首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The postinduction period of Oenothera biennis L. seed germination was examined by temperature treatments. For all experiments, seeds received a standard 24 hour/24°C preinduction period and 12 hour/32°C photoinduction period. Germination is inhibited by postinduction temperatures above 32°C. When seeds are briefly incubated at 44°C and then transferred to 28°C, they germinate at a much lower percentage than 28°C controls. When thermally inhibited seeds are placed in the dark at 28°C for 20 hours, they can be promoted to germinate by a single pulse of red light. Seeds incubated at 12°C or below immediately after photoinduction enter a lag period in which they germinate slowly or not at all for a long time and then resume germination. The length of the lag period is exponentially related to the postinduction temperature. When seeds are incubated at a low temperature and then transferred to a warm temperature, they germinate much more rapidly than seeds not incubated at a low temperature. A model is proposed which is consistent with these and additional results. In the model, a germination promoter is irreversibly formed from a precursor and the synthesis of the precursor is favored at low temperatures and its degradation is favored at high temperatures.  相似文献   

2.
The changes in levels of metabolites during photoinduced germination of Onoclea sensibilis L. spores are described. Proteins and lipids, which constitute 25 and 20%, respectively, of the unimbibed spores on a dry weight basis, are hydrolyzed at the time of differentiation and elongation of the germling cells and may be utilized for these processes. Sucrose degradation, starch synthesis, and active respiration occur during dark imbibition, but these processes are accelerated by red or far red irradiation. Endogenous sucrose is the probable source of the carbon skeleton for starch synthesis.  相似文献   

3.
Changes in hydrolytic enzyme activities were investigated during spore germination ofAdiantum capillus-veneris L. The spores were incubated for 3 days in the dark at 25 C for imbibition, and then germination of the spores was induced by continuous irradiation with red light. At day 2 after onset of the red light irradiation, rhizoids appeared out of spore coats and protonemal cells became visible on the following day. Lipase occurred in dry spores and its activity decreased during 3 days of dark incubation. The activity started to increase when the spore germination was induced by red light irradiation. On the other hand, amylolytic and aminopeptidase activities which were also detected in dry spores decreased continuously during the dark incubation and following the germination process. RNase activity also decreased during 3 days of dark incubation but the activity was retained thereafter at a constant level with or without red light irradiation. Developmental patterns of these hydrolytic enzymes were classified into two groups: One decreased during imbibition and dark incubation but increased after red light irradiation and the other continuously decreased during dark incubation and germination. These results are discussed in relation to compositional changes of cell constitutions such as lipid, sugars, proteins and amino acids during spore germination.  相似文献   

4.

Background

Clostridium difficile is an anaerobic, spore-forming bacterium that is the most common cause of healthcare-associated diarrhea in developed countries. Control of C. difficile is challenging because the spores are resistant to killing by alcohol-based hand hygiene products, antimicrobial soaps, and most disinfectants. Although initiation of germination has been shown to increase susceptibility of spores of other bacterial species to radiation and heat, it was not known if triggering of germination could be a useful strategy to increase susceptibility of C. difficile spores to radiation or other stressors.

Principal Findings

Here, we demonstrated that exposure of dormant C. difficile spores to a germination solution containing amino acids, minerals, and taurocholic acid resulted in initiation of germination in room air. Germination of spores in room air resulted in significantly enhanced killing by ultraviolet-C (UV-C) radiation and heat. On surfaces in hospital rooms, application of germination solution resulted in enhanced eradication of spores by UV-C administered by an automated room decontamination device. Initiation of germination under anaerobic, but not aerobic, conditions resulted in increased susceptibility to killing by ethanol, suggesting that exposure to oxygen might prevent spores from progressing fully to outgrowth. Stimulation of germination also resulted in reduced survival of spores on surfaces in room air, possibly due to increased susceptibility to stressors such as oxygen and desiccation.

