首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
Basic fibroblast growth factor (bFGF) is a known mitogen for vascular smooth muscle cells and has been implicated as having a role in a number of proliferative vascular disorders. Binding of bFGF to heparin or heparan sulfate has been demonstrated to both stimulate and inhibit growth factor activity. The activity, towards bFGF, of heparan sulfate proteoglycans present within the vascular system is likely related to the chemical characteristics of the glycosaminoglycan as well as the structure and pericellular location of the intact proteoglycans. We have previously shown that endothelial conditioned medium inhibits both bFGF binding to vascular smooth muscle cells and bFGF stimulated cell proliferation in vitro. In the present study, we have isolated proteoglycans from endothelial cell conditioned medium and demonstrated that they are responsible for the bFGF inhibitory activity. We further separated endothelial secreted proteoglycans into two fractions, PG-A and PG-B. The larger sized fraction (PG-A) had greater inhibitory activity than did PG-B for both bFGF binding and bFGF stimulation of vascular smooth muscle cell proliferation. The increased relative activity of PG-A was attributed, in part, to larger heparan sulfate chains which were more potent inhibitors of bFGF binding than the smaller heparan sulfate chains on PG-B. Both proteoglycan fractions contained perlecan-like core proteins; however, PG-A contained an additional core protein (approximately 190 kDa) that was not observed in PG-B. Both proteoglycan fractions bound bFGF directly, and PG-A bound a significantly greater relative amount of bFGF than did PG-B. Thus the ability of endothelial heparan sulfate proteoglycans to bind bFGF and prevent its association with vascular smooth muscle cells appears essential for inhibition of bFGF-induced mitogenesis. The production of potent bFGF inhibitory heparan sulfate proteoglycans by endothelial cells might contribute to the maintenance of vascular homeostasis. J. Cell. Physiol. 172:209–220, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

2.
Heparan sulfate proteoglycans on the cell surface act as low affinity binding sites for acidic and basic fibroblast growth factor (FGF) [Moscatelli (1887): J Cell Physiol 131:123–130] and play an important role in the interaction of FGF with the FGF receptor (FGFR). In this study, several aspects of the interaction of FGFs with cell surface heparan sulfate proteoglycans were examined. Reciprocal cross blocking studies demonstrated that acidic FGF (aFGF) and basic FGF (bFGF) bind to identical or closely associated heparan sulfate motifs on BALB/c 3T3 cell surface heparan sulfate proteoglycans. However, the binding affinity of the two growth factros for these heparan sulfate proteoglycans differs considerably, competition binding data indicating that aFGF has a 4.7-fold lower affinity than bFGF for 3T3 heparan sulfate proteoglycan. Subsequent studies of dissociation kinetics demonstrated that bFGF dissociates form the FGFR at least 10-fold slower than aFGF, whereas, following removal of cell surface heparan sulfate proteoplycan. Subsequent studies of dissociation kinetic demonstrated that bFGF dissociates from the FGFR at least 10-fold slwer than aFGF, whereas, following removal of cell surface heparan sulfate proteoglycans by heparinase treatment, the dissociation rate of both FGFs is similar and rapid. These results support the concept that cell surface heparan sulfate proteoglycans stabilize the interactio fo FGF with FGFR, possibly by the formatin of a ternary complex. © Wiley-Liss, Inc.  相似文献   

