na+ efflux at all pH values tested. These findings suggest that the antiporter is electrogenic both at acid and alkaline pH. The activation at alkaline pH values (2000-fold increase) is consistent with the proposed role of the antiporter in regulation of internal pH at the alkaline pH range.  相似文献   

18.
The K+/H+ antiporter of a marine bacterium, Vibrio alginolyticus, is strongly dependent upon the cytoplasmic pH and functions only at an internal pH above 7.7. In alkaline buffer with an outwardly directed chemical gradient of K+ (delta pK), the internal pH was maintained at about 7.7. Addition of N-ethylmaleimide (NEM) released cellular K+ and acidified the cytosol below pH 7.7. The NEM effect was reversed by the addition of 2-mercaptoethanol: K+ efflux ceased, and the internal pH returned to about 7.7. In acidic buffer, the internal pH was also regulated at about 7.6 even in the absence of delta pK. Following addition of NEM, the internal pH decreased below 7.6, dissipating delta pH. These results suggest that NEM desensitizes the pH-dependence of the K+/H+ antiporter, allowing the antiporter to function at an internal pH below 7.7.  相似文献   

19.
20.
A functionally important, interface domain between transmembrane segments (TMSs) IV and XI of the NhaA Na+/H+ antiporter of Escherichia coli has been unraveled. Scanning by single Cys replacements identified new mutations (F136C, G125C, and A137C) that cluster in one face of TMS IV and increase dramatically the Km of the antiporter. Whereas G125C, in addition, causes a drastic alkaline shift to the pH dependence of the antiporter, G338C alleviates the pH control of NhaA. Scanning by double Cys replacements (21 pairs of one replacement per TMS) identified genetically eight pairs of residues that showed very strong negative complementation. Cross-linking of the double mutants identified six double mutants (T132C/G338C, D133C/G338C, F136C/S342C, T132C/S342C, A137C/S342C, and A137C/G338C) of which pronounced intramolecular cross-linking defined an interface domain between the two TMSs. Remarkably, cross-linking by a short and rigid reagent (N,N'-o-phenylenedimaleimide) revived the Li+/H+ antiport activity, whereas a shorter reagent (1,2-ethanediyl bismethanethiosulfonate) revived both Na+/H+ and Li+/H+ antiporter activities and even the pH response of the dead mutant T132C/G338C. Hence, cross-linking at this position restores an active conformation of NhaA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号