Conclusions

Taken together, these data demonstrate that stimulation of germination could represent a novel method to enhance killing of spores by UV-C, and suggest the possible application of this strategy as a means to enhance killing by other agents.  相似文献   

5.
Spores of Dictyostelium discoideum undergo significant changes in fine structure during germination. The mitochondria progressively become less dense and lose their peripherally attached ribosomes, and the tubuli become more pronounced as germination proceeds. During this period, the three-layered spore wall breaks down in two stages: first, the outer and middle layers are ruptured as a unit, and, second, the inner wall is breached. Crystals and dark (lipid) bodies disappear shortly before or during emergence of the myxamoebae. Autophagic vacuoles are found in dormant spores and throughout the entire germination process. The addition of cycloheximide to germinating spores inhibited the loss of the crystals and dark (lipid) bodies. In addition, the drug inhibited the breakdown of the inner wall layer. Cycloheximide did not prevent the formation of the water expulsion vesicle or the apparent function of the autophagic vacuoles.  相似文献   

6.
Short exposure of the spores of Cheilanthes farinosa to low intensity red light promotes their germination, which is not reversed by a subsequent exposure to far red light. Germination is, however, inhibited by blue light administered before or after red light. Inhibition of germination by blue light is annulled by exposure to a higher intensity of red light, and germination of the repromoted spores is inhibited by far red light. Mutual photoreversibility of germination is also observed in repromoted spores irradiated successively with far red and red light. Although germination appears to be basically under phytochrome control, it is postulated that the presence of a blue light-absorbing pigment interferes with phytochrome transformations in the spores.  相似文献   

7.
Germination of Single Bacterial Spores   总被引:4,自引:1,他引:3       下载免费PDF全文
Changes in refractility and optical density occurring in individual spores of Bacillus cereus T and B. megaterium QM B1551 during germination were investigated by use of a Zeiss microscope photometer. The curves revealed that the germination process in single spores had two distinct phases; an initial rapid phase was followed by a second slower phase. Under the experimental condition employed, the first phase of germination of B. cereus spores lasted for approximately 75 +/- 15 sec, whereas the second phase lasted for 3 to 4.5 min. In B. megaterium spores, the first phase was observed to last for approximately 2 min and the second phase for more than 7 min. The duration of the second phase was dependent on conditions employed for germination. The kinetics of the first phase were strikingly similar under all conditions of physiological germination. Time-lapse phase-contrast microscopy of germinating spores also revealed the biphasic nature of germination. It was postulated that the first phase represents changes induced by an initial partial hydration of the spore and release into the medium of dipicolinic acid, whereas the second phase reflects degradation of the cortex and hydration of the core.  相似文献   

8.
The germination of spore-forming bacteria in high-salinity environments is of applied interest for food microbiology and soil ecology. It has previously been shown that high salt concentrations detrimentally affect Bacillus subtilis spore germination, rendering this process slower and less efficient. The mechanistic details of these salt effects, however, remained obscure. Since initiation of nutrient germination first requires germinant passage through the spores'' protective integuments, the aim of this study was to elucidate the role of the proteinaceous spore coat in germination in high-salinity environments. Spores lacking major layers of the coat due to chemical decoating or mutation germinated much worse in the presence of NaCl than untreated wild-type spores at comparable salinities. However, the absence of the crust, the absence of some individual nonmorphogenetic proteins, and the absence of either CwlJ or SleB had no or little effect on germination in high-salinity environments. Although the germination of spores lacking GerP (which is assumed to facilitate germinant flow through the coat) was generally less efficient than the germination of wild-type spores, the presence of up to 2.4 M NaCl enhanced the germination of these mutant spores. Interestingly, nutrient-independent germination by high pressure was also inhibited by NaCl. Taken together, these results suggest that (i) the coat has a protective function during germination in high-salinity environments; (ii) germination inhibition by NaCl is probably not exerted at the level of cortex hydrolysis, germinant accessibility, or germinant-receptor binding; and (iii) the most likely germination processes to be inhibited by NaCl are ion, Ca2+-dipicolinic acid, and water fluxes.  相似文献   