3.
Basic fibroblast growth factor (bFGF) binds to cell surface receptors and to heparin sulfate proteoglycans. Heparan sulfate binding may limit bFGF degradation and be an obligatory step for bFGF cell interaction. Transforming growth factor-beta 1 (TGF-beta 1) is a potent regulator of proteoglycan production and composition. The possibility that TGF-beta 1 synergistically regulates bFGF activity by altering bFGF-proteoglycan interactions was investigated. TGF-beta 1 increased 125I-bFGF binding to the extracellular matrix (ECM) of Balb/c3T3 cells 2-4-fold by increasing the number of bFGF binding sites. Increased bFGF binding correlated with a 2-5-fold increase in the production of sulfated proteoglycans, including heparan sulfate proteoglycans. TGF-beta 1 selectively stimulated production of high molecular mass proteoglycans (190-300 kDa) in conditioned medium and stimulated all proteoglycans in ECM. 125I-bFGF bound to TGF-beta 1 induced proteoglycans immobilized onto cationic nylon filters. Furthermore, ECM isolated from TGF-beta 1-treated cells incorporated more mitogenically active bFGF than native ECM. The mitogenic potential of the ECM was significantly reduced by treatment with heparinase. These results suggest that the ability of TGF-beta 1 to stimulate binding of bFGF to ECM, increase ECM heparan sulfate proteoglycan, and potentiate the mitogenic activity of bFGF are linked. Thus one aspect of TGF-beta 1/bFGF synergy may involve modulation of the ECM.  相似文献   

4.
The androgen-induced proliferation of S115 mouse mammary tumor cells has been suggested to involve autocrinic fibroblast growth factor signaling. Heparan sulfate proteoglycans are required for fibroblast growth factor signaling, presumably due to their ability to alter binding of fibroblast growth factors to their receptors. We have investigated the role of heparan sulfate proteoglycans in the testosterone-induced proliferation of S115 cells. We demonstrate that when the cells are treated with sodium chlorate, which inhibits the sulfation of endogenous heparan sulfate proteoglycans, cell growth becomes dependent on exogenous heparin. The shortest heparin oligosaccharides supporting cell growth were octasaccharides, whereas dodecasaccharides were almost as effective as native heparin. The N-, 2-O-, and 6-O-sulfate groups of heparin were all required for full testosterone response. Treatment of S115 cells with chlorate or testosterone did not alter the expression of fibroblast growth factor receptors 1 or 3, whereas the expression of fibroblast growth factor receptor 2 was down-regulated. We have previously shown that overexpression of syndecan-1 heparan sulfate proteoglycan renders S115 cells insensitive to testosterone and now demonstrate that this effect can be overcome by sodium chlorate treatment in combination with exogenous heparin. Our results suggest that heparin-like molecules are intimately involved in the androgen-mediated proliferation of S115 cells.  相似文献   

5.
Cultured bovine capillary endothelial (BCE) cells were found to synthesize and secrete high molecular mass heparan sulfate proteoglycans and glycosaminoglycans, which bound basic fibroblast growth factor (bFGF). The secreted heparan sulfate molecules were purified by DEAE cellulose chromatography, followed by Sepharose 4B chromatography and affinity chromatography on immobilized bFGF. Most of the heparinase-sensitive sulfated molecules secreted into the medium by BCE cells bound to immobilized bFGF at low salt concentrations. However, elution from bFGF with increasing salt concentrations demonstrated varying affinities for bFGF among the secreted heparan sulfate molecules, with part of the heparan sulfate requiring NaCl concentrations between 1.0 and 1.5 M for elution. Cell extracts prepared from BCE cells also contained a bFGF-binding heparan sulfate proteoglycan, which could be released from the intact cells by a short proteinase treatment. The purified bFGF-binding heparan sulfate competed with 125I-bFGF for binding to low-affinity binding sites but not to high-affinity sites on the cells. Heparan sulfate did not interfere with bFGF stimulation of plasminogen activator activity in BCE cells in agreement with its lack of effect on binding of 125I-bFGF to high-affinity sites. Soluble bFGF was readily degraded by plasmin, whereas bFGF bound to heparan sulfate was protected from proteolytic degradation. Treatment of the heparan sulfate with heparinase before addition of plasmin abolished the protection and resulted in degradation of bFGF by the added proteinase. The results suggest that heparan sulfate released either directly by cells or through proteolytic degradation of their extracellular milieu may act as carrier for bFGF and facilitate the diffusion of locally produced growth factor by competing with its binding to surrounding matrix structures. Simultaneously, the secreted heparan sulfate glycosaminoglycans protect the growth factor from proteolytic degradation by extracellular proteinases, which are abundant at sites of neovascularization or cell invasion.  相似文献   

