首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Human lymphatic endothelial cells express multiple functional TLRs   总被引:1,自引:0,他引:1  
The lymphatic endothelium is the preferred route for the drainage of interstitial fluid from tissues and also serves as a conduit for peripheral dendritic cells (DCs) to reach draining lymph nodes. Lymphatic endothelial cells (LECs) are known to produce chemokines that recruit Ag-loaded DCs to lymphatic vessels and therefore are likely to regulate the migration of DCs to lymph nodes. TLRs are immune receptors that recognize pathogen associated molecular patterns and then signal and stimulate production of inflammatory chemokines and cytokines that contribute to innate and adaptive immune responses. TLRs are known to be expressed by a wide variety of cell types including leukocytes, epithelial cells, and endothelial cells. Because the TLR expression profile of LECs remains largely unexamined, we have undertaken a comprehensive study of the expression of TLR1-10 mRNAs and protein in primary human dermal (HD) and lung LECs as well as in htert-HDLECs, which display a longer life-span than HDLECs. We found that all three cell types expressed TLR1-6 and TLR9. The responsiveness of these LECs to a panel of ligands for TLR1-9 was measured by real-time RT-PCR, ELISA, and flow cytometry, and revealed that the LECs responded to most but not all TLR ligands by increasing expression of inflammatory chemokines, cytokines, and adhesion molecules. These findings provide insight into the ability of cells of the lymphatic vasculature to respond to pathogens and potential vaccine adjuvants and shape peripheral environments in which DCs will acquire Ag and environmental cues.  相似文献   

2.
TLRs initiate the host immune response to microbial pathogens by activating cells of the innate immune system. Dendritic cells (DCs) can be categorized into two major groups, conventional DCs (including CD8(+) and CD8(-) DCs) and plasmacytoid DCs. In mice, these subsets of DCs express a variety of TLRs, with conventional DCs responding in vitro to predominantly TLR3, TLR4, TLR5, and TLR9 ligands, and plasmacytoid DCs responding mainly to TLR7 and TLR9 ligands. However, the in vivo requirement of DCs to initiate immune responses to specific TLR agonists is not fully known. Using mice depleted of >90% of CD11c(+) MHC class II(+) DCs, we demonstrate that cellular recruitment, including CD4(+) T cell and CX5(+)DX5(+) NK cell recruitment to draining lymph nodes following the footpad administration of TLR4 and TLR5 agonists, is dramatically decreased upon reduction of DC numbers, but type I IFN production can partially substitute for DCs in response to TLR3 and TLR7 agonists. Interestingly, TLR ligands can activate T cells and NK cells in the draining lymph nodes, even with reduced DC numbers. The findings reveal considerable plasticity in the response to TLR agonists, with TLR4 and TLR5 agonists sharing the requirement of DCs for subsequent lymph node recruitment of NK and T cells.  相似文献   

3.
4.
Toll-like receptors (TLRs) have been shown to play crucial role in the recognition of unicellular pathogens. We have shown the expression of three TLRs on tumor cells of human laryngeal carcinoma by means of immunohistochemistry. In the current study we searched presence of TLR1-10 on protein and molecular level in larynx carcinoma cell lines and the impact of respective TLR ligands on TLR expression. Larynx carcinoma cell lines have been used. Cell were subjected to immunocytochemistry. RNA isolated from the cells was tested by RT-PCR. Cells were cultured in the presence of respective TLR ligands. Cells than were harvested and subjected to flow cytometry, using anti TLR1-10 Moabs. The cells were evaluated of membrane and cytoplasmic cell staining. TLR reactivity varied in individual cell lines. RT-PCR allowed to show mRNA for all TLRs tested. After short-term cell culture each cell line exhibited distinct pattern of expression of TLRs following interaction with respective ligand. Cytoplasmic TLR staining had usually higher MFI value than membrane one, but after culture with ligand it became reversed. TLRs 7 and 9 showed highest expression in the majority of tumor cells tested. In conclusion, larynx carcinoma cell lines exhibit rather universal expression of TLRs, both on protein and molecular level. Culture of TLR expressing tumor cells with ligands points out for potential reactivity of tumor cells with TLR agonists, what may have therapeutic implications.  相似文献   