9.
Sodium nitrite alone has been shown to stimulate germination of PA 3679h spores. The process was accelerated by using increased concentrations of sodium nitrite, a low pH, and a high temperature of incubation. At low concentrations of nitrite (0.01 to 0.2%), the delay of 36 to 48 hr occurred before germination commenced at 37 C. However, with 3.45% nitrite at 45 C and pH 6.0, most of the spores germinated within 1 hr. At pH 7.0, the germination rate decreased markedly, and at pH 8.0 it was nil. The greatest acceleration in germination rate occurred near 60 C. Hydroxylamine was completely inhibitory to nitrite-induced germination. Sodium nitrite, in turn, inhibited germination by l-alanine, the degree of inhibition being influenced by nitrite concentration and pH.  相似文献   

10.
Possible involvement of protein synthesis in the germination of Onoclea sensibilis spores was investigated by temporarily applying 0.1 mm cycloheximide before and after photoinduction. Cycloheximide was shown to inhibit protein synthesis, but not to act as an uncoupler of respiration. When cycloheximide was added before or shortly after photoinduction, spore germination was inhibited with the half-maximal inhibition attained in 30 to 45 minutes and the maximal inhibition in 2 hours of incubation. When the time of the inhibitor treatment was delayed after photoinduction, the spores escape from the inhibitory effect of cycloheximide slowly during the first 8 hours and abruptly thereafter with a half-maximal time of 10 hours. If spores are washed free of exogenous cycloheximide and subsequently irradiated, their ability to germinate can be reinstated in distilled water with a half-maximal time of 12 hours. The kinetics of recovery were identical and of apparent first order, regardless of whether cycloheximide treatments were given before or after photoinduction. These results are interpreted to indicate that the normal course of germination of Onoclea spores requires the continuous synthesis of a short lived enzyme that functions in the germination processes at about 10 hours after photoinduction. The cycloheximide-sensitive step follows in the germination processes an anaerobiosis-sensitive step, but precedes the time of acetocarmine uptake or visible signs of protrusion.  相似文献   

11.
Photocontrol of fungal spore germination   总被引:1,自引:0,他引:1       下载免费PDF全文
Germination of Puccinia graminis f. sp. tritici uredospores is inhibited by continuous irradiation. Prehydration of spores enhances both dark germination and photoinhibition. Simultaneous irradiation with ineffective red (653 nanometers) and inhibitory far red light (720 nanometers) results in partial nullification of the inhibition brought about by far red light alone. This result would be consistent with the involveent of a photoreversible pigment system similar to phytochrome, operating via the high irradiance reaction.  相似文献   

12.
The influence of carbon dioxide at 1–55 atm on the germination of Clostridium sporogenes, Clostridium perfringens and Bacillus cereus spores in a complex medium was studied. The germination studies at atmospheric pressure were done in the pH range 5.2–6.7. Controls at the same pH were done in 100% nitrogen. Carbon dioxide at atmospheric pressure (1 atm) inhibited the spore germination of B. cereus spores but strongly enhanced the germination rate of those of the clostridia. Spore germination of Cl. sporogenes and Cl. perfringens was inhibited completely at 10 atm and at 25 atm, respectively. The germination rate in carbon dioxide or nitrogen was generally higher at pH 6.7 than at 5.2–6.0.  相似文献   

13.
Comparative analysis of germination of asexual sporulation spores (conidia and sporangiospores) and of specific features of dormancy release was carried out for ascomycete mycelial fungi Aspergillus tamarii VKM F-64 and A. sydowii VKM F-441, as well as for zygomycete fungi Cunninghamella echinulata VKM F-663 and Umbelopsis ramanniana VKM F-582. The spores of these strains were shown to be in a state of exogenous dormancy and differed in lag phase duration and germination rate, which depended on the presence of nutrients in the medium. Only the strain C. echinulata VKM F-663 exhibited 100% spore germination, with the germination rate and lag phase duration not depending on the composition of the medium. While in A. tamarii strain VKM F-64, the total number of spores germinating on rich and poor media was also almost the same, in the absence of nutrients lag phase duration increased and the germination rate decreased. For strains U. ramanniana VKM F-582 and A. sydowii VKM F-441, the degree of spore germination in the absence of nutrients in the medium was considerably lower than on the rich medium, while the lag phase was longer. These data indicate that the spores of C. echinulata VKM F-663 are in the state of exogenous dormancy, which does not require for release any compounds except water. The spores of U. ramanniana strain VKM F-582 and of the Aspergillus strains exhibited another variant of exogenous dormancy, which required for release, apart from water, also the sources of carbon and nitrogen. Thus, the character of dormancy release may differ even within a single genus (Aspergillus).  相似文献   