6.
Heparan sulfate proteoglycans (HSPG) are obligatory for receptor binding and mitogenic activity of basic fibroblast growth factor (bFGF). Mutant Chinese hamster ovary cells (pgsA-745) deficient in xylosyltransferase are unable to initiate glycosaminoglycan synthesis and hence can not bind bFGF to low- and high-affinity cell surface receptors. Exposure of pgsA-745 cells to β-D-xylopyranosides containing hydrophobic aglycones resulted in restoration of bFGF binding in a manner similar to that induced by soluble heparin or by heparan sulfate (HS) normally associated with cell sulfate. Restoration of bFGF binding correlated with the ability of the β-D-xylosides to prime the synthesis of heparan sulfate. Thus, both heparan sulfate synthesis and bFGF receptor binding were induced by low concentrations (10–30 μM) of estradiol-β-D-xyloside and naphthyl-β-D-xyloside, but not by cis/trans-decahydro-2-naphthyl-β-D-xyloside, which at low concentration primes mainly chondroitin sulfate. The obligatory involvement of xyloside-primed heparan sulfate in restoration of bFGF-receptor binding was also demonstrated by its sensitivity to heparinase treatment and by the lack of restoration activity in CHO cell mutants that lack enzymatic activities required to form the repeating disaccharide unit characteristic of heparan sulfate. Xyloside-primed heparan sulfate binds to the cell surface. Restoration of bFGF receptor binding was induced by both soluble and cell bound xyloside-primed heparan sulfate and was abolished in cells that were exposed to 0.5–1.0 M NaCl prior to the bFGF binding reaction. These results indicate that heparan sulfate chains produced on xyloside primers behave like heparan sulfate chains attached to cellular core proteins in terms of affinity for bFGF and ability to function as low-affinity sites in a dual receptor mechanism characteristic of bFGF and other heparin-binding growth promoting factors.  相似文献   

7.
Fannon M  Forsten KE  Nugent MA 《Biochemistry》2000,39(6):1434-1445
Basic fibroblast growth factor (bFGF) binds to cell surface tyrosine kinase receptor proteins and to heparan sulfate proteoglycans. The interaction of bFGF with heparan sulfate on the cell surface has been demonstrated to impact receptor binding and biological activity. bFGF receptor binding affinity is reduced on cells that do not express heparan sulfate. The addition of soluble heparin or heparan sulfate has been demonstrated to rescue the bFGF receptor binding affinity on heparan sulfate deficient cells yet has also been shown to inhibit binding under some conditions. While the chemical requirements of the heparin-bFGF-receptor interactions have been studied in detail, the possibility that heparin enhances bFGF binding in part by physically associating with the cell surface has not been fully evaluated. In the study presented here, we have investigated the possibility that heparin binding to the cell surface might play a role in modulating bFGF receptor binding and activity. Balb/c3T3 cells were treated with various concentrations of sodium chlorate, so as to express a range of endogenous heparan sulfate sites, and [(125)I]bFGF binding was assessed in the presence of a range of heparin concentrations. Low concentrations of heparin (0.1-30 nM) enhanced bFGF receptor binding to an extent that was inversely proportional to the amount of endogenous heparan sulfate sites present. At high concentrations (10 microM), heparin inhibited bFGF receptor binding in cells under all conditions. The ability of heparin to stimulate and inhibit bFGF-receptor binding correlated with altered bFGF-stimulated tyrosine kinase activity and cell proliferation. Under control and chlorate-treated conditions, [(125) I]heparin was observed to bind with a high affinity to a large number of binding sites on the cells (K(d) = 57 and 50 nM with 3.5 x 10(6) and 3.6 x 10(6) sites/cell for control and chlorate-treated cells, respectively). A mathematical model of this process revealed that the dual functions of heparin in bFGF binding were accurately represented by heparin cell binding-mediated stimulation and soluble heparin-mediated inhibition of bFGF receptor binding.  相似文献   

8.