5.
Defective Rhinovirus induced interferon-β and interferon-λ production has been reported in bronchial epithelial cells from asthmatics but the mechanisms of defective interferon induction in asthma are unknown. Virus infection can induce interferon through Toll like Receptors (TLR)3, TLR7 and TLR8. The role of these TLRs in interferon induction in asthma is unclear. This objective of this study was to measure the type I and III interferon response to TLR in bronchial epithelial cells and peripheral blood cells from atopic asthmatics and non-atopic non-asthmatics. Bronchial epithelial cells and peripheral blood mononuclear cells from atopic asthmatic and non-atopic non-asthmatic subjects were stimulated with agonists to TLR3, TLR4 & TLRs7–9 and type I and III interferon and pro-inflammatory cytokine, interleukin(IL)-6 and IL-8, responses assessed. mRNA expression was analysed by qPCR. Interferon proteins were analysed by ELISA. Pro-inflammatory cytokines were induced by each TLR ligand in both cell types. Ligands to TLR3 and TLR7/8, but not other TLRs, induced interferon-β and interferon-λ in bronchial epithelial cells. The ligand to TLR7/8, but not those to other TLRs, induced only type I interferons in peripheral blood mononuclear cells. No difference was observed in TLR induced interferon or pro-inflammatory cytokine production between asthmatic and non-asthmatic subjects from either cell type. TLR3 and TLR7/8,, stimulation induced interferon in bronchial epithelial cells and peripheral blood mononuclear cells. Interferon induction to TLR agonists was not observed to be different in asthmatics and non-asthmatics.  相似文献   

6.
7.
Toll-like receptors (TLRs) TLR1, TLR2, TLR4, and TLR6 are evolutionarily conserved, highly homologous, and localized to plasma membranes of host cells and recognize pathogen-associated molecular patterns (PAMPs) derived from bacterial membranes. These receptors cooperate in a pairwise combination to elicit or inhibit the inflammatory signals in response to certain PAMPs. The other TLRs that are evolutionarily closely related and highly homologous are TLR7, TLR8, and TLR9. They are all confined to the membranes of endosomes and recognize similar molecular structures, the oligonucleotide-based PAMPs. However, the cooperative interactions among these receptors that may modulate the inflammatory signaling in response to their cognate agonists are not reported. We report here for the first time the functional effects of one TLR on the other among TLR7, TLR8, and TLR9. The results indicate that TLR8 inhibits TLR7 and TLR9, and TLR9 inhibits TLR7 but not vice versa in HEK293 cells transfected with TLRs in a pairwise combination. This is concluded by selectively activating one TLR over the other by using small molecule TLR agonists. We also show that these inhibitory interactions are the result of direct or indirect physical interactions between the TLRs. The murine TLR8 that does not respond to any known human TLR8 agonists also inhibits both murine and human TLR7. The implications of the inhibitory interactions among these TLRs in host-pathogen recognition and subsequent inflammatory responses are not obvious. However, given the complexity in expression pattern in a particular cell type and the variation in distribution and response to different pathogens and stress signals in different cell types, the inhibitory physical interactions among these TLRs may play a role in balancing the inflammatory outcome from a given cell type to a specific challenge.  相似文献   