14.
The phenolic compounds extracted from olives with ethyl acetate inhibited germination and outgrowth of Bacillus cereus T spores. Purified oleuropein, a well-characterized component of olive extract, inhibited these processes also. The addition of oleuropein and olive extracts 3 or 5 min after germination began, immediately decreased the rate of change of phase bright to phase dark spores and delayed significantly outgrowth.  相似文献   

15.
Light stimulates the germination of spores of the fern Onoclea sensibilis L. At high dosages, broad band red, far red, and blue light promote maximal germination. Maximal sensitivity to these spectral regions is attained from 6 to 48 hours of dark presoaking, and all induced rapid germination after a lag of 30 to 36 hours. Maximal germination is attained approximately 70 hours after irradiation. Dose response curves suggest log linearity. The action spectrum to cause 50% germination shows that spores are most sensitive to irradiation in the red region (620-680 nm) with an incident energy less than 1000 ergs cm−2; sensitivity decreases towards both shorter and longer wavelengths. Although the action spectrum is suggestive of phytochrome involvement, photoreversibility of germination between red and far red light has not been demonstrated with Onoclea spores. An absorption spectrum of the intact spores reveals the presence of chlorophylls and carotenoids. Since the presence of 3-(3,4-dichlorophenyl)-1,1-dimethylurea does not inhibit germination, it is concluded that photosynthesis does not play a role in the germination process.  相似文献   

16.
Spores from four Frankia strains were isolated and purified to homogeneity. The purified spores were biochemically and physiologically characterized and compared to vegetative cells. Frankia spores exhibited low levels of endogenous respiration that were at least ten-fold lower than the endogenous respiration rate of vegetative cells. The macromolecular content of purified spores and vegetative cells differed. One striking difference among the Frankia spores was their total DNA content. From DAPI staining experiments, only 9% of strain ACN1AG spore population contained DNA. With strains DC12 and EuI1c, 92% and 67% of their spore population contained DNA. The efficiency of spore germination was correlated to the percentage of the spore population containing DNA. These results suggest that the majority of strain ACN1AG spores were immature or nonviable. The presence of a solidifying agent inhibited the initial stages of spore germination, but had no effect once the process had been initiated. The optimal incubation temperature for spore germination was 25°C and 30°C for strains DC12 and EuI1c, respectively. A mild heat shock increased the efficiency of spore germination, while root extracts also stimulated spore germination. These results suggest that strains DC12 and EuI1c may be suitable strains for further germination and genetic studies.  相似文献   

17.
The morphology of Rhizopus oligosporus (NRRL 2710) sporangiospores and their physiological requirements for germination were studied. Germination proceeded in two separable phases: phase I (swelling) and phase II (germ tube protrusion). The optimal conditions for germination were 42 degrees C and pH 4.0. Sporangiospores contained insufficient endogenous carbon for swelling or germination to occur in distilled water. Initial swelling during phase I occurred only in the presence of a suitable carbohydrate. Subsequent production of germ tubes during phase II required exogenous sources of both carbon and nitrogen. Spores germinated most rapidly in mixtures of amino acids; l-proline and l-alanine were the most effective. These amino acids, at concentrations as low as 10 M, supported germination when combined with glucose and McIlvaine (citric acid-phosphate) buffer. d-Glucose, d-xylose, and d-mannose were the most effective carbohydrates tested for promotion of germination.  相似文献   