Background

Stromal fibroblasts are important determinants of tumor cell behavior. They act to condition the tumor microenvironment, influence tumor growth, support tumor angiogenesis and affect tumor metastasis. Heparan sulfate proteoglycans, present both on tumor and stromal cells, interact with a large number of ligands including growth factors, their receptors, and structural components of the extracellular matrix. Being ubiquitously expressed in the tumor microenvironment heparan sulfate proteoglycans are candidates for playing central roles in tumor-stroma interactions. The objective of this work was to investigate the role of heparan sulfate expressed by stromal fibroblasts in modulating the growth of tumor cells and in controlling the interstitial fluid pressure in a 3-D model.

Methodology/Principal Findings

We generated spheroids composed of fibroblasts alone, or composite spheroids, composed of fibroblasts and tumor cells. Here we show that stromal fibroblasts with a mutation in the heparan sulfate elongating enzyme Ext1 and thus a low heparan sulfate content, formed composite fibroblast/tumor cell spheroids with a significant lower interstitial fluid pressure than corresponding wild-type fibroblast/tumor cell composite spheroids. Furthermore, immunohistochemistry of composite spheroids revealed that the cells segregated, so that after 6 days in culture, the wild-type fibroblasts formed an inner core and the tumor cells an outer layer of cells. For composite spheroids containing Ext1-mutated fibroblasts this segregation was less obvious, indicating impaired cell migration. Analysis of tumor cells expressing the firefly luciferase gene revealed that the changes in tumor cell migration in mutant fibroblast/tumor cell composite spheroids coincided with a lower proliferation rate.

Conclusions/Significance

This is the first demonstration that stromal Ext1-levels modulate tumor cell proliferation and affect the interstitial fluid pressure in a 3-D spheroid model. Learning how structural changes in stromal heparan sulfate influence tumor cells is essential for our understanding how non-malignant cells of the tumor microenvironment influence tumor cell progression.  相似文献   

9.
Recently we identified a plasma serine protease with a high affinity to glycosaminoglycans like heparin or hyaluronic acid, termed hyaluronan-binding protease (HABP). Since glycosaminoglycans are found on cell surfaces and in the extracellular matrix a physiological role of this plasma protease in a pericellular environment was postulated. Here we studied the influence of HABP on the regulation of endothelial cell growth. We found that HABP efficiently prevented the basic fibroblast growth factor/epidermal growth factor (bFGF/EGF)-dependent proliferation of human umbilical vein endothelial cells. Proteolytic cleavage of adhesion molecules was found to be involved, but was not solely responsible for the anti-proliferative activity. Pre-treatment of growth factor-supplemented cell culture medium with HABP indicated that no direct contact between the active protease and cells was required for growth inhibition. In vitro studies revealed a growth factor-directed activity of HABP, resulting in complexation and partial hydrolysis and, thus, inactivation of basic fibroblast growth factor, a potent mitogen for endothelial cells. Heparin and heparan sulfate fully protected bFGF from complexation and cleavage by HABP, although these glycosaminoglycans are known to enhance the proteolytic activity of HABP. This finding suggested that free circulating bFGF rather than bFGF bound to heparan sulfate proteoglycans would be a physiologic substrate. In conclusion, down-regulation of bFGF-dependent endothelial cell growth represents an important mechanism through which HABP could control cell growth in physiologic or pathologic processes like angiogenesis, wound healing or tumor development.  相似文献   

10.
Cell surface proteoglycans help present some polypeptide growth factors such as basic fibroblast growth factor (bFGF) to their receptors and may act as reservoirs for others such as transforming growth factor-beta (TGF-beta). Betaglycan, a cell surface heparan sulfate/chondroitin sulfate proteoglycan that binds TGF-beta via its core protein, is shown here to bind bFGF via its heparan sulfate chains. We investigated the potential for regulation of betaglycan by its ligands in osteoblasts, a system in which bFGF and TGF-beta have complementary effects. We report here that the apparent molecular mass of betaglycan from an osteoblast-enriched primary culture of fetal rat calvaria is decreased in response to bFGF, as detected by an increased electrophoretic migration of betaglycan. The betaglycan forms expressed in bFGF-treated osteoblasts have a reduced content of heparan sulfate GAGs, without detectable changes in the content of chondroitin sulfate GAGs or the size of the core protein. bFGF did not affect the overall population of cell-surface-associated proteins identified by sulfate labeling, which contained primarily heparan sulfate, and had only small effects on the major secreted proteoglycans, which were, by contrast, chondroitin sulfate proteoglycans. The effect of bFGF on betaglycan is therefore a selective one. These results suggest that cells can interact with members of the TGF-beta and FGF families through separate domains of the same membrane proteoglycan, and can selectively regulate the bFGF-binding carbohydrate chains of this proteoglycan in response to bFGF.  相似文献   

11.
We have proposed a model in which fibroblast growth factor (FGF) signalling requires the interaction of FGF with at least two FGF receptors, a heparan sulfate proteoglycan (HSPG) and a tyrosine kinase. Since FGF may be a key mediator of skeletal muscle differentiation, we examined the synthesis of glycosaminoglycans in MM14 skeletal muscle myoblasts and their participation in FGF signalling. Proliferating and differentiated MM14 cells exhibit similar levels of HSPG, while differentiated cells exhibit reduced levels of chondroitin sulfate proteoglycans and heparan sulfate chains. HSPGs, including syndecan, present in proliferating cells bind bFGF, while the majority of chondroitin sulfate and heparan sulfate chains do not. Treatment of skeletal muscle cells with chlorate, a reversible inhibitor of glycosaminoglycan sulfation, was used to examine the requirement of sulfated proteoglycans for FGF signalling. Chlorate treatment reduced glycosaminoglycan sulfation by 90% and binding of FGF to high affinity sites by 80%. Chlorate treatment of MM14 myoblasts abrogated the biological activity of acidic, basic, and Kaposi's sarcoma FGFs resulting in terminal differentiation. Chlorate inhibition of FGF signalling was reversed by the simultaneous addition of sodium sulfate or heparin. Further support for a direct role of heparan sulfate proteoglycans in fibroblast growth factor signal transduction was demonstrated by the ability of heparitinase to inhibit basic FGF binding and biological activity. These results suggest that activation of FGF receptors by acidic, basic or Kaposi's sarcoma FGF requires simultaneous binding to a HSPG and the tyrosine kinase receptor. Skeletal muscle differentiation in vivo may be dependent on FGFs, FGF tyrosine kinase receptors, and HSPGs. The regulation of these molecules may then be expected to have important implications for skeletal muscle development and regeneration.  相似文献   

12.
Sonic hedgehog promotes proliferation of developing cerebellar granule cells. As sonic hedgehog is expressed in the cerebellum throughout life it is not clear why proliferation occurs only in the early postnatal period and only in the external granule cell layer. We asked whether heparan sulfate proteoglycans might regulate sonic hedgehog-induced proliferation and thereby contribute to the specialized proliferative environment of the external granule cell layer. We identified a conserved sequence within sonic hedgehog that is essential for binding to heparan sulfate proteoglycans, but not for binding to the receptor patched. Sonic hedgehog interactions with heparan sulfate proteoglycans promote maximal proliferation of postnatal day 6 granule cells. By contrast, proliferation of less mature granule cells is not affected by sonic hedgehog-proteoglycan interactions. The importance of proteoglycans for proliferation increases during development in parallel with increasing expression of the glycosyltransferase genes, exostosin 1 and exostosin 2. These data suggest that heparan sulfate proteoglycans, synthesized by exostosins, may be critical determinants of granule cell proliferation.  相似文献   

13.
Basic fibroblast growth factor (bFGF) was internalized at a rapid rate by Chinese hamster ovary (CHO) cells that do not express significant numbers of high affinity receptors for bFGF as well as CHO cells that have been transfected with cDNA encoding FGF receptor-1 or FGF receptor-2. Internalization of bFGF was completely blocked by the addition of 10 micrograms/ml heparin in the parental CHO cells but only partially inhibited in cells expressing transfected FGF receptors. Bovine aortic endothelial cells also exhibit heparin-sensitive and heparin-resistant internalization of bFGF. The internalization of bFGF through the heparin-resistant pathway in CHO cells was efficiently competed by addition of unlabeled bFGF, was proportional to the number of receptors expressed, and approached saturation, suggesting that the heparin-resistant internalization was due to high affinity receptors. Internalization of bFGF through the heparin-sensitive pathway was not efficiently competed by unlabeled bFGF and did not approach saturation at concentrations of bFGF up to 50 ng/ml, properties similar to the interaction of bFGF with low affinity heparan sulfate binding sites on the cell surface. Internalization of bFGF in CHO cells not expressing FGF receptors was inhibited by heparin, heparan sulfate, and dermatan sulfate, the same glycosaminoglycans that block binding to cell-surface heparin sulfates. Internalization of bFGF in the parental CHO cells was inhibited at the same concentrations of heparin that block binding to cell-surface heparan sulfates. Finally, inhibition of the sulfation of CHO cell heparan sulfates by the addition of chlorate or digestion of CHO cell heparan sulfates with heparinase inhibited bFGF internalization in the parental CHO cells. These results demonstrate that bFGF can be internalized through a direct interaction with cell-surface heparan sulfates. Thus, there are two pathways for internalization of bFGF: high affinity receptor-mediated and heparan sulfate-mediated.  相似文献   

14.
Smooth muscle cell proliferation can be inhibited by heparan sulfate proteoglycans whereas the removal or digestion of heparan sulfate from perlecan promotes their proliferation. In this study we characterized the glycosaminoglycan side chains of perlecan isolated from either primary human coronary artery smooth muscle or endothelial cells and determined their roles in mediating cell adhesion and proliferation, and in fibroblast growth factor (FGF) binding and signaling. Smooth muscle cell perlecan was decorated with both heparan sulfate and chondroitin sulfate, whereas endothelial perlecan contained exclusively heparan sulfate chains. Smooth muscle cells bound to the protein core of perlecan only when the glycosaminoglycans were removed, and this binding involved a novel site in domain III as well as domain V/endorepellin and the α2β1 integrin. In contrast, endothelial cells adhered to the protein core of perlecan in the presence of glycosaminoglycans. Smooth muscle cell perlecan bound both FGF1 and FGF2 via its heparan sulfate chains and promoted the signaling of FGF2 but not FGF1. Also endothelial cell perlecan bound both FGF1 and FGF2 via its heparan sulfate chains, but in contrast, promoted the signaling of both growth factors. Based on this differential bioactivity, we propose that perlecan synthesized by smooth muscle cells differs from that synthesized by endothelial cells by possessing different signaling capabilities, primarily, but not exclusively, due to a differential glycanation. The end result is a differential modulation of cell adhesion, proliferation and growth factor signaling in these two key cellular constituents of blood vessels.  相似文献   

15.
Basic fibroblast growth factor (bFGF) binds to heparin-like molecules present in the extracellular matrix (ECM) of transformed fetal bovine aortic endothelial GM 7373 cells. Binding of bFGF to ECM can be competed by heparin or heparan sulfate, and ECM-bound bFGF can be released by treating the cells with heparinase or heparatinase. After binding to ECM, bFGF is slowly released into the medium in a biologically active form, as shown by its capacity to induce an increase of cell-associated plasminogen activator activity and cell proliferation. The increase is prevented upon removal of ECM-bound bFGF by a neutral 2 M NaCl wash. Soluble heparin and heparan sulfate reduce the amount of ECM-bound bFGF released into the medium, possibly competing with ECM polysaccharides for heparinase-like enzymes produced by endothelial cells, suggesting that these enzymes are involved in the mobilization of ECM-bound bFGF.  相似文献   

16.
Basic fibroblast growth factor (bFGF) is a therapeutic target of anti-angiogenesis. Here, we report that a novel sulfated glycopeptide derived from Gekko swinhonis Guenther (GSPP), an anticancer drug in traditional Chinese medicine, inhibits tumor angiogenesis by targeting bFGF. GSPP significantly decreased the production of bFGF in hepatoma cells by suppressing early growth response-1. GSPP inhibited the release of bFGF from extracellular matrix by blocking heparanase enzymatic activity. Moreover, GSPP competitively inhibited bFGF binding to heparin/heparan sulfate via direct binding to bFGF. Importantly, GSPP abrogated the bFGF-stimulated proliferation and migration of endothelial cells, whereas it had no inhibitory effect on endothelial cells in the absence of bFGF. Further study revealed that GSPP prevented bFGF-induced neovascularization and inhibited tumor angiogenesis and tumor growth in a xenograft mouse model. These results demonstrate that GSPP inhibits tumor angiogenesis by blocking bFGF production, release from the extracellular matrix, and binding to its low affinity receptor, heparin/heparan sulfate.  相似文献   

17.
Multipotential retinal precursors give rise to all cell types seen in multilayered retina. The generation of differentiation and diversity of neuronal cell types is determined by both extrinsic regulatory signals and endogenous genetic programs. We have previously reported that cell commitment in human retinal precursor cells (SV-40T) can be modified in response to exogenous growth factors, basic fibroblast growth factor, and transforming growth factor alpha (bFGF and TGFalpha). We report in this study that nontransformed human retinal precursors differentiate into photoreceptors by a cell density-dependent mechanism, and the effects were potentiated by bFGF and TGFalpha alone or in combination. A larger proportion of multipotential precursors plated at a density of 1 x 10(4) cells/cm(2) differentiated into neurons (photoreceptors) compared to cells plated at 3-5 x 10(4)/cm(2) and 1 x 10(5) cells/cm(2) under serum-free conditions and the effects were amplified seven- to eightfold in response to growth factors. Basic fibroblast growth factor (bFGF) and TGFalpha can induce 90% of the cells to assume a photoreceptor phenotype at a lower cell density, compared to only 30 and 25% of the cells acquiring a photoreceptor phenotype at intermediate and higher cell densities. Furthermore, at a lower cell density, 60-70% of the cells incorporate Bromodeoxyuridine (Brdu), suggesting that cells in a cell cycle may make a commitment to a specific fate in response to neurotrophins. Neurons with a photoreceptor phenotype were positive for three different sets of antibodies for rods/cones. Cells also exhibited upregulation of other proteins such as a D4 receptor protein expressed in photoreceptors, protein kinase Calpha (PKCalpha) expressed in rod bipolars and blue cones, and some other neuronal cell types. This was also confirmed by Western blot analysis. Newly derived photoreceptors survive for a few days before significant cell death ensues under serum-free conditions. To summarize, differentiation in precursors is density dependent, and growth factors amplify the effects.  相似文献   

18.
Cell surface heparan sulfate proteoglycans (HSPGs) participate in molecular events that regulate cell adhesion, migration, and proliferation. The present study demonstrates that soluble heparin-binding proteins or cross-linking antibodies induce the aggregation of cell surface HSPGs and their distribution along underlying actin filaments. Immunofluorescence and confocal microscopy and immunogold and electron microscopy indicate that, in the absence of ligands, HSPGs are irregularly distributed on the fibroblast cell surface, without any apparent codistribution with the actin cytoskeleton. In the presence of ligand (lipoprotein lipase) or antibodies against heparan sulfate, HSPGs aggregate and colocalize with the actin cytoskeleton. Triton X-100 extraction and immunoelectron microscopy have demonstrated that in this condition HSPGs were clustered and associated with the actin filaments. Crosslinking experiments that use biotinylated lipoprotein lipase have revealed three major proteoglycans as binding sites at the fibroblast cell surface. These cross-linked proteoglycans appeared in the Triton X-100 insoluble fraction. Platinum/carbon replicas of the fibroblast surface incubated either with lipoprotein lipase or antiheparan sulfate showed large aggregates of HSPGs regularly distributed along cytoplasmic fibers. Quantification of the spacing between HSPGs by confocal microscopy confirmed that the nonrandom distribution of HSPG aggregates along the actin cytoskeleton was induced by ligand binding. When cells were incubated either with lipoprotein lipase or antibodies against heparan sulfate, the distance between immunofluorescence spots was uniform. In contrast, the spacing between HSPGs on fixed cells not incubated with ligand was more variable. This highly organized spatial relationship between actin and proteoglycans suggests that cortical actin filaments could organize the molecular machinery involved in signal transduction and molecular movements on the cell surface that are triggered by heparin-binding proteins.  相似文献   

19.
A rat hepatoma cell line was shown to synthesize heparan sulfate and chondroitin sulfate proteoglycans. Unlike cultured hepatocytes, the hepatoma cells did not deposit these proteoglycans into an extracellular matrix, and most of the newly synthesized heparan sulfate proteoglycans were secreted into the culture medium. Heparan sulfate proteoglycans were also found associated with the cell surface. These proteoglycans could be solubilized by mild trypsin or detergent treatment of the cells but could not be displaced from the cells by incubation with heparin. The detergent-solubilized heparan sulfate proteoglycan had a hydrophobic segment that enabled it to bind to octyl- Sepharose. This segment could conceivably anchor the molecule in the lipid interior of the plasma membrane. The size of the hepatoma heparan sulfate proteoglycans was similar to that of proteoglycans isolated from rat liver microsomes or from primary cultures of rat hepatocytes. Ion-exchange chromatography on DEAE-Sephacel indicated that the hepatoma heparan sulfate proteoglycans had a lower average charge density than the rat liver heparan sulfate proteoglycans. The lower charge density of the hepatoma heparan sulfate can be largely attributed to a reduced number of N-sulfated glucosamine units in the polysaccharide chain compared with that of rat liver heparan sulfate. Hepatoma heparan sulfate proteoglycans purified from the culture medium had a considerably lower affinity for fibronectin-Sepharose compared with that of rat liver heparan sulfate proteoglycans. Furthermore, the hepatoma proteoglycan did not bind to the neoplastic cells, whereas heparan sulfate from normal rat liver bound to the hepatoma cells in a time-dependent reaction. The possible consequences of the reduced sulfation of the heparan sulfate proteoglycan produced by the hepatoma cells are discussed in terms of the postulated roles of heparan sulfate in the regulation of cell growth and extracellular matrix formation.  相似文献   

20.
The binding of iodinated basic fibroblast growth factor (bFGF) to low-density heparan sulfate proteoglycan purified from the Engelbreth Holm Swarm (EHS) sarcoma was investigated using different techniques. The tumor clearly contained bFGF, the level being comparable to that found in other tissues such as human or bovine brain. 125I bFGF strongly bound to the basement membrane-like matrix of EHS frozen sections as revealed by autoradiography. Iodinated bFGF bound to purified heparan sulfate proteoglycan but not to laminin or collagen type IV, three components isolated from the same tumor. In contrast, acidic fibroblast growth factor (aFGF) displayed negligible binding to heparan sulfate proteoglycan. Binding of bFGF to frozen sections and to purified proteoglycan could be strongly inhibited by heparin and was displaced by an excess of unlabeled factor and completely suppressed after heparitinase and heparinase treatments. Binding was a function of the salt concentration and was abolished at 0.6 M NaCl. Scatchard analysis indicated the affinity site had a Kd of about 30 nM, a value 10-15 higher than that recently reported by Moscatelli (J. Cell. Physiol., 131:123-130, 1987) in the case of the low-affinity binding sites present on the surface of baby hamster kidney (BHK) cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号