8.
9.
Toll-like receptors (TLRs), which are mainly expressed in antigen presenting cells, perform a critical role in innate immunity by recognizing the specific structural patterns of pathogens and transducing signals to induce an inflammatory reaction. Although it has been reported that various solid cancers express endosomal TLRs, TLR3, 7, 8, and 9, the cellular and molecular function of TLRs in tumorigenesis has not yet been elucidated. In this report, we identified the expression of TLR3 and TLR7 in the human breast cancer cell line MCF-7 and found that TLRs stimulated with their specific ligand induced an anti-tumoral effect in this cell line. Among four synthetic commercial agonists of TLR3 and 7, Poly(I:C) and imiquimod (IMQ) proved to have superior anti-tumoral activity over the other agonists. A decreased growth rate was observed in MCF-7 cells treated with either TLR agonist. The decreased growth rate was due to autophagy and autophagy-induced cell death because treatment with 3-methyladenine, inhibitor of autophagy rescued the growth rate and increased the expression levels of autophagy-related genes. Moreover, survival of MCF-7 cells significantly decreased when the cells were stimulated simultaneously with TLR agonists and radiation exposure. Therefore, this study can be applied to developing a therapeutic adjuvant of TLR agonists in radiotherapy for radio-resistant breast cancer treatment.  相似文献   

10.
In a classical dogma, pathogens are sensed (via recognition of Pathogen Associated Molecular Patterns (PAMPs)) by innate immune cells that in turn activate adaptive immune cells. However, recent data showed that TLRs (Toll Like Receptors), the most characterized class of Pattern Recognition Receptors, are also expressed by adaptive immune B cells. B cells play an important role in protective immunity essentially by differentiating into antibody-secreting cells (ASC). This differentiation requires at least two signals: the recognition of an antigen by the B cell specific receptor (BCR) and a T cell co-stimulatory signal provided mainly by CD154/CD40L acting on CD40. In order to better understand interactions of innate and adaptive B cell stimulatory signals, we evaluated the outcome of combinations of TLRs, BCR and/or CD40 stimulation. For this purpose, mouse spleen B cells were activated with synthetic TLR agonists, recombinant mouse CD40L and agonist anti-BCR antibodies. As expected, TLR agonists induced mouse B cell proliferation and activation or differentiation into ASC. Interestingly, addition of CD40 signal to TLR agonists stimulated either B cell proliferation and activation (TLR3, TLR4, and TLR9) or differentiation into ASC (TLR1/2, TLR2/6, TLR4 and TLR7). Addition of a BCR signal to CD40L and either TLR3 or TLR9 agonists did not induce differentiation into ASC, which could be interpreted as an entrance into the memory pathway. In conclusion, our results suggest that PAMPs synergize with signals from adaptive immunity to regulate B lymphocyte fate during humoral immune response.  相似文献   

11.
Oral keratinocytes and fibroblasts may be the first line of host defense against oral microorganisms. Here, the contention that oral keratinocytes and fibroblasts recognize microbial components via Toll‐like receptors (TLRs) and participate in development of oral inflammation was examined. It was found that immortalized oral keratinocytes (RT7), fibroblasts (GT1) and primary cells express mRNA of TLRs 1–10. Interleukin‐8 (IL‐8) production by RT7 cells was induced by treatment with TLRs 1–9 with the exception of TLR7 agonist, whereas GT1 cells were induced to produce IL‐8 by all TLR agonists tested except for TLR7 and TLR9. GT1 cells showed increased CXCL10 production following treatment with agonists for TLR1/2, TLR3, TLR4, and TLR5, whereas only those for TLR3 and TLR5 increased CXCL10 production in RT7 cells. Moreover, TLR agonists differentially regulated tumor necrosis factor‐alpha‐induced IL‐8 and CXCL10 production by the tested cell types. These findings suggest that recognition of pathogenic microorganisms in oral keratinocytes and fibroblasts by TLRs may have important roles in orchestrating host immune responses via production of various chemokines.  相似文献   

12.
TLRs play a crucial role in early host defense against invading pathogens. In the seminiferous epithelium, Sertoli cells are the somatic nurse cells that mechanically segregate germ cell autoantigens by means of the blood-tubular barrier and create a microenvironment that protects germ cells from both interstitial and ascending invading pathogens. The objective of this study was to examine TLR expression and their functional responses to specific agonists in mouse Sertoli cells. We measured the expression of TLR2, TLR4, TLR5, and TLR6 mRNAs and confirmed by FACS analysis the presence of proteins TLR2 and TLR5 on which we focused our study. Stimulation of Sertoli cells with macrophage-activating lipopeptide-2, agonist of TLR2/TLR6, and with flagellin, agonist of TLR5, induces augmented secretion of the chemokine MCP-1. To assess the functional significance of MCP-1 production following TLR stimulation, conditioned medium from either macrophage-activating lipopeptide-2 or flagellin-treated Sertoli cells was tested for in vitro chemotaxis assay, and a significant increase of macrophage migration was observed in comparison with unstimulated conditioned medium. Moreover, we studied the role of NF-kappaB and of MAPKs in regulating TLR-mediated MCP-1 secretion by using inhibitors specific for each transduction pathway and we demonstrated a pivotal role of the IkappaB/NF-kappaB and JNK systems. In addition, TLR2/TLR6 and TLR5 stimulation induces increased ICAM-1 expression in Sertoli cells. Collectively, this study demonstrates the novel ability of Sertoli cells to potentially respond to a wide variety of bacteria through TLR stimulation.  相似文献   

13.
Microglia are the resident macrophage-like population in the CNS. Microglia remain quiescent until injury or infection activates the cells to perform effector inflammatory and APC functions. Our previous studies have shown that microglia infected with a neurotropic strain of Theiler's murine encephalomyelitis virus secreted innate immune cytokines and up-regulated costimulatory molecules and MHC class II, enabling the cells to present viral and myelin Ags to CD4+ T cells. Recently, TLRs have been shown to recognize pathogen-associated molecular patterns and initiate innate immune responses upon interaction with infectious agents. We examined TLR expression on brain microglia and their functional responses upon stimulation with various TLR agonists. We report that mouse microglia express mRNA for all of the recently identified TLRs, TLR1-9, used for recognition of bacterial and viral molecular patterns. Furthermore, stimulation of quiescent microglia with various TLR agonists, including LPS (TLR4), peptidoglycan (TLR2), polyinosinic-polycytidylic acid (TLR3), CpG DNA (TLR9), and infection with viable Theiler's murine encephalomyelitis virus, activated the cells to up-regulate unique patterns of innate and effector immune cytokines and chemokines at the mRNA and protein levels. In addition, TLR stimulation activated up-regulation of MHC class II and costimulatory molecules, enabling the microglia to efficiently present myelin Ags to CD4+ T cells. Thus, microglia appear to be a unique and important component of both the innate and adaptive immune response, providing the CNS with a means to rapidly and efficiently respond to a wide variety of pathogens.  相似文献   

14.
The lymphatic sinuses in human lymph nodes (LNs) are crucial to LN function yet their structure remains poorly defined. Much of our current knowledge of lymphatic sinuses derives from rodent models, however human LNs differ substantially in their sinus structure, most notably due to the presence of trabeculae and trabecular lymphatic sinuses that rodent LNs lack. Lymphatic sinuses are bounded and traversed by lymphatic endothelial cells (LECs). A better understanding of LECs in human LNs is likely to improve our understanding of the regulation of cell trafficking within LNs, now an important therapeutic target, as well as disease processes that involve lymphatic sinuses. We therefore sought to map all the LECs within human LNs using multicolor immunofluorescence microscopy to visualize the distribution of a range of putative markers. PROX1 was the only marker that uniquely identified the LECs lining and traversing all the sinuses in human LNs. In contrast, LYVE1 and STAB2 were only expressed by LECs in the paracortical and medullary sinuses in the vast majority of LNs studied, whilst the subcapsular and trabecular sinuses lacked these molecules. These data highlight the existence of at least two distinctive populations of LECs within human LNs. Of the other LEC markers, we confirmed VEGFR3 was not specific for LECs, and CD144 and CD31 stained both LECs and blood vascular endothelial cells (BECs); in contrast, CD59 and CD105 stained BECs but not LECs. We also showed that antigen-presenting cells (APCs) in the sinuses could be clearly distinguished from LECs by their expression of CD169, and their lack of expression of PROX1 and STAB2, or endothelial markers such as CD144. However, both LECs and sinus APCs were stained with DCN46, an antibody commonly used to detect CD209.  相似文献   

15.
Enteroendocrine cells are known primarily for their production of hormones that affect digestion, but they might also be implicated in sensing and neutralizing or expelling pathogens. We evaluate the expression of TLRs and the response to specific agonists in terms of cytokines, defensins, and hormones in enteroendocrine cells. The mouse enteroendocrine cell line STC-1 and C57BL/6 mice are used for in vitro and in vivo studies, respectively. The presence of TLR4, 5, and 9 is investigated by RT-PCR, Western blot, and immunofluorescence analyses. Activation of these receptors is studied evaluating keratinocyte-derived chemokine, defensins, and cholecystokinin production in response to their specific agonists. In this study, we show that the intestinal enteroendocrine cell line STC-1 expresses TLR4, 5, and 9 and releases cholecystokinin upon stimulation with the respective receptor agonists LPS, flagellin, and CpG-containing oligodeoxynucleotides. Release of keratinocyte-derived chemokine and beta-defensin 2 was also observed after stimulation of STC-1 cells with the three TLR agonists, but not with fatty acids. Consistent with these in vitro data, mice showed increased serum cholecystokinin levels after oral challenge with LPS, flagellin, or CpG oligodeoxynucleotides. In addition to their response to food stimuli, enteroendocrine cells sense the presence of bacterial Ags through TLRs and are involved in neutralizing intestinal bacteria by releasing chemokines and defensins, and maybe in removing them by releasing hormones such as cholecystokinin, which induces contraction of the muscular tunica, favoring the emptying of the distal small intestine.  相似文献   

16.
TLRs expressed by a variety of cells, including epithelial cells, B cells, and dendritic cells, are important initiators of the immune response following stimulation with various microbial products. Several of the TLRs require the adaptor protein, MyD88, which is an important mediator for the immune response following Toxoplasma gondii infection. Previously, TLR9-mediated innate immune responses were predominantly associated with ligation of unmethylated bacterial CpG DNA. In this study, we show that TLR9 is required for the Th1-type inflammatory response that ensues following oral infection with T. gondii. After oral infection with T. gondii, susceptible wild-type (WT; C57BL/6) but not TLR9(-/-) (B6 background) mice develop a Th1-dependent acute lethal ileitis; TLR9(-/-) mice have higher parasite burdens than control WT mice, consistent with depressed IFN-gamma-dependent parasite killing. A reduction in the total T cell and IFN-gamma-producing T cell frequencies was observed in the lamina propria of the TLR9(-/-) parasite-infected mice. TLR9 and type I IFN production was observed by cells from infected intestines in WT mice. TLR9 expression by dendritic cell populations is essential for their expansion in the mesenteric lymph nodes of infected mice. Infection of chimeric mice deleted of TLR9 in either the hemopoietic or nonhemopoietic compartments demonstrated that TLR9 expression by cells from both compartments is important for efficient T cell responses to oral infection. These observations demonstrate that TLR9 mediates the innate response to oral parasite infection and is involved in the development of an effective Th1-type immune response.  相似文献   

17.
18.
Pulmonary arterial hypertension (PAH) is a rare but fatal condition in which raised pulmonary vascular resistance leads to right heart failure and death. Endothelin-1 is a potent endogenous vasoconstrictor, which is considered to be central to many of the events that lead to PAH, and is an important therapeutic target in the treatment of the condition. In many cases of PAH, the aetiology is unknown but inflammation is increasingly thought to play an important role and viruses have been implicated in the development of disease. The Toll Like Receptors (TLRs) play a key role in innate immune responses by initiating specific anti-bacterial and anti-viral defences in recognition of signature molecular motifs on the surface of invading pathogens. In this study, we set out to examine the expression of bacterial and viral TLRs in human pulmonary artery smooth muscle cells and to establish whether their activation could be relevant to PAH. We found that the viral TLR3 and bacterial TLRs 4 and 6 were most abundantly expressed in human pulmonary artery smooth muscle cells. Using specific TLR ligands, we found that activation of TLRs 3 and 4 resulted in IL-8 release by human pulmonary artery smooth muscle cells but that only TLR3 stimulation resulted in IP10 and endothelin-1 release. These data suggest that human pulmonary artery smooth muscle cells express significant levels of viral TLR3 and respond to its activation by releasing endothelin-1. This may have importance in understanding the association between viruses and the development of PAH.  相似文献   

19.
TLRs recognize microbial pathogens and trigger an immune response, but their regulation by neuropeptides, such as vasoactive intestinal peptide (VIP), during Pseudomonas aeruginosa corneal infection remains unexplored. Therefore, C57BL/6 (B6) mice were injected i.p. with VIP, and mRNA, protein, and immunostaining assays were performed. After VIP treatment, PCR array and real-time RT-PCR demonstrated that proinflammatory TLRs (conserved helix-loop-helix ubiquitous kinase, IRAK1, TLR1, TLR4, TLR6, TLR8, TLR9, and TNFR-associated factor 6) were downregulated, whereas anti-inflammatory TLRs (single Ig IL-1-related receptor [SIGIRR] and ST2) were upregulated. ELISA showed that VIP modestly downregulated phosphorylated inhibitor of NF-κB kinase subunit α but upregulated ST2 ~2-fold. SIGIRR was also upregulated, whereas TLR4 immunostaining was reduced in cornea; all confirmed the mRNA data. To determine whether VIP effects were cAMP dependent, mice were injected with small interfering RNA for type 7 adenylate cyclase (AC7), with or without VIP treatment. After silencing AC7, changes in mRNA levels of TLR1, TNFR-associated factor 6, and ST2 were seen and unchanged with addition of VIP, indicating that their regulation was cAMP dependent. In contrast, changes were seen in mRNA levels of conserved helix-loop-helix ubiquitous kinase, IRAK1, 2, TLR4, 9 and SIGIRR following AC7 silencing alone; these were modified by VIP addition, indicating their cAMP independence. In vitro studies assessed the effects of VIP on TLR regulation in macrophages and Langerhans cells. VIP downregulated mRNA expression of proinflammatory TLRs while upregulating anti-inflammatory TLRs in both cell types. Collectively, the data provide evidence that VIP downregulates proinflammatory TLRs and upregulates anti-inflammatory TLRs and that this regulation is both cAMP dependent and independent and involves immune cell types found in the infected cornea.  相似文献   

20.
The innate immune system provides the first line of defence against infection. Through a limited number of germline-encoded receptors called pattern recognition receptors (PRRs), innate cells recognize and are activated by highly conserved structures expressed by large group of microorganisms called pathogen-associated molecular patterns (PAMPs). PRRs are involved either in recognition (scavenger receptors, C-type lectins) or in cell activation (Toll-like receptors or TLR, helicases and NOD molecules). TLRs play a pivotal role in cell activation in response to PAMPs. TLR are type I transmembrane proteins characterized by an intracellular Toll/IL 1 receptor homology domain that are expressed by innate immune cells (dendritic cells, macrophages, NK cells), cells of the adaptive immunity (T and B lymphocytes) and non immune cells (epithelial and endothelial cells, fibroblasts). In all the cell types analyzed, TLR agonists, alone or in combination with costimulatory molecules, induce cell activation. The crucial role played by TLR in immune cell activation has been detailed in dendritic cells. A TLR-dependent activation of dendritic cells is required to induce their maturation and migration to regional lymph nodes and to activate na?ve T cells. The ability of different cell types to respond to TLR agonists is related to the pattern of expression of the TLRs and its regulation as well as their intracellular localization. Recent studies suggest that the nature of the endocytic and signaling receptors engaged by PAMPs may determine the nature of the immune response generated against the microbial molecules, highlighting the role of TLRs as molecular interfaces between innate and adaptive immunity. In this review are summarized the main biological properties of the TLR molecules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号