18.
Spores of Anemia mexicana Klotzsch and Anemia phyllitidis (L.) Swartz were tested comparatively to investigate the effects of various treatments on spore germination and early gametophyte development in light and darkness. The optimum pH for induction of spore germination is approximately 6. Both species have a minimum 8 hour light insensitive preinduction phase for spore germination. An additional 8 to 12 hours of light are needed to induce 50% germination in A. phyllitidis while at least 24 hours of light are needed for A. mexicana spores. A. phyllitidis has greater sensitivity to the four gibberellic acids tested (GA3, GA4, GA7, and GA13) than A. mexicana for induction of spore germination in darkness. In both species the greatest response was observed with GA4 and GA7. GA13 was clearly the least effective. Gametophytes of each species are 100 times more sensitive to their own antheridiogen than to the antheridiogen of the other species. AMO-1618 (1 millimolar), fenarimol (1 mm), and ancymidol (0.1 mm) had essentially no effect on light-induced germination. The latter two did, however, inhibit gametophyte development.  相似文献   

19.
Temperature and photocontrol of onoclea spore germination   总被引:2,自引:1,他引:1       下载免费PDF全文
Towill LR 《Plant physiology》1978,62(1):116-119
Germination of Onoclea sensibilis L. spores is controlled by light and temperature. Temperatures of 30 C can induce maximal germination in the dark to a level of 60 to 95% of that induced by a saturating dose of red light (0.38 joules/square meter) providing the spores are placed at the elevated temperature immediately after being sown. Maximum dark germination occurs with a minimum exposure of 16 to 24 hours at 30 C, suggesting that the temperature treatment is required for the induction of germination rather than for the germination process per se. Interaction of temperature and light for induction of germination shows nonadditive behavior. Germination induced by light and temperature applied consecutively never exceeded that which could be induced by a saturating dose of red light alone. Imbibition of the spores at 25 C in the dark for 12 or more hours prior to incubation at 30 C results in a loss of thermosensitivity. Dose response curves for red light induction of germination after varying times of imbibition at 25 C show no concomitant loss of sensitivity of the spores to red irradiation. This suggests that the mechanism and/or pathway of thermoinduction of germination differs from that of photoinduction. The loss of thermosensitivity as a result of presoaking at 25 C can be prevented if the spores are imbibed at 25 C in osmotic agents such as 0.3 molar mannitol or 0.1 gram per liter of polyethylene glycol 400 or in 0.08% dimethylsulfoxide or 10 micrograms per milliliter of herbicide SAN 9789 (4-chloro-5-(methylamino)-2-(α,α,α-trifluoro-m-tolyl-3-(2H)pyridazinone). The latter two substances are hypothesized to act upon membranes. These results suggest that the degree of hydration and possibly changes in membrane properties play a role in the change in sensitivity of Onoclea spores to temperature.  相似文献   

20.
The influence of phytochrome on endosperm softening and cellulaseactivity was studied on light-stimulated Datura ferox seeds.Endosperm softening preceded the earliest signs of radicle protrusion,and there was good correlation between the % of seeds with softendosperm at 48 h after R and germination at 96 h after R. Cellulaseactivity was stimulated by R and the increase in activity preceded,by more than 24h, radicle protrusion and endosperm softening.The effect of R was reversed by FR, but, by delaying the irradiationwith FR until cellulase activity had increased significantly,it was observed that removing Pfr did more than just stop anyfurther increase, the level of cellulase activity decreasedin about 24 h close to the dark controls. Cellulase activitywas decreased by a FR irradiation even when more than 60% germinationhad escaped from reversion. These results indicate that phytochromeinfluence on cellulase is not an indirect consequence of thestimulus of germination and that the continuous presence ofPfr is required for the cellulase activity to remain high. Thepossibility that cellulase and other degrading enzymes may bepart of the mechanism of light-induced germination is discussed. Key words: Phytochrome, germination, cellulase